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ABSTRACT A fusion image combining both anatomical and functional information obtained by regis-
tering medical images of two different modalities, Positron Emission Tomography (PET) and Computed
Tomography (CT), is of great significance for medical image analysis and diagnosis. Medical image
registration relies on similarity measure which is low between PET/CT image voxels and therefore PET/CT
registration is a challenging task. To address this issue, this paper presents an unsupervised end-to-end
method, DenseRegNet, for deformable 3D PET/CT image registration. The method consists of two stages:
(1) predicting 3D displacement vector field (DVF); and (2) registering 3D image. In the 3D DVF prediction
stage, a two-level similarity measure together with a deformation regularization is proposed as loss function
to optimize network training.In the image registration stage, a resampler and a spatial transformer are utilized
to obtain the registration results. In this paper, 663 pairs of Uptake Value (SUV) and Hounsfield Unit (Hu)
patches of 106 patients, 227 pairs of SUV and Hu patches of 35 patients and 259 pairs of SUV and Hu
patches of 35 patients are randomly selected as training, validation and test set, respectively. Normalized
cross correlation (NCC), intersection over union (IoU) of liver bounding box and euclidean distance (ED)
on landmark points are used to evaluate the registration results. Experiment results show that the proposed
method, DenseRegNet, achieves the best results in terms of liver bounding box IoU and ED, and the second
highest value of NCC. For a trained model, given a new pair of PET/CT images, the registration result can be
obtained with only one forward calculation within 10 seconds. Through qualitative and quantitative analyses,
we demonstrate that, compared with other deep learning registration models, the proposed DenseRegNet
achieves improved results in the challenging deformable PET/CT registration task.

INDEX TERMS PET/CT registration, unsupervised learning, two-level similarity measure, deformation
regularization.

I. INTRODUCTION
Multi-modality medical image registration technology is cur-
rently a research hotspot in medical image processing, and
is of great significance for clinical diagnosis and treatment.
Modern medical imaging technologies emerge in an endless
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approving it for publication was Shuhan Shen.

stream [1], including structural images such as CT, Mag-
netic Resonance Imaging (MRI) and functional images such
as PET, Functional Magnetic Resonance Imaging (FMRI),
Single-Photon Emission Computed Tomography (SPECT).
Structural images are used to analyze the anatomy of the
lesion, while functional images are often used to diagnose
the location of subtle lesions. In clinical diagnosis, PET/CT
images are usually fused to make pathological structure and

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1135

https://orcid.org/0000-0002-6627-1482
https://orcid.org/0000-0002-1428-8776
https://orcid.org/0000-0001-8737-4977
https://orcid.org/0000-0003-3053-3652
https://orcid.org/0000-0002-0235-238X
https://orcid.org/0000-0002-2936-9296
https://orcid.org/0000-0003-3868-0593


H. Kang et al.: Optimized Registration Method Based on DS and DVF Smoothness for 3D PET and CT Images

functional metabolism of the lesion simultaneously on one
image, which can better diagnose the disease and understand
the pathological details [2]. However, spatial differences are
caused due to different imaging mechanisms, including not
only overall patient positioning and movement but also the
involuntary and uncontrollable motion of internal organs.
Registration of whole-body PET and CT images is a prereq-
uisite for their meaningful fusion [3], [4].

Iterative optimization based traditional registration meth-
ods have been extensively studied in 3D medical image
registration. The most widely used method is to translate
the registration problem into an optimization problem to
minimize the cost function [5]. Commonly used cost func-
tions include mean square error (MSE) [6], mutual infor-
mation (MI) [7], normalized mutual information (NMI) [8],
normalized cross-correlation (NCC) [9] and gradient cor-
relation (GC) [10]. These metrics compare images directly
at the pixel level without understanding the higher-level
structure in the image. Although there are global optimiza-
tion methods such as simulated annealing algorithms [11]
and genetic algorithms [12], they require comprehensive
sampling of the parameter space, which leads to exces-
sive computational costs. Few attempts have been made to
seek heuristic semi-global optimization for a proper balance
between robustness and computational cost [13].

