
Received November 28, 2019, accepted December 16, 2019, date of publication December 20, 2019,
date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961191

On Mixed Metric Dimension of Rotationally
Symmetric Graphs
HASSAN RAZA 1, JIA-BAO LIU 2, AND SHAOJIAN QU 1
1Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Corresponding author: Shaojian Qu (qushaojian@163.com)

This work of Hassan Raza was supported by the Postdoctoral fund of University of Shanghai for Science and Technology under Grant
5B19303001. The work of Jia-Bao Liu was supported in part by the National Natural Science Foundation of China under Grant 11601006,
in part by the China Postdoctoral Science Foundation under Grant 2017M621579, and in part by the Postdoctoral Science Foundation of
Jiangsu Province under Grant 1701081B. The work of Shaojian Qu was supported by the National Natural Science Foundation of China
under Grant 71571055.

ABSTRACT A vertex u ∈ V (G) resolves (distinguish or recognize) two elements (vertices or edges) v,w ∈
E(G)∪V (G) if dG(u, v) 6= dG(u,w) . A subset Lm of vertices in a connected graphG is called a mixed metric
generator for G if every two distinct elements (vertices and edges) of G are resolved by some vertex set of
Lm. The minimum cardinality of a mixed metric generator for G is called the mixed metric dimension and is
denoted by dimm(G). In this paper, we studied the mixed metric dimension for three families of graphs Dn,
An, andRn, known from the literature. We proved that, forDn the dimm(Dn) = dime(Dn) = dim(Dn), when
n is even, and for An the dimm(An) = dime(An), when n is even and odd. The graph Rn has mixed metric
dimension 5.

INDEX TERMS Mixed metric dimension, metric dimension, edge metric dimension, rotationally-
symmetric.

I. INTRODUCTION AND PRELIMINARY RESULTS
The study of standard metric dimension was initiated by
Slater [20], where locating sets were called metric generators,
under the problem of uniquely identifying the location of an
intruder or a thief in the network. When the metric generators
were termed as resolving sets of a graph, the notion of metric
dimension was introduced by Haray, and Melter [10]. Later,
this idea of metric dimension attracted much intention from
the researchers, and several articles related to this concept
were published; some of them are, for instance, in robot
navigation [14], and applications in chemistry [5], [6]. More-
over, some of the recent articles for the reader’s convenience
are [11], [17], [18], [21], [22].

For a graph G = (V ,E), the ordinary distance dG(u, v)
(or d(u, v)) between two vertices u, v ∈ V (G), is the length
of shortest path between them. A vertex a ∈ V resolves
two vertices in a graph say b, and c, if dG(a, b) 6= dG(a, c)
holds. A set L ⊂ V is the metric generator for a graph G
if vertices of L resolves pair of distinct vertices of a graph G.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

The metric generator with least cardinality is the metric basis,
and cardinality of its metric basis is called the metric dimen-
sion of a graph G. It is denoted by dim(G).
Similar to this concept, edge metric dimension is intro-

duced by [15] which uniquely identifies the edges related to
a graph. The distance between the vertex u and edge e = vw
is defined as d(e, u) = min{d(v, u), d(w, u)}. The vertex
u ∈ V (G) resolves or distinguish two edges of a graph
e1, e2 ∈ E(G) if d(e1, u) 6= d(e2, u). A set Le ⊂ V is said to
be the edge metric generator for a graph G, if every distinct
edges of G are resolved by some vertex of Le. The minimum
cardinality of an edge metric generator of G is known as
edge metric dimension ofG, and it is represented as dime(G).
Recently, this variant has been investigated by [19], [24], [25].

Now a new type of dimension is introduced by [16], which
is a mixed version of bothmetric and edgemetric dimensions,
and authors called it a mixedmetric dimension. For a graphG,
a set of vertices which can distinguish the elements (vertices
and edges). For an ordered subset Lm = {s1, s2, . . . , sw} of
the vertex V , and v ∈ V (G) also e ∈ V (G), the m − tuple
with r(v|Lm) = {d(v, s1), d(v, s2), . . . , d(v, sw)}, r(e|Lm) =
{d(e, s1), d(e, s2), . . . , d(e, sw)} is called mixed metric
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TABLE 1. Representation of vertices of Cn.

