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ABSTRACT A vertex u € V(G) resolves (distinguish or recognize) two elements (vertices or edges) v, w €
EG)UV(G)ifdg(u, v) # dg(u, w) . A subset Ly, of vertices in a connected graph G is called a mixed metric
generator for G if every two distinct elements (vertices and edges) of G are resolved by some vertex set of
Lp,. The minimum cardinality of a mixed metric generator for G is called the mixed metric dimension and is
denoted by dim,,(G). In this paper, we studied the mixed metric dimension for three families of graphs D,,,
Ay, and R, known from the literature. We proved that, for D,, the dim,,(D,,) = dim.(D,;) = dim(D,,), when
n is even, and for A, the dim,,,(A,) = dim.(A,), when n is even and odd. The graph R,, has mixed metric

dimension 5.

INDEX TERMS Mixed metric dimension, metric dimension, edge metric dimension, rotationally-

symmetric.

I. INTRODUCTION AND PRELIMINARY RESULTS

The study of standard metric dimension was initiated by
Slater [20], where locating sets were called metric generators,
under the problem of uniquely identifying the location of an
intruder or a thief in the network. When the metric generators
were termed as resolving sets of a graph, the notion of metric
dimension was introduced by Haray, and Melter [10]. Later,
this idea of metric dimension attracted much intention from
the researchers, and several articles related to this concept
were published; some of them are, for instance, in robot
navigation [14], and applications in chemistry [5], [6]. More-
over, some of the recent articles for the reader’s convenience
are [11], [17], [18], [21], [22].

For a graph G = (V, E), the ordinary distance dg(u, v)
(or d(u, v)) between two vertices u, v € V(G), is the length
of shortest path between them. A vertex a € V resolves
two vertices in a graph say b, and c, if dg(a, b) # dg(a, c)
holds. A set L C V is the metric generator for a graph G
if vertices of L resolves pair of distinct vertices of a graph G.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.
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The metric generator with least cardinality is the metric basis,
and cardinality of its metric basis is called the metric dimen-
sion of a graph G. It is denoted by dim(G).

Similar to this concept, edge metric dimension is intro-
duced by [15] which uniquely identifies the edges related to
a graph. The distance between the vertex u and edge e = vw
is defined as d(e,u) = min{d(v, u),d(w, u)}. The vertex
u € V(G) resolves or distinguish two edges of a graph
e1,er € E(G)ifd(er,u) # d(ey,u). Aset L, C V is said to
be the edge metric generator for a graph G, if every distinct
edges of G are resolved by some vertex of L,. The minimum
cardinality of an edge metric generator of G is known as
edge metric dimension of G, and it is represented as dim,.(G).
Recently, this variant has been investigated by [19], [24], [25].

Now a new type of dimension is introduced by [16], which
is a mixed version of both metric and edge metric dimensions,
and authors called it a mixed metric dimension. For a graph G,
a set of vertices which can distinguish the elements (vertices
and edges). For an ordered subset Ly, = {s1,$2, ..., Sy} of
the vertex V, and v € V(G) also e € V(G), the m — tuple
with r(v|Ly) = {d(v, s1),d(v, 52), ...,d(v, sy)}, r(e|Lm) =
{d(e, s1),d(e, s2),...,d(e,s,)} is called mixed metric
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TABLE 1. Representation of vertices of Cp.

r(v[Lm) zo 1 Tm
zp:0<¢<1 [ 1-¢ m— £
zp:2<{l<m 0 -1 m —/

zg-m+1<L<2m-—-1[(2m—L|2m —L+1|L—m

TABLE 2. Representation of edges of Cp.

r(e|Lm) o 1 Tm
Tprer1 1 0< <1 Y4 0 m—{—1
oy 1 2<l<m-—1 l -1 |m—¥¢—1
Tprprrm < L<m+41 2m —£€—1| m—1 {—m
Tprpr1 - m+2<L<2m—-1|2m —4—-1|2m—L| L —m

representation of a vertex and an edge with respect to L.
In this sense, Ly, is the mixed metric for G, if and only if
for every pair of distinct vertices i, j, and edges e, e» of
G, r(ilLm) # r(jlLm), moreover r(e1|Lm) # r(e2|Lm). The
minimum cardinality of a mixed metric generator is called
the mixed metric dimension, and the notation is dim,,(G).
A mixed metric basis for a graph G is a mixed metric
generator for G with cardinality dim,,,(G).

Since metric dimension only resolves vertices of a graph
and an edge metric dimension deals with the edges of a graph,
the mixed metric dimension deals with both the concepts, so a
mixed metric generator is a standard metric generator as well
as edge metric generator.

dimy,,(G) = max{dim(G), dim.(G)}

It is important to note that a vertex alone in a graph is unable
to form a mixed metric generator.

Remark 1 [16]: For any graph G, 2 < dim,,, < n.

Some of the known results on mixed metric dimension are,

Proposition 1 [16]: For a path graph P, of order n > 4,
dim,(Py) = 2.

Proposition 2 [16]: For any two positive integers, g, A,

g+h—1,
g+h—2,

Proposition 3  [16]: For grid graphs,
m > n > 2. Then we have, dim,,, = 3.

Proposition 4 [16]: The cycle graph C,, of order n > 4,
has dim,,,(C,,) = 3.

Proof: We provide the proof and, this technique is imple-
mented for finding the mixed metric dimension for the rest of
the graphs generated from cycle graphs. We will divide the
proof into two cases.

Case 1: When n is even, then n = 2m, where m € Z%.
Let Ly, = {xo0, x1, x;n}. We give representation of vertices and
edges of C,, with respect to Ly,. The tables are shown.

Case 2: In case of odd n, then n = 2m+ 1, where m € Z+.
Let Ly, = {x0, X1, Xn+1}. We give representation of vertices
and edges of C, with respect to Lp,. The tables are shown.

Note that from the above mentioned tables, vertices and
edges do not possess same representation with the resolv-
ing set Ly,. This shows that Ly, distinguishes vertices and

ifg=2o0orh=2;
otherwise.

P, P,, with

dim,,, (K )= {
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TABLE 3. Representation of vertices of Cp.

7(v|Lm) x0 T1 Tom41

zp:0<£<1 [ 1—-¢ m
zp:2<Ll<m Y4 -1 m—f+1
zp:m+1</l<m+2(2m—-L+1 m l—m—1
zp:-m+3<L<2m |[2m —L+1|2m —L+2[L—m —1

TABLE 4. Representation of edges of Cp.

r(e|Lm) 0 1 Tm+