Somework has been done to use a learning-based approach
to perform other medical image registration tasks. References
[14] and [15] used deep learning to learn end-to-end super-
vised rigid registration. Reference [16] proposed an end-
to-end supervised RegNet network architecture to address
non-rigid 3D image registration, which directly predict 3D
non-rigid DVF for given fixed and moving images. However,
in these supervised registration tasks, reference standards are
often expensive and difficult to obtain.

Therefore, we hope to propose a novel deep learning
method for ill-posed deformable PET/CT registration tasks to
overcome these shortcomings while maintaining competitive
registration performance.

Recently, [17] proposed a spatial transformer network
(STN), which can be inserted into existing convolutional
architectures, giving neural networks the ability to actively
spatially transform feature maps without any extra train-
ing supervision or modification to the optimization process.
By training the entire network end-to-end, the embedded STN
predicts the best alignment to solve some particular tasks.
Inspired by spatial transformer network, [18] successfully
applied it to the field of medical imaging for the first time,
enabling unsupervised learning based registration during the
training phase. The spatial transformation layer is directly
connected to the CNN, and the obtained deformation field
is used to warp the moving image to obtain a registration
result. Referring to this registration mode, deep CNNs in
conjunction with STNs have been proposed recently to learn
prediction models for image registration from pairs of fixed
and moving images in an unsupervised fashion [19]–[21].

Up to date, some work has been proposed to solve the
problem of PET/CT registration [21]–[25]. References [22]
and [23] proposed a three-dimensional deformable PET/CT
registration algorithm based on mutual information similarity
measure. Reference [24] proposed a multi-thread registration
method based on contour point cloud for 3Dwhole-body PET
and CT images. Reference [25] proposed a B-spline Free
Form Deformation based algorithm to describe both images
and deformation field, for registration of thoracic PET andCT
data. All these traditional PET/CT image registration meth-
ods perform registration tasks by iteratively optimizing the
similarity measure, resulting in high computational cost. For
each pair of images to be registered that have not been seen,
these registration methods iteratively optimize the cost func-
tion from the beginning, which severely limits the registration
speed and does not exploit the correlation between the image
data distributions from the same data set at all. Reference
[21] proposed a deep learning method for automatic image
registration between 3D PET and CT images. But there still
exists two problems to be improved: over-deforming of PET
images and unsatisfactory results for organ-level registration.

We propose an unsupervised end-to-end image registration
method for effective and efficient 3D PET and CT image
registration. The proposed method directly predicts the 3D
displacement vector field for a given fixed andmoving image,
and then obtains the registered image by spatial transforma-
tion. By sharing the same parameters for the data set, the pro-
cess learns a generic representation that can register any new
pairs from the same distribution. The training process of the
network is unsupervised and does not require pre-labeled
displacement vector field reference standards. We propose
a two-level similarity measure together with a deformation
regularization for the PET/CT registration task. Since there
is no well-defined evaluation method for non-rigid PET/CT
registration tasks according to previous studies in literature,
we use NCC, liver bounding box IoU and euclidean dis-
tance on landmark points to evaluate the registration results.
Compared with other registration models [18]–[21], [24],
we demonstrate that the proposed method achieves improved
performance results in the challenging deformable PET/CT
registration task. We reduce a patient’s PET/CT registration
time from the previous hour period to less than 10 seconds.

Different from the prior work [21], several improvements
has been made in three aspects of network structure, loss
function and evaluation metrics in this paper. We use a
‘‘DenseNet’’-based architecture as the DVF regressor. Max-
imum Mean Discrepancy (MMD) is introduced into the loss
function to measure the similarity in another level by map-
ping PET and CT images into a higher dimensional space.
We additionally use liver bounding box IoU and euclidean
distance on landmark points to evaluate the anatomical regis-
tration results.

The contributions of this paper are threefold.
(1) An unsupervised end-to-endmedical image registration

framework is built for 3D deformable PET/CT registration.
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FIGURE 1. The architecture of our DenseRegNet. An illustration of the training strategy of the proposed unsupervised end-to-end registration
method, where the red lines indicates data flows only required in training. The 3D DenseNet consists of two DenseBlocks and all operations are
implemented in a 3D manner.

