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ABSTRACT Interval estimation of landslide displacement prediction is significant for landslide early
warning. The goal of this paper is to improve the accuracy of landslide displacement point prediction and
quantify the uncertainties associated with the predicted values. To do so, a coupling prediction model based
on double moving average (DMA) method and long short-term memory (LSTM) network is investigated.
The DMA method is employed to decompose cumulative displacement of landslide into trend and periodic
displacements, while the LSTM network is adopted to model and predict these two sub dis-placements.
The sum of predicted sub displacements is considered as predicted cumulative displacement. Further,
the probability estimation theory is utilized to derive confidence intervals that quantify the uncertainties
of the point prediction. The proposed approach was validated on Baishuihe landslide in Three Gorges
Reservoir area of China. Results show that the LSTM network performs better than support vector machine
and Elman network, while the DMA decomposition method outperforms single moving average method.
As a consequence, the coupling prediction model of DMA and LSTM network is a better solution for the
point prediction of landslide displacement. Furthermore, the proposed probability estimation method can
construct high-quality confidence intervals.

INDEX TERMS Landslide displacement prediction, interval estimation, deep learning, time series
decomposition, Three Gorges Reservoir.

I. INTRODUCTION
Landslides are severe natural calamities that threaten human
life and property [1]–[5]. They occur frequently around the
world. Landslide displacement is the most intuitive mani-
festation of landslide deformation. When the deformation
reaches a certain degree, the landslide disaster is likely to
occur. Therefore, the prediction of landslide displacement
can be used to judge the evolution trend of landslide so
as to realize early warning. However, landslide system usu-
ally presents complex nonlinear characteristics due to the
complexity of local geological conditions and the random-
ness of external inducing factors. In this case, the landslide
displacement has great uncertainties, presenting many dif-
ficulties for accurate landslide displacement prediction [6].
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Currently, the landslide displacement prediction has been a
contentious issue.

The landslide displacement prediction approaches mainly
invert inherent nonlinear dynamic evolution process of land-
slide by analyzing landslide displacement-time curve and
monitoring information of various external influence factors.
Following this idea, the nonlinear mapping relation between
various influence factors and landslide displacement is first
established, and then the evolution trend is predicted through
extrapolation. The landslide displacement can be predicted
by curve fitting techniques, such as Verhulst model, grey
model, exponential smoothing model and so on [7]–[9].
With improvement of landslide monitoring techniques,
the monitoring data become diversified and complicated.
In recent years, many scholars have attempted to apply var-
ious advanced computational intelligence methods to land-
slide displacement prediction. For example, Du et al. [10]
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utilized single moving average (SMA) method to decompose
landslide cumulative displacement into two sub displace-
ments. After that, an artificial neural network was adopted
to model and forecast the two sub displacements considering
the external influence factors. Miao et al. [11] employed
multiple algorithms to determine optimal support vector
machine (SVM) model. Subsequently, the evolution trend
of displacement was forecasted using the cubic polynomial
model whereas the periodic component was forecasted using
the optimized SVMmodel. Similarly, the particle swarm opti-
mization (PSO) was adopted to optimize the extreme learn-
ing machine (ELM) with kernel, and the hybrid model was
confirmed to have good prediction accuracy when predict-
ing each displacement component decomposed by wavelet
transform [12]. With piecewise time weighted gradient,
Zhang et al. [13] proposed a modified regularized Elman net-
work. The modified network was proven to allow improving
the prediction accuracy of landslide displacement.

Unfortunately, the above studies have two shortcom-
ings: first, these used models, which belong to shallow
machine learning methods, are tough to excavate the inherent
law between influence factors and landslide displacement;
second, the above studies only focus on the deterministic
values of displacement prediction without considering the
uncertainties of the prediction. The first problem restricts
the accuracy of landslide displacement prediction, while the
second problem is very important for the later landslide
treatment. To address the two problems, we introduce a deep
learning model, so-called long short-term memory (LSTM)
network, and theoretically derive the confidence intervals
of landslide displacement prediction at a certain confidence
level. The main highlights of this paper are as follows.
• Coupling prediction approach: The doublemoving aver-
age (DMA) first decomposes cumulative displacement
into two stationary sequences and the LSTM network
is employed to model and predict these two stationary
sequences. Therefore, the coupling model of DMA and
LSTM network can solve the problem of non-stationary
cumulative displacement prediction.