TABLE 2. Representation of edges of Cn.

representation of a vertex and an edge with respect to Lm.
In this sense, Lm is the mixed metric for G, if and only if
for every pair of distinct vertices i, j, and edges e1, e2 of
G, r(i|Lm) 6= r(j|Lm), moreover r(e1|Lm) 6= r(e2|Lm). The
minimum cardinality of a mixed metric generator is called
the mixed metric dimension, and the notation is dimm(G).
A mixed metric basis for a graph G is a mixed metric
generator for G with cardinality dimm(G).
Since metric dimension only resolves vertices of a graph

and an edge metric dimension deals with the edges of a graph,
the mixedmetric dimension deals with both the concepts, so a
mixed metric generator is a standard metric generator as well
as edge metric generator.

dimm(G) ≥ max{dim(G), dime(G)}

It is important to note that a vertex alone in a graph is unable
to form a mixed metric generator.
Remark 1 [16]: For any graph G, 2 ≤ dimm ≤ n.
Some of the known results on mixed metric dimension are,
Proposition 1 [16]: For a path graph Pn of order n ≥ 4,

dimm(Pn) = 2.
Proposition 2 [16]: For any two positive integers, g, h,

dimm(Kg,h) =

{
g+ h− 1, if g = 2 or h = 2;
g+ h− 2, otherwise.

Proposition 3 [16]: For grid graphs, Pm� Pn, with
m ≥ n ≥ 2. Then we have, dimm = 3.
Proposition 4 [16]: The cycle graph Cn of order n ≥ 4,

has dimm(Cn) = 3.
Proof:Weprovide the proof and, this technique is imple-

mented for finding the mixed metric dimension for the rest of
the graphs generated from cycle graphs. We will divide the
proof into two cases.
Case 1: When n is even, then n = 2m, where m ∈ Z+.

Let Lm = {x0, x1, xm}. We give representation of vertices and
edges of Cn with respect to Lm. The tables are shown.
Case 2: In case of odd n, then n = 2m+1, where m ∈ Z+.

Let Lm = {x0, x1, xm+1}. We give representation of vertices
and edges of Cn with respect to Lm. The tables are shown.

Note that from the above mentioned tables, vertices and
edges do not possess same representation with the resolv-
ing set Lm. This shows that Lm distinguishes vertices and

TABLE 3. Representation of vertices of Cn.

TABLE 4. Representation of edges of Cn.

edges of Cn, when n is even and odd. So it implies that that
dimm(Cn) ≤ 3.
Also, it is clear that dimm(Cn) ≥ 3. So dimm(Cn) = 3.
Let F be a family of graphs which are connected, F has

bounded mixed metric dimension if every graph within this
family has boundedmixedmetric dimension. On the contrary,
F has an unbounded mixed metric dimension. If all graphs
within F have the same unbounded mixed metric dimension,
then F has a constant mixed metric dimension. The path Pn,
Cn and grid graphs are the families of graphs with constant
mixed metric dimension.

The following proposition shows a comparison between
metric, and edge metric dimension among cycle, path, and
complete graphs.
Proposition 5 [15]: For any integer n ≥ 2,

dim(Pn) = dime(Pn) = 1, dim(Cn) = dime(Cn) = 2, and
dim(Kn) = dime(Kn) = n− 1.

In this paper, three families of graphs are considered gener-
ated from cycle graphs, denoted asDn,An andRn.We proved
that for prism graph Dn, dimm(Pn) = dime(Pn) = dim(Pn),
for even n, and dimm(Dn) > dime(Dn) > dim(Dn) for odd n.
In case of anti-prism graphs An, for both even and odd n,
we proved that dimm(An) = dime(An). The graph of Rn has
mixed metric dimension of 5.

In the end of this section, we give some known results
concerning metric and edge metric dimension of Dn,
and An.
Lemma 1 [4]: Let Dn be the prism graph, for n ≥ 4, then

we have,

dim(Dn) =

{
2, n is odd;
3, n is even.

Lemma 2 [13]: Let An be the anti-prism graph for n ≥ 3,
then we have dim(An) = 3.
Lemma 3 [7]: LetDn be the the prism graph which is also

called G(P(n, 1)), for n ≥ 4, then we have, dime(Pn) = 3.
Lemma 4 [23]: Let An be the anti-prism graph for n ≥ 3,

then we have,

dime(An) =

{
4, n is even;
5, n is odd.
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II. THE GRAPH OF PRISM Dn
In this section, mixed metric dimension for Dn, is presented.
The prism graphDn is a regular graphwith degree 3 studied

in [9]. The prism graph is generated by the cartesian product
of a cycle graph Cn and a path graph P2. In this particular
case the outer cycle comprises of y0, y1, . . . , yn−1, vertices
and an inner cycle x0, x1, . . . , xn−1. The prism graph is also
equivalent to Petersen graph G(P(n, 1)). The vertex and edge
set for Dn are as follows .