(2) A two-level similarity measure together with a defor-
mation regularization is proposed for the PET/CT registration
task.

(3) In addition to NCC, two anatomical metrics are utilized
to evaluate registration results.

II. METHODS
For PET/CT registration, given a pair of fixed CT image
IF and moving PET image IM , the task is to seek a spatial
transformation that establishes pixel/voxel-wise spatial cor-
respondence between the two images. Since the spatial cor-
respondence can be gauged with a surrogate measure, such as
an image intensity similarity measure between the fixed and
the transformed moving images, the image registration task
can be formulated as an optimization problem to optimize
a spatial transformation that maximizes the image similar-
ity measure between the fixed image and the transformed
moving image. For non-rigid image registration, the spatial
transformation is often characterized by a deformation field
DV that encodes displacement vector field (DVF) between
spatial coordinates of IF and their counterparts in IM . As the
PET/CT image registration problem is an ill-posed problem,
regularization techniques are usually used to obtain smooth
and anatomically plausible spatial transformations. The opti-
mization based image registration problem is typically for-
mulated as:

φ̂ = argmin
DV

L(IF , IM ,DV ) (1)

A. AN UNSUPERVISED 3D PET/CT REGISTRATION
METHOD
We propose an unsupervised end-to-end image registration
method, DenseRegNet, for effective and efficient 3D PET/CT

registration. Figure 1 shows an overview of the architecture
of our proposed DenseRegNet. DenseRegNet mainly consists
of two components, a DenseNet for predicting 3D displace-
ment vector fields and a Spatial Transformer for warping
3D images. DenseRegNet receives pre-processed 3D moving
PET and fixed CT image patches IM and IF with the size
of 128×128×64 as input, and a displacement vector field
DV that consists of three 16×16×8 sized patches is obtained
through DenseNet regression to represent the displacement
of the moving image patch IM in the x, y, and z directions
respectively. Then a Spatial Transformer is utilized to inter-
polate the 3DDVF to the same resolutionwith the input patch,
and the registration result is obtained by warping the moving
patch. DenseRegNet utilizes a similarity metric to learn and
optimize the registration tasks end-to-end in an unsupervised
manner.

We use a 3D DenseNet to predict 3D DVF. The network
receives IM and IF as its input. A 3×3×3 conv layer is
utilized to extract shallow features and reduce dimensions,
followed by two DenseBlocks, each of which contains C
convolutional layers, and the number of convolution kernels
is G (i.e. growth rate). Each DenseBlock is followed by BN,
ReLU, a 1×1×1 convolution layer and a max-pooling layer.
Finally, a 3×3×3 convolutional layer is used to regress a
displacement vector field with the size of 16×16×8×3.

We summarize several advantages of the proposed method
DenseRegNet, illustrated in Figure 1. First, DenseRegNet is
an unsupervised end-to-end framework and does not require
any pre-labeled reference standards for training process.
Second, the 3D DenseNet preserves the maximum informa-
tion flow between layers by a densely-connected mechanism
and hence eases the network training. Meanwhile, it avoids
learning redundant feature maps by encouraging feature
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reuse. Third, we use a 16×16×8×3 displacement vector field
to control the deformation of a 128×128×64 sized image
(grid spacing of 8 voxels) and hence the network requires
fewer parameters to achieve high performance.

B. TWO-LEVEL SIMILARITY MEASURE TOGETHER WITH
DEFORMATION REGULARIZATION FOR
PET/CT REGISTRATION
Direct use of traditional similarity measure between targets,
such as those based on NCC and MI, are not appropriate
for measuring image similarity in the context of PET/CT
registration. On one hand, they do not consider the similarity
of anatomical structure or data distribution in higher dimen-
sions. They only focus on global information and ignore
fine-grained local information (e.g. anatomical organs) which
is crucial in multi-modal registration tasks. On the other hand,
since some tissues or organs are highlighted in PET images
while having lower contrast in CT images, using a single
similarity measure without constraining the registration will
over-deform the image and lead to a poor registration result.