• High predictive accuracy with optimal network param-
eters: The L2 regularization method is introduced to
solve the LSTM network over-fitting problem, while the
Adam algorithm is introduced to promote the network
convergence. Thus, the prediction accuracy of LSTM
network is improved.

• High-quality confidence intervals: According to the
probability estimation theory, the confidence intervals
of landslide displacement are derived, which provides
a reference for formulating a reasonable landslide treat-
ment plan.

The remainder of this paper is structured as follows. Section II
is devoted to describing the fundamental theory of LSTMnet-
work and interval estimation approach. Section III presents
the prediction scheme of landslide displacement with interval
estimation, including the DMA-based time series decom-
position and the coupling model-based prediction process.

In Section IV, a realistic landslide case is used to validate
the effectiveness and superiority of the landslide prediction
scheme. To conclude, Section V summarizes the conclusions
and prospects for the next step.

II. LSTM NETWORK-BASED INTERVAL ESTIMATION
APPROACH
A. LSTM NETWORK
Recurrent neural network (RNN) is an active approach for
dealing with dynamic time series [14]–[20]. As a special
RNN, LSTM network [21] allows learning over long time
sequences and keeping memory, addressing the problem
of gradient disappearance through improving the traditional
RNN neurons.

Fig.1 shows the sketch of LSTM network architecture.
It contains three functional gates: input, output and forget.
The input gate decides which information from outside is
stored, while the output gate regulates the output of important
information within the network. The forget gate is able to dis-
card some redundant information. The three gates cooperate
with each other to conduct the data processing. This process
can be described mathematically as follows [22]–[24]:

ft = sig
(
Wf · [ht−1, xt ]+ bf

)
(1)

it = sig (Wi · [ht−1, xt ]+ bi) (2)

Ct = ft ∗ Ct−1 + it ∗ tanh (WC · [ht−1, xt ]+ bC ) (3)

ot = sig (Wo · [ht−1, xt ]+ bo) (4)

ht = ot ∗ tanh(Ct ) (5)

where xt and ht denote the input and output at current time
step, respectively; ht−1 andCt−1 are the output and cell mem-
ory at previous time step, respectively; (Wf ,Wi,WC ,Wo) and
(bf , bi, bC , bo) are the weight matrices and bias vectors of
the forget gate, input gate, cell state layer and output gate,
respectively; ft , it and ot are the activation vectors of the
forget, input and output gates, respectively; ‘‘sig’’ and ‘‘tanh’’
denote the sigmoid function and hyperbolic tangent func-
tion, respectively; [·, ·] denotes the splicing of two vectors;
‘‘·’’ and ‘‘∗’’ mean the matrix multiplication and the element-
wise multiplication, respectively.

FIGURE 1. Sketch of LSTM network architecture.

When constructing the LSTM network, two crucial prob-
lems, which have a negative impact on prediction accu-
racy, need to be addressed. The first problem is the slow
convergence speed of the network. The traditional gradient
decent methods, such as the mini-batch gradient descent and
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stochastic gradient descent, are unable to ensure the rapid
convergence. The second problem is how to void the over-
fitting phenomenon. Currently, the two problems have been
well addressed. With regard to the slow convergence speed
of the network, the use of ‘‘Adam’’ method [25] is proposed
to promote network convergence. Meanwhile, to void the
over-fitting of the network, the use of ‘‘L2 regularization’’
method [26] is proposed to reduce the network complexity
by reducing the size of network parameter values. Therefore,
in this paper, we introduce the ‘‘Adam’’ and ‘‘L2 regulariza-
tion’’ methods to assist the construction of LSTM network.

B. INTERVAL ESTIMATION
The deterministic prediction values of landslide displacement
can be obtained using the LSTM network. If the confidence
intervals of landslide displacement can be known, it is of
great engineering significance for comprehensive landslide
treatment. To quantify the uncertainties associated with the
predicted values, we derive the confidence intervals in the
context of the LSTM network. The main derivation process
is described as follows.