The vertex set of Dn is,

V (Dn) = {x`, y` | ` = 0, . . . , n− 1}

and the edge set of Dn is,

E(Dn) = {(x`, x`+1); (x`, y`); (y`, y`+1) | `=0, . . . , n− 1}.

The graph of Dn is shown below,

Lemma 5: For a mixed metric generator Lm of Dn,
Lm must contains vertices of both outer cycle, and inner cycle,
respectively.

Proof: Let us assume that, without loss of generality,
Lm contains elements of inner cycle, and {y0, y1, . . . ,
yn−1}

⋂
Lm = ∅. In this scenario, we have r(x`|Lm) =

r(y`x`|Lm), for 0 ≤ ` ≤ n − 1, which contradicts the
definition of mixed metric dimension. So Lm is not the mixed
metric generator. It implies thatLmmust contain vertices from
both outer and inner cycles.

The standard metric dimension and edge metric dimension
for prism graphs are studied in see [13], and [7].

Now we give an exact value for mixed metric dimension
for Dn.
Theorem 1: Let (Dn) be the prism graph with n ≥ 5, then,

dimm(Dn) =

{
3, n is even;
4, n is odd.

Proof: The proof of this theorem is obtained form
Lemma 6 to Lemma 8.
Lemma 6: If n is even then dimm(Dn) ≤ 3.
Proof: Now we can write as n = 2m, and m ∈ Z+. For

this particular case, let Lm = {y1, ym+1, x0}. The representa-
tion of the vertices and edges of Dn with respect to Lm are
shown in the following tables.

Note that from the above mentioned tables, there are no
two vertices and edges having same representation with Lm.
This shows that Lm = {y1, ym+1, x0} resolves vertices and
edges ofDn, which indicates that dimm(Pn) ≤ 3. Conversely,
we need to show that dimm(Dn) ≥ 3. It is straight forward to
see from from Proposition 4, and Lemma 5 so dimm(Dn) ≥ 3,
which proves that when n is even dimm(Dn) = 3.

TABLE 5. Representation of outer vertices of Dn.

TABLE 6. Representation of inner vertices of Dn.

TABLE 7. Representation of outer edges of Dn.

TABLE 8. Representation of inner edges of Dn.

TABLE 9. Representation of outer and inner edges of Dn.

TABLE 10. Representation of outer vertices of Dn.

Remark 2: LetDn be a prim graph with n ≥ 3. If n is even,
then dimm(Dn) = dime(Dn) = dim(Dn).
Lemma 7: If n is odd then dimm(Dn) ≤ 4.
Proof: Now we can write as n = 2m + 1, m ≥ 5, and

m ∈ Z+. For this particular case, let Lm = {y1, y4, ym+3, x0}.
The representation of the vertices and edges of Dn with
respect to the Lm are shown in the following tables.

Note that from the above mentioned tables, vertices and
edges do not posses same representation with the resolving
set Lm. This shows that dimm(Dn) ≤ 4.
Lemma 8: If n is odd then dimm(Dn) ≥ 4.
Proof: Suppose that when n is odd, then dimm(Dn) = 3.

From Lemma 5, there should be at least one vertex in each
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TABLE 11. Representation of inner vertices of Dn.

TABLE 12. (a) Representation of outer edges of Dn. (b) Representation of
outer edges of Dn.

TABLE 13. Representation of inner edges of Dn.

TABLE 14. Representation of outer and inner edges of Dn.

cycle of a graph, so the following possibilities are shown in
the table below.

By symmetry of the graph other relations can be
considered, they will have same kind of contradic-
tions. Hence, it is proved that, when n is odd, then
dime(Dn) = 4.
Remark 3: Let Dn be a prim graph with n ≥ 3. If n is odd,

then dimm(Dn) > dime(Dn) > dim(Dn).
Problem 1: The prism graph is also equivalent to gener-

alized petersen graph G(P(n, 1)). It would be interesting to
consider mixed metric dimension of other families of Gener-
alized Petersen graphs.

TABLE 15. Contradictions for Dn.

III. THE GRAPH OF ANTI-PRISM An
In this section, we give the mixed metric dimension for anti-
prism graph An, with n ≥ 3.
The anti-prism An as defined in [1], [8] is a 4-regular

graph. The graph of anti-prism consist of an outer cycle
y0, y1, . . . , yn−1, and an inner cycle x0, x1, . . . , xn−1. Now
mathematically the vertex and edge set are represented as,
The vertex set of V (An) is,

V (An) = {x`, y` | ` = 0, . . . , n− 1}

and E(An) is,

E(An) = {(x`, x`+1); (x`, y`); (x`, y`+1);

(y`, y`+1) | ` = 0, . . . , n− 1}.