To address the above problems, we propose a two-level
similarity measure together with a deformation regulariza-
tion for the PET/CT registration task. First, NCC is used to
measure the similarity of voxels at the global level. Second,
MMD is used to measure the similarity of data distributions
at the higher dimensional level. And finally, DVF smoothness
is used as a deformation regularization to limit the degree of
deformation.

The total loss function Ltotal in this model consists of three
parts mentioned above, as shown in Eq. (2):

Ltotal = −LNCC (IF , IM ′)− λ1LDS (IF , IM ′)+ λ2LDR(DV )
(2)

where LNCC (IF , IM ′) and LDS (IF , IM ′) denotes the normal-
ized cross correlation and the distribution similarity between
the fixed andmoving image patches after registration, respec-
tively; LDR(DV ) denotes the deformation regularization. IF
denotes the fixed CT image patch, and IM ′ denotes the mov-
ing PET image patch after registration, which can be obtained
by Eq. (3):

IM ′ = IM ◦ DV (3)

where IM denotes the moving PET image patch before reg-
istration, ◦ denotes the transformation of the corresponding
elements of IM based on DV . In this paper, DenseRegNet
optimizes the total loss function Ltotal during the training
process.

NCC is used to describe the degree of correlation between
two targets, that is, the similarity between the targets [9].
We use NCC to measure the global similarity between mov-
ing and fixed image patches, as shown in Eq. (4):

LNCC (X ,Y ) =
∑

(X − X̄ ) ·
∑

(Y − Ȳ )
σ (X ) · σ (Y )

(4)

where X̄ and Ȳ denote the mean of the image X and Y, while
σ (X ) and σ (Y ) denote the standard deviation of the image
X and Y.

1) DISTRIBUTION SIMILARITY BASED REGISTRATION
OPTIMIZATION
In domain adaptation, MaximumMean Discrepancy has been
widely adopted as a discrepancy metric between the distri-
butions of source and target domains [26], [27]. It is mainly
used to measure the distance of two different but related data
distributions. In this paper, we calculate MMD distance as
the distribution similarity (DS) measure, which is defined as
Eq (5):

LDS (X ,Y ) = ‖
1
n

n∑
i=1

φ(xi)−
1
m

m∑
j=1

φ(yj)‖2H (5)

where X and Y are the two distributions to be calculated, and
H indicates that the distance is measured by φ(·) mapping
the data into the Reproducing Kernel Hilbert Space (RKHS).
Expand Eq. (5) to obtain Eq. (6):

LDS (X ,Y ) = ‖
1
n2

n∑
i,i′
φ(xi)φ(xi′)−

2
mn

n∑
i,j

φ(xi)φ(yj)

+
1
m2

n∑
j,j′
φ(yj)φ(yj′)‖2H (6)

By contacting the kernel function k(∗) in the support vector
machine (SVM), we can skip the calculation of the φ part in
Eq. (6) and directly find k(xi)k(xi′), as shown in equation (7):

LDS (X ,Y ) = ‖
1
n2

n∑
i,i′

k(xi)k(xi′)−
2
mn

n∑
i,j

k(xi)k(yj)

+
1
m2

n∑
j,j′

k(yj)k(yj′)‖H (7)

In the experiment, we use Gaussian kernels as the kernel
function k(·). The larger theLDS (X,Y ) value, the more similar
the two distributions; otherwise the smaller the LDS (X,Y )
value, the less similar the two distributions.

2) DVF SMOOTHNESS BASED REGISTRATION
OPTIMIZATION
This paper calculates the displacement vector field smooth-
ness as a deformation regularization (DR), which is shown in
Eq. (8):

LDR(DV )=
∑
‖∂x(DV )‖1+

∑
‖∂y(DV )‖1+

∑
‖∂z(DV )‖1

(8)

where ∂x,∂y,∂z are the first-order partial derivatives of the
displacement vector field DV in the three directions of x, y
and z, respectively.

In this paper, we use LDR(DV ) to limit the degree of
deformation of the moving PET image patches.
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TABLE 1. Details about original PET/CT volume data.