First of all, according to the fundamental theory of LSTM
network, the prediction model can be expressed as

y = f̂ (x)+ ξ (6)

where x, y and ξ denote the input, output and random variable,
respectively. Suppose ξ is independent of x, and then the i-th
(i = 1, · · · ,M ) random variable is given by

ξi = yi − f̂ (xi) (7)

whereM is the number of input samples. In general, ξ follows
Gauss distribution or Laplace distribution with zero mean,
and inmost cases, it follows the Laplace distribution [27]. The
density function of the Laplace distribution with parameter σ
is given by

p(z) =
1
2σ

exp(−
|z|
σ
). (8)

Next, the maximum likelihood estimation method is used
to estimate the parameter σ . Here, the maximum likelihood
function with σ is

L(σ ; ξ ) = (
1
2σ

)Mexp(−
|ξ1| + |ξ2| + · · · + |ξM |

σ
). (9)

Let ∂lnL
∂σ
= 0, and then the estimated value of σ is obtained

as

σ̂ =
1
M

M∑
i=1

|ξi|. (10)

Given a confidence level p0, i.e. P(ŷ−1 ≤ y ≤ ŷ+1) =
p0, the interval 1 is obtained as

p0 =
∫ 1

−1

p(ξ )dξ = 1− exp(−
1

σ̂
),

1 =
∣∣σ̂ ln(1− p0)∣∣ . (11)

Therefore, the output intervals of the LSTM network at
the certain confidence level p0 are

[
ŷ−

∣∣σ̂ ln(1− p0)
∣∣ ,

ŷ+
∣∣σ̂ ln(1− p0)

∣∣].
III. PREDICTION SCHEME OF LANDSLIDE DISPLACEMENT
WITH INTERVAL ESTIMATION
A. TIME SERIES DECOMPOSITION
A fact is that the local geological conditions and the external
inducing factors together lead to the generation and evolu-
tion of landslide displacement [28]. Under the control of the
local geological conditions, e.g. the geomorphology and the
geological structure, the displacement shows an approximate
monotonic increasing function on a large time scale. In addi-
tion, the reservoir water level, rainfall intensity and other
external factors make the displacement show an approximate
periodic function on a small time scale. Thus, the cumulative
displacement, denoted by c(t), shows a step-like behavior
with time and can be decomposed as:

c(t) = µ(t)+ ρ(t) (12)

where µ(t) and ρ(t) denote the trend and periodic displace-
ments at t time, respectively.

DMA is a simple but effective method for time series
decomposition [29]. It allows decomposing original cumu-
lative displacement into trend and periodic displacements.
Unlike the SMA method [10], the DMA method can extract
smoother trend displacement which is suitable for model-
ing. First of all, the trend displacement, denoted by µ1(t),
is extracted by the SMA method and is given by

µ1(t) =
c(t − n+ 1)+ c(t − n+ 2)+ · · · + c(t)

n
(13)

where n represents the step number and satisfies n < t . After
that, the DMA is applied to theµ1(t) and obtains the expected
trend displacement, denoted by µ2(t). The process can be
expressed as

µ2(t) =
µ1(t − n+ 1)+ µ1(t − n+ 2)+ · · · + µ1(t)

n
.

(14)

Based on this, the ρ(t) is obtained as

ρ(t) = c(t)− µ2(t). (15)

B. PREDICTION PROCESS
The cumulative displacement of landslide is a non-stationary
sequence. If the LSTM network is used directly to model, it is
tough to find the inherent law between the influence factors
and landslide displacement. A good idea is to decompose the
non-stationary sequence into several stationary sequences.
Here, the DMAmethod is adopted to decompose the cumula-
tive displacement, and the trend and periodic displacements
are obtained. Next, the LSTM network is used to model
and predict these two sub displacements, respectively. Thus,
the sum of predicted components is the predicted cumulative
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FIGURE 2. Prediction process of landslide cumulative displacement.