The graph of An is shown below,

Lemma 2, and Lemma 4 present the standard metric and
edge metric dimension of An.
Lemma 9 [23]: If for An, the edge metric generator con-

tains two vertices of one cycle than at least it contain two
vertices of other cycle respectively.
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TABLE 16. Representation of outer vertices of An.

TABLE 17. Representation of inner vertices of An.

TABLE 18. Representation of outer edges of An.

TABLE 19. Representation of inner edges of An.

TABLE 20. (a) Representation of outer and inner edges of An.
(b) Representation of outer and inner edges of An.

Proof: Since the mixed metric generator is a standard
metric generator as well as edge metric generator, so this will
follow for mixed metric generator as well.

In the following theorem, the mixed metric dimension
of An is given.
Theorem 2: LetAn be an anti-prism graph for n ≥ 3. Then

we have,

dimm(An) =
{
4, n is even ;
5, n is odd.

Proof: The proof this theorem will be deduced from
Lemma 10 to Lemma 13.
Lemma 10: If n is even then dimm(An) ≤ 4.
Proof: In case of even n, n = 2m, wherem ∈ Z+. We let

Lm = {y0, ym, x2, xm+2}. In order to show that Lm represents
mixed metric generator for An. We present representation of

TABLE 21. Contradictions for An.

TABLE 22. (a) Representation of outer vertices of An. (b) Representation
of outer vertices of An.

TABLE 23. (a) Representation of inner vertices of An. (b) Representation
of inner vertices of An.

any vertices, and edges of V (An) with respect to Lmin the
following tables.

Note that from the above mentioned tables, vertices and
edges do not show same representation with the Lm. This
shows that Lm = {y0, ym, x2, xm+2} resolves vertices and
edges of (An), which indicates that dimm(An) ≤ 4.
Lemma 11: If n is even then dimm(An) ≥ 4.
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TABLE 24. (a) Representation of outer edges of An. (b) Representation
of outer edges of An.

TABLE 25. Representation of inner edges of An.

TABLE 26. (a) Representation of outer and inner edges of An.
(b) Representation of outer and inner edges of An. (c) Representation of
outer and inner edges of An. (d) Representation of outer and
inner edges of An.

Proof: Suppose, dimm(An) = 3. From Lemma 9, the graph
of An have at least two vertices in both the cycles, so the
following possibilities are shown in the table below.

By symmetry of the graph other relations can be consid-
ered, they will have same kind of contradictions. Hence, it is
proved that, when n is even, then dime(An) = 4.
Remark 4: LetAn be a anti-prism graph with n ≥ 5. If n is

even, then dimm(An) = dime(An).
Lemma 12:Let dimm(An) ≤ 5, when n is odd.

TABLE 27. Contradictions for An.

TABLE 28. Representation of exterior vertices of Rn.

TABLE 29. (a) Representation of central vertices of Rn. Representation
of central vertices of Rn.

Proof: Now n = 2m + 1, where m ∈ Z+. We let Lm =
{y0, ym, x0, x2, xm+1}. In order to show that Lm represents
mixed metric generator for An. We present representation of
any vertices and edges of V (An) with respect to Lm in the
following tables.

Note that from the above mentioned tables, vertices and
edges do not show same representation with the resolving
set Lm. This shows that Lm = {y0, ym, x0, x2, xm+1} resolves
vertices and edges of (An), which indicates that dimm(An) ≤
4. Conversely, we will examine that dimm(An) ≥ 5.
Lemma 13: If n is odd then dimm(An) ≥ 5.
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TABLE 30. (a) Representation of interior vertices of Rn.
(b) Representation of interior vertices of Rn.

TABLE 31. (a) Representation of exterior edges of Rn.
(b) Representation of exterior edges of Rn.

TABLE 32. (a) Representation of exterior and central edges of Rn.
(Representation of exterior and central edges of Rn.)

Proof:When n is odd, then dimm(An) ≥ 5. Then a table is
shown.

Hence, it follows from the above table that there are no
mixed metric generator with four vertices forAn, by symme-
try of graphs other relations can be obtain which shows the
same kind of contradictions, so dimm(An) = 5.
Remark 4: If An is an Anti-prim graph for n ≥ 3, when n

is odd, then dimm(An) = dime(An).

IV. THE GRAPH OF Rn
The graph of Rn is formed by the combination of anti-prism
and prism graph. It is defined in [2].

Mathematically the vertex and edges set are as follows,

V (Rn) = {x`; y`; z` : ` = 0, . . . , n− 1}

TABLE 33. (a) Representation of central edges of Rn. (b) Representation
of central edges of Rn.