III. DATA AND PRE-PROCESSING
A. PRE-PROCESSING
For a given pair of a patient’s original PET/CT volume,
we pre-process the data through (a) calculate SUV and
Hu value based on PET and CT volume, respectively.
(b) down-sample the Hu images to the same resolution of
the SUV images using bicubic interpolation. (c) limit the
threshold to [-90, 300] for Hu, i.e. values that are smaller than
-90 and larger than 300 are set to -90 and 300, respectively.
Similarly, limit the threshold to [0, 5] for SUV. (d) standardize
the data to have zero mean and unit variance, due to the large
intensity differences among different volumes. (e) process
each volume data with overlapping sampling to obtain train-
ing, validation and tset set.

B. DATA SET
To the best of our knowledge, there is no public dataset
for whole-body PET/CT registration. The data used in this
paper is acquired with a GE’s PET/CT scanner (GE Discov-
ery VCT) from the General Hospital of Shenyang Military
Area Command, including whole-body PET and CT volumes
of 176 patients in total. The PET scanner consists of a 32-ring
detector using BGO crystals, while the CT scanner is a 64-
slice spiral CT. Details about original PET/CT volume data
are shown in Table 1. The size of original CT volume data
is 512×512×N, while the corresponding PET volume data
has the size of 128×128×N, where N is the number of slices
of a patient. In this experiment, the value of N is between
215 and 341. All the PET/CT volumes are pre-processed with
the method described in Section 3.A. To fit the limited 11GB
GPU memory, the input of the DenseRegNet is sub-volumes
with the size of 128×128×64. Finally, 1159 pairs of SUV and
Hu image patches with the size of 128×128×64 are obtained.

In this paper, 663 pairs of SUV and Hu patches of
106 patients, 227 pairs of SUV and Hu patches of 35 patients
and 259 pairs of SUV and Hu patches of 35 patients
are randomly selected as training, validation and test set,
respectively.

IV. EXPERIMENTS
A. EXPERIMENT SETTINGS
The DenseRegNet is implemented with Tensorflow. The
number of convolutional layers in each DenseBlock is C =
6 with the kernel number of G = 16. Batch size is set to
4. Adam [28] optimizer is used in the experiment, and the
learning rate is set to 0.01, β1 = 0.9, β2 = 0.999. 10-fold
cross validation strategy is used in this experiment.We use six

FIGURE 2. Visualization of liver bounding box and landmark points in
both PET and CT used for calculating IoU and ED. The 1 - 3th column from
left to right are corresponded to the source PET image, the source CT
image and the deformed PET image. (a) Liver bounding box, shown in
green, (b) Landmark points, shown in red.

Gaussian kernels with the sigma value of 2, 5, 10, 20, 40 and
80 to map the data to RKHS for calculating the distribution
similarity.

All computations are performed on an Intel CoreTM
R©i7-7700K CPU@3.60GHz, 8 Cores, 32 GB RAM running
on Ubuntu 16.04 LTS and NVIDIA GeForce GTX 1080ti
GPU with 3584 cores and 11GB memory.

B. EXPERIMENT RESULTS AND DISCUSSIONS
Up to date, there is no well-defined evaluation metric for
deformable PET/CT image registration. Due to the natural
characteristics of the PET/CT image registration task, it is not
appropriate to use NCC as the sole evaluation metric. Liver
bounding box IoU and ED on landmark points are addition-
ally introduced as two metrics to evaluate registration results,
anatomically. These two measures are defined as follows:

IoU (X ,Y ) =
XBox ∩ YBox
XBox ∪ YBox

(9)

ED(FSX ,FSY ) =
1
N

N∑
i=1

d(pointi) (10)

where XBox and YBox are the liver bounding box of the input
images X and Y . FS means the landmark points of one
input image. d(pointi) reprents the corresponding euclidean
distance for each point of FSX and FSY .

The liver bounding box and landmark points are obtained
by manual-labeling PET and CT images before and after
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FIGURE 3. Effect of varying the regularization parameter λ2 on NCC, IoU and ED corresponds to subfigure (a), (b) and (c), respectively. The best
results occur when λ2 = 0 for NCC and λ2 = 0.2 for IoU and ED.