displacement. On the other hand, for obtaining the confidence
intervals, a verification set is set to estimate the value of
parameter σ . Fig. 2 shows the prediction process of landslide
cumulative displacement, and the main steps of the process
are presented as follows.
Step 1:Use the DMAmethod to decompose the cumulative

displacement and gain two displacement components: trend
and periodic.
Step 2: Construct the training, verification and testing sets

corresponding to each displacement component.
Step 3: Use the LSTM network to learn from each training

set and bring the samples of the verification and testing sets
into the trained LSTM network to produce the prediction
results.
Step 4: Add the prediction results of the testing sets

together and gain the cumulative displacement.
Step 5: Calculate the prediction errors of the verifica-

tion sets, and the final confidence intervals are obtained by
Eqs. (10) and (11).

In the field of landslide displacement prediction, two
model evaluation indicators are often used. The first one is
the root mean square error (RMSE), and the other is the mean
absolute error (MAE). They reflect the performance of the
model from different perspectives. It is recognized that the
model having lower values of RMSE andMAE implies better
prediction performance. For more information about them,
see the literature [30], [31]. In this paper, we also adopt these
two indicators to evaluate our model, and the RMSE and

MAE can be expressed as

RMSE =

√√√√ 1
N

N∑
i=1

(si − ŝi)2 (16)

MAE =
1
N

N∑
i=1

∣∣si − ŝi∣∣ (17)

where si and ŝi denote the actual observation value and
the prediction value, respectively; N denotes the prediction
sample number.

IV. CASE STUDY
A. BAISHUIHE LANDSLIDE
The landslide is situated in Zigui County, YichangCity, Hubei
Province, China (110◦32′ 09′′ E, 31◦01′ 34′′ N). The dis-
tance between it and the Three Gorges Dam is about 56 km.
Fig. 3 shows its geological section. It is observed that the
landslide is amonoclinic downward slopewithmain direction
of NE20◦. Also, the average thickness of the landslide is
about 30 m, and the volume is about 1.26 × 107 m3. For the
elevation, it ranges from 75 to 390 m. The front edge of the
landslide is submerged below the reservoir, while the trailing
edge is bounded by the interface between the rock and soil.

Two sliding surfaces are observed at different depths, i.e.
initial and secondary sliding surfaces. The initial sliding
surface depth exceeds 30 m, whereas the secondary slid-
ing surface depth ranges from 12 to 21.5 m. This may be
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FIGURE 3. Geological section of Baishuihe landslide [13].

explained that because of the complex geological conditions
and large volume of the Baishuihe landslide, more energy
would be required to completely destroy along the initial
sliding surface [13].

Since June 2003, professional monitoring of Baishuihe
landslide has been carried out. Currently, many GPS moni-
toring detectors have been set up on the landslide body, and
the specific distribution is depicted in Fig. 4. According to the
monitoring data, it is known that the landslide deformation
mainly occurs in the active block area, which is defined as
the early warning area, while the remaining deformation is
not obvious. There are six GPS monitoring points in the early
warning area, i.e. ZG093, ZG118, XD-01, XD-02, XD-03 and
XD-04. Compared with the other five GPSmonitoring points,
the ZG118 monitoring point has two advantages: one is that
it has the most complete data due to the longest monitoring
period; the other is that it is situated in the central section of
the landslide body, which can better reflect the entire process
of landslide evolution. Therefore, this paper select the data of
ZG118 monitoring point for research.

FIGURE 4. Distribution of monitoring points in Baishuihe landslide [13].

FIGURE 5. Monitoring curves of cumulative displacement, reservoir water
level (a) and rainfall (b).