TABLE 34. (a) Representation of central and interior edges of Rn.
(b) Representation of central and interior edges of Rn.
(c) Representation of central and interior edges of Rn.
(d) Representation of central and interior edges of Rn.

and edge set

E(Rn) = {(x`, x`+1); (x`, y`); (x`+1, y`);

(y`, y`+1); (y`, z`); (z`, z`+1) : ` = 0, . . . , n− 1}.

In order to avoid any ambiguity, we say cycles induced by x`,
y` and z` for ` = 0, . . . , n − 1, the interior cycle, the centre
cycle and the exterior cycle respectively. The graph of Rn is
shown below,
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TABLE 35. (a) Representation of interior edges of Rn. (b) Representation
of interior edges of Rn.

TABLE 36. Contradictions for Rn.

TABLE 37. (a) Representation of exterior vertices of Rn.
(b) Representation of exterior vertices of Rn.

Lemma 14 [12]:When n ≥ 5, the standard metric dimen-
sion forRn,is dimRn = 3.

In the following theorem, we give the exact value of mixed
metric dimension ofRn.

TABLE 38. (a) Representation of central vertices of Rn.
(b) Representation of central vertices of Rn.

TABLE 39. (a) Representation of interior vertices of Rn.
(b) Representation of interior vertices of Rn.

TABLE 40. (a) Representation of exterior edges of Rn.
(b) Representation of exterior edges of Rn.

Theorem 3: Let Rn be a graph, then for n ≥ 5, then
dimmRn = 5.

Proof: The proof of this theorem will follow the proof
of Lemma 15 to Lemma 17.
Lemma 15: In case of even n,dimm(Rn) ≤ 5.
Proof: There are two possible cases.

Case 1: When n is even. Now n = 2m, where m ∈ Z+.
We let Lm = {z0, y1, ym, x2, xm+2}. In order to show that
Lm represents mixed metric generator for Rn. We present
representation of any vertices and edges ofV (Rn), andE(Rn)
with respect to Lm in the following tables.
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TABLE 41. (a) Representation of exterior and central edges of Rn.
(b) Representation of exterior and central edges of Rn.

TABLE 42. (a) Representation of central edges of Rn. (b) Representation
of central edges of Rn.

TABLE 43. (a) Representation of central and interior edges of Rn.
(b) Representation of central and interior edges of Rn.
(c) Representation of central and interior edges of Rn.
(d) Representation of central and interior edges of Rn.

As it can be seen from the above tables there are no
vertices and edges having the same representation with Lm,
so dimmRn ≤ 5.

TABLE 44. (a) Representation of interior edges of Rn. (b) Representation
of interior edges of Rn.

Lemma 16: If n is even then dimm(Rn) ≥ 5.
Proof: In case of even n, then dimm(Rn) ≥ 5. We let

dimm(Rn) = 4. Then a contradiction table is shown below.
Hence, it can be seen clearly seen from the table that

dimmRn ≥ 5. So from the above lemmas dimm(Rn) = 5.
Case 2: When n is odd. Now we let n = 2m + 1, where

m ∈ Z+. We let Lm = {z0, ym, x0, x2, xm+1}. In order to show
that Lm represents mixed metric generator forRn. We present
representation of any vertices and edges ofRn.

From the above mentioned tables, there are no two ver-
tices and edges with same mixed metric dimension for Rn.
So dimm(Rn) ≤ 5. As shown before the contradiction table
for even n, same kind of contradiction occur in case of odd n,
so dimm(Rn) ≥ 5. Hence, it is proved that dimm(Rn) = 5.
Problem 2: Since mixed metric generator is a metric gen-

erator as well as edge metric generator. So a natural question
arise in case of the graph ofRn. As we know from Lemma 14,
the metric dimension is 3. In case of edge metric dimension,
is the minimum edge metric dimension is equal to mixed
metric dimension forRn?.

V. CONCLUSION
In this paper, we have found the exact values of the mixed
metric dimension of three families of graphs generated from
cycle graphs, Pn,An, andRn. We conclude that for Pn when
n is even mixed metric dimension equals the edge and metric
dimension. For An, n is even and odd; the mixed metric
dimension equals the edge metric dimension. Moreover, both
Pn, and An has bounded mixed metric dimension while for
Rn, it has a constant mixed metric dimension.
The standard and edge metric dimensions have been stud-

ied for various well know families of graphs Petersen graphs,
Circulant graphs, and many families of Convex polytopes,
especially the standard metric dimension. The future research
can be thought of as finding the mixed metric dimension for
these particular families of graphs. Besides this, it would be
interesting to know for which families of graphs dimm =
dime = dim.
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