FIGURE 4. PET/CT images and the corresponding registration results with
different λ2 values. (a) PET images, (b) CT images, and (c) registration
results. The 1 - 4th column from left to right are corresponded to the
registration results with λ2 values of 1, 0.6, 0.2, and 0, respectively.

registration. The landmark points include two upper borders
of the lung visible for both sides, the lower border of the right
hepatic lobe and the left border of stomach, respectively. Fig-
ure2 visualizes the liver bounding box and landmark points
in both PET and CT used for calculating IoU and ED.

1) SETTING OF SMOOTHING COEFFICIENT λ2
The selection of deformation regularization coefficient λ2
(i.e. the degree of deformation limitation by smoothing the
displacement vector field) is critical for the results of PET/CT
image registration [29]. In order to make a better compar-
ison, we make qualitative and quantitative analyses of the
registration results for different λ2 values, maintaining the
DenseRegNet network structure and other parameter settings
unchanged, λ1 = 0.

Figure 3 presents NCC, IoU and ED for the validation
set for different values of the smoothing coefficient λ2. The

FIGURE 5. Learning curves showing the normalized cross correlation loss
on the training set for different λ2 values of DenseRegNet trained
in 300 epochs for registration.

registration results with different values of the smoothing
coefficient λ2 are shown in Figure 4. Figure 5 shows LNCC
learning curves for different λ2 values. Combined with the
results in Figures 4, the deformation is totally limited when λ2
takes the value of 1, thus there is almost no change before and
after registration. And when λ2 takes the value of 0.2, LNCC
converges to around 0.637, achieving the best registration
results anatomically. Interestingly when setting λ2 = 0,
which enforces no regularization, results in the highest value
of NCC. However, the PET image is excessively deformed
caused by yielding displacement fields with some foldings
and the worst values of IoU and ED are obtained with an
unsmooth and unreasonable transformation. This is likely due
to the fact that images of the two modalities, PET and CT,
have large intensity differences in nature and a small number
of differences in anatomical structure.

Through analysis, it is concluded that in the PET/CT image
registration task, the variation tendency of NCC, IoU and ED
are positively correlated within a certain degree of deforma-
tion. That is, a higher NCC value corresponds to a better IoU
and ED, and also a better registration result. Due to the fact
that the highlighted parts in CT images while having a low

1140 VOLUME 8, 2020



H. Kang et al.: Optimized Registration Method Based on DS and DVF Smoothness for 3D PET and CT Images

FIGURE 6. An example of PET/CT registration results with and without distribution similarity (DS) term. (a) The source PET
image. (b) The source CT image. (c) The registration result without DS. (d) The registration result with DS. (e) The fusion image
of the source PET and CT image. (f) The fusion image of the registered PET and CT image without DS. (g) The fusion image of
the registered PET and CT image with DS.

TABLE 2. Quantitative evaluation of registration results with different λ2
values.

contrast in PET images such as bones, when the deformation
exceeds a certain degree, obtaining that a higher NCC value
no longer indicates a better registration result. When beyond
a certain degree of deformation (i.e. the value of λ2 decreases
from 0.2 to 0 in this experiment), the PET images have a
tendency to be transformed into a ‘‘mode-to-mode transition’’
to the CT images, and the increase of NCC value will result
in a worse registration result, instead. Therefore, we can
draw a conclusion that IoU and ED are more appropriate in
describing the anatomical similarity of the registration results
than NCC.

The final quantitative evaluation results are discribed
in Table 2.

By comprehensive analysis of NCC, IoU and ED with
different λ2 values for contrast experiments, we deter-
mine that the optimal value for smoothing coefficient
λ2 is 0.2.

2) EFFECTIVENESS OF DISTRIBUTION SIMILARITY
In order to further verify the effectiveness of the distribu-
tion similarity, we maintain the network structure and other
parameter settings unchanged. Using grid search, λ1 is set to
0.1, λ2 is set to 0.2. The registration results with and with-
out distribution similarity regularization are qualitatively and
quantitatively analyzed. The registration results are shown
in Figure 6 and the evaluation metrics are shown in Table 3
(DR and DS represent deformation regularization and distri-
bution similarity term, respectively).