Fig. 5 shows the monitoring curves of Baishuihe landslide
from January 2007 to December 2012. It can be seen that
from January 2007 to September 2008, the reservoir water
level varies from 145 to 155 m. During its rising period, the
cumulative displacement is relatively stable with the maxi-
mum growth rate of only 19 mm per month. As the reservoir
water level first drops from 155 m to 145 m, the cumulative
displacement increases abruptly, and the maximum displace-
ment growth rate reaches 334 mm per month (July 2007).
This can be interpreted as the result of strong external induc-
ing factors: the rainfall during flood season and the signif-
icant drop in reservoir water level. Subsequently, these two
inducing factors weaken, and the cumulative displacement
gradually restores to a stable state. From October 2008 to
December 2012, the reservoir water level fluctuates period-
ically from 145 to 175 m, and the cumulative displacement
continues to increase in a step-like manner. The maximum
displacement growth rate of monitoring points occurs in the
period of reservoir water level decline or low water level.
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The maximum displacement growth rates in four years are 99
(2009), 74 (2010), 84 (2011) and 63 mm per month (2012),
respectively. With the long-term regulation of reservoir water
level, the landslide has undergone the stress adjustment. Thus,
it adapts to the new regulation mode of reservoir water level.
Consequently, the displacement growth gradually tends to be
stable.

B. CUMULATIVE DISPLACEMENT DECOMPOSITION
Fig. 6 shows the decomposition results of cumulative dis-
placement using the DMA method. Apparently, the cumu-
lative displacement shows a non-stationary characteristic,
whereas the decomposed sequences are relatively stable.

FIGURE 6. Decomposition results of cumulative displacement using DMA
method.

In the experiment, the LSTM layer is designated as
200 hidden units. To prevent the gradients from exploding,
the number of epochs and the gradient threshold of ‘‘Adam’’
algorithm are set to 250 and 1, respectively. According to
each displacement component, the training, verification and
testing sets are constructed, respectively. Specifically, the
data from January 2007 to December 2010 are taken as the
training set, while the data from January to December 2012 as
the testing set. Also, the verification set, i.e. the data from
January to December 2011, is divided to estimate the
parameter σ .
To highlight the prediction performance of LSTM net-

work, the existing landslide displacement prediction models:
SVM and Elman network, are used for comparison. Further,
the optimal model parameters of SVM and Elman network
are determined by PSO algorithm, where the particle number
is 20, the maximum iteration number is 200, both learning
factors are 1.5 and the inertia weight is 1.

C. DISPLACEMENTS PREDICTION
1) TREND DISPLACEMENT PREDICTION
For predicting the trend displacement of the next month,
the trend displacement of the previous month is used as
the model input. For the use of this methodology, the basic
assumption is, there is no strain softening along the sliding
surface soils. When considerable strain softening exists along
slip surfaces, abruptly, very large displacement may occur
due both rainfall and earthquakes [32]–[35]. In this event,

this displacement cannot be predicted and is not related to
previous displacement data.

Fig. 7 shows the prediction results of trend displacement
using the LSTM, SVM and Elman models. It can be seen
that before September 2012, the predicted values of LSTM
network are closer to the actual values, followed by the
Elman network and SVM, while the Elman network and
SVM outperform the LSTM network from September to
December 2012. Overall, the LSTM network performs well.

FIGURE 7. Prediction results of trend displacement using LSTM, SVM and
Elman models.

Table 1 reports the RMSE and MAE values of the three
models. The RMSE value of the LSTM network is 7.28 mm,
lower than 8.94 mm of the SVM and 7.45 mm of the Elman
network. Besides, the MAE value of the LSTM network is
6.02 mm, lower than 8.42 mm of the SVM and 7.01 mm
of the Elman network. These results show that for the trend
displacement prediction, the LSTM network outperforms the
SVM and Elman network.

TABLE 1. Prediction errors of trend displacement using LSTM, SVM and
Elman models (mm).

2) PERIODIC DISPLACEMENT PREDICTION
The selection of influence factors is crucial for the accuracy
of periodic displacement prediction. First of all, rainfall is
the main factor of landslide deformation and destruction in
the Three Gorges Reservoir area. The impact of rainfall is
embodied in the following two dimensions: 1) the landslide
structure is changed by scouring the landslide surface; 2) the
volume density, the strength parameters of the sliding zone
soil and the dynamic and hydrostatic pressure of the landslide
are changed through infiltration [36]. The rainfall infiltration
occurs in a relatively slow process. The effective rainfall from
one month to two months before the occurrence of landslide
has a great impact on landslide deformation. Fig. 8 shows
the curves of the periodic displacement of ZG118 monitoring
point, maximum rainfall during current month, cumulative
rainfall during current month and cumulative rainfall during
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FIGURE 8. Relationship between periodic displacement and rainfall.

two-month period. It is observed that the regularity of peri-
odic displacement fluctuation is consistent with that of the
three factors.

Secondly, the influence of reservoir water level fluctuation
on landslide deformation is mainly reflected in two dimen-
sions: 1) it causes the loading and unloading of the dry-wet
cycle of the landslide, which in turn affects the physical and
mechanical properties of the rock and soil; 2) it changes
the seepage field inside the landslide, which in turn affects
the mechanical effects inside and outside the landslide [37].
Under the same condition of reservoir water level change, the
different initial elevations of reservoir water level have differ-
ent influences on the landslide deformation. In addition, the
reservoir water level change has a certain hysteresis impact on
the landslide deformation. Therefore, the reservoir water level
during current month (Fig. 5), the change in reservoir water
level during current month and the change in reservoir water
level during two-month period are selected to characterize
the influence factors of reservoir water, as shown in Fig. 9.
Intuitively, the regularity of periodic displacement fluctuation
is consistent with that of the three factors.

FIGURE 9. Relationship between periodic displacement and changes of
reservoir water level.

Finally, under the same external excitation, the displace-
ment responses of landslideswith different deformation states
are different. While the landslide is in a stable state, even
strong external factors can hardly cause large-scale deforma-
tion of the landslide. However, for the landslide in a critical
state, the slight disturbance may destroy the original balance

of the landslide system, thereby causing landslide defor-
mation [38]. Therefore, the influence factors of landslide
deformation state can be characterized by the cumulative
displacement increment during current month, the cumula-
tive displacement increment during two-month period and
the cumulative displacement increment during three-month
period, as shown in Fig. 10.

FIGURE 10. Relationship between periodic displacement and cumulative
displacement increment.

In summary, the following nine influence factors are
extracted for the periodic displacement prediction in this
paper, as shown in Table 2. Following the work of [37], [39],
the grey relational grades (GRG) between the nine influence
factors and the periodic displacement of landslide exceed 0.6.
Thus, the nine influence factors are considered to be closely
related to the periodic displacement.

TABLE 2. List of influence factors.

Next, the nine influence factors are fed into LSTM, SVM
and Elman models, respectively. Fig. 11 shows the predic-
tion results of periodic displacement. It is observed that the
predicted values of LSTM network from January to Decem-
ber 2012 are approaching the actual values. Regarding the
SVM, the prediction results for the period from August to
October 2012 are not satisfactory. With regard to the Elman
network, the predicted values deviate significantly from the
actual values from June to August 2012. This may be due to
the sudden and drastic changes in rainfall (Fig. 8) or reservoir
water level (Fig. 9) between June and October 2012, whereas
the SVM and Elman models are unable to accommodate the
changes.

Table 3 reports the RMSE and MAE values of the three
models. The RMSE value of the LSTM network is 6.92 mm,
lower than 15.10 mm of the SVM and 27.88 mm of the
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FIGURE 11. Prediction results of periodic displacement using LSTM, SVM
and Elman models.

TABLE 3. Prediction errors of periodic displacement using LSTM, SVM and
Elman models (mm).

Elman network. Besides, the MAE value of the LSTM net-
work is 5.73 mm, lower than 11.85 mm of the SVM and
20.12 mm of the Elman network. These results show that
for the periodic displacement prediction, the LSTM network
outperforms the SVM and Elman network.

3) CUMULATIVE DISPLACEMENT PREDICTION
The predicted results of cumulative displacement are gained
by reconstructing the predicted trend and periodic displace-
ments, as shown in Fig. 12 (a). Compared with Fig. 11,
the cumulative displacement curve is similar to the periodic
displacement curve, which indicates that the prediction accu-
racy of periodic displacement has a crucial impact on that of
the cumulative displacement. Compared with the SVM and
Elman network, the predicted values of cumulative displace-
ment using the LSTM network are closer to the actual values
of cumulative displacement.