TABLE 3. Quantitative evaluation of the registration results with and
without distribution similarity regularization.

Qualitative and quantitative analyses show that the regis-
tration results are improved with the distribution similarity
term. From Table 3, we can see that with the distribution
similarity term, the value of NCC is a little decreased while
IoU and ED are somehow improved. It can be seen from
Figure 6 that there is a deviation in organ registration when
using no distribution similarity during training. With the
distribution similarity term, the data distribution between
registered PET/CT images is more similar and the registration
of organ contours is improved. The distribution similarity
term acts to complement the measure of NCC and improve
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FIGURE 7. The final registration results with our proposed DenseRegNet. (a). An example of PET/CT registration results in transverse plane. (b).
An example of PET/CT registration results in coronal plane. The 1 - 5th column from left to right are corresponded to the source PET image,
the source CT image, the registration result, the fusion image of the source PET/CT image and the fusion image of the registered PET/CT image
respectively.

the registration of the organ contour at the higher dimensional
level.

The above results demonstrate the effectiveness of the dis-
tribution similarity term for deformable PET/CT registration.

3) COMPARISON WITH OTHER IMAGE
REGISTRATION MODELS
We use the proposed DenseRegNet for 3D PET/CT image
registration, maintaining λ1 = 0.1 and λ2 = 0.2. Registration
results are obtained by adopting thg trained DenseRegNet to
register the image patches in the test set using feedforward
computation. The final registration results and fusion images
of the proposed method in this paper are shown in Figure 7.

The quantitative evaluation for comparison with the exist-
ing registration models (Multi-thread ICP, DIRNet, FCN
and VoxelMorph) is shown in Table 4 (DR and DS repre-
sent deformation regularization and distribution similarity,
respectively).

It can be seen from Table 4 that our DenseRegNet results
in a significant improvement over the other registration meth-
ods, achieving the best results in terms of liver bounding box
IoU and ED on landmark points, and the second highest value
of NCC. Generally speaking, the proposed method achieves
improved performance results in the PET/CT registration
task. A trained DenseRegNet can be used for registering a
patient’s volume data within only 10 seconds, which is much
shorter than traditional registration methods.

1142 VOLUME 8, 2020



H. Kang et al.: Optimized Registration Method Based on DS and DVF Smoothness for 3D PET and CT Images

TABLE 4. Quantitative evaluation for the test set for different registration methods.

V. CONCLUSION AND FUTURE WORK
We use deep learning methods for the deformable PET/CT
registration task. We propose an unsupervised end-to-end
image registration method, DenseRegNet, for effective and
efficient 3D PET/CT registration. A two-level similarity mea-
sure together with a deformation regularization is used to
optimize the training process: (a) NCC is used to measure
the similarity of voxels at the global level. The degree of
global matching can be shown by calculating the normalized
cross correlation value between the moving image and the
fixed image. (b) MMD is used to measure the similarity
of data distributions at the higher dimensional level, which
results in an organ-level registration improvement. (c) DVF
smoothness is used as a deformation regularization to limit
the degree of image deformation, which can improve the
registration for those parts with large intensity differences
between PET and CT images and obtain smooth and anatom-
ically plausible spatial transformations. We use NCC, liver
bounding box IoU and ED on landmark points to evaluate the
registration results. Compared with other existing registration
models [18]–[21], [24], qualitative and quantitative analyses
show that our method achieves improved performance results
in the challenging deformable PET/CT registration task. By
introducing a new similarity measure and deformation regu-
larization, this paper provides a new approach for registration
between two modalities which have large intensity differ-
ences.

The method proposed in this paper has achieved certain
effects in deformable PET/CT registration. It needs to be
further verified whether the method can be usable for other
multi-modality registration

Although CT is a structural image and PET is a functional
image, the two still have some similarities in the anatomical
structure. We believe that the effective use of this similarity
is key achieve to better registration results. In our work,
we implicitly improve the anatomical similarity between
PET/CT images by limiting the displacement vector field and
increasing the distribution similarity. In the future, we plan to
develop a way to explicitly define the similarity of anatomical

structures between PET/CT images for better registration
results.
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