Also, to illustrate the superiority of the DMA method,
the SMA method is used for comparison, as shown
in Fig. 12 (b). Apparently, the predicted values of LSTM
network from January to December 2012 are very close to
the actual displacement values. Compared with Fig. 12 (a),
regardless of the LSTM network, SVM or Elman network,
the predicted values based on the DMA decomposition
method appear to be better than those based on the SMA
decomposition method, especially for the period from
August to December 2012.

From a quantitative point of view, Table 4 reports the
RMSE and MAE values of the three models under the DMA
and SMA decomposition methods. First of all, for the DMA
decomposition, the RMSE and MAE of the LSTM network
are 9.38 mm and 8.39 mm, respectively, lower than those of
the SVM and Elman network. Regarding the SMA decom-
position, the RMSE and MAE of the LSTM network are

FIGURE 12. Prediction results of cumulative displacement using LSTM,
SVM and Elman models under DMA (a) and SMA (b) decompositions.

TABLE 4. Prediction errors of cumulative displacement using LSTM,
SVM and Elman Models under the DMA and SMA decomposition
methods (mm).

12.53 mm and 10.47 mm, respectively, lower than those of
the SVM and Elman network. These results reveal that the
LSTM network outperforms the SVM and Elman network.
Secondly, the Elman network, which is the worst of the three
models, is set aside. In this event, it is concluded that regard-
less of the LSTM network or SVM, the prediction accuracy
of the DMA decomposition method is higher than that of
the SMA decomposition method, indicating that the DMA
method outperforms the SMA method. Therefore, it makes
sense to believe that the proposed coupling prediction model,
namely DMA decomposition and LSTM network, is optimal
in terms of prediction accuracy.

D. CONFIDENCE INTERVALS
In this section, we aim to give the confidence intervals.
Table 5 reports the prediction results of trend and periodic
displacements using the proposed coupling model on the
verification set. It can be calculated that the average absolute
total error of cumulative displacement prediction is 8.65 mm.
Thus, according to the Eq. (10), the parameter can be esti-
mated as σ̂ = 8.65. Given the confidence level p0 = 0.8,
the interval is obtained as 1 = 13.92 mm according to
the Eq. (11).
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TABLE 5. Prediction results of trend and periodic displacements using LSTM network (mm).

Fig. 13 shows the confidence intervals of the landslide
cumulative displacement. The confidence intervals refer to
the area composed of prediction upper and lower bounds.
It can be seen that only the actual value of landslide cumu-
lative displacement in July 2012 is not within the area, while
the other actual values of landslide cumulative displacement
are within the area. This applies that the proposed estimation
method is able to construct high-quality confidence intervals.
Of course, as the confidence level increases, the confidence
intervals will increase. In practice, the disaster prevention
officer can formulate a reasonable landslide treatment plan
according to the confidence intervals.

FIGURE 13. Confidence intervals of cumulative displacement using
DMA-LSTM network.

V. CONCLUSION
In this work, a coupling prediction model of DMA decompo-
sition and LSTM network has been developed for the land-
slide displacement. The case study on Baishuihe landslide
in the Three Gorges Reservoir area of China reveals the
effectiveness and superiority.

The use of the DMA, which is a simple but effective time
series decomposition method, is proposed to decompose the
cumulative displacement of landslide. Compared with the
SMA method, the DMA can extract the total trend reflect-
ing the landslide displacement evolution more thoroughly.
The use of LSTM network, which is an advanced predictor
that can make full use of landslide historical information,

is proposed to perform the prediction tasks. Compared with
two benchmark prediction models: SVM and Elman network,
the model improves the prediction accuracy. Besides, consid-
ering the uncertainties of prediction results, the confidence
intervals are derived according to the probability estimation
theory. The proposed estimation method can construct high-
quality confidence intervals. All in all, the above work pro-
vides valuable information for landslide early warning and
control.

One limitation of the proposed method is that there are
many parameters to be trained in the LSTM network, result-
ing in longer computing time. The focus of future work is to
improve the network structure or parameter training method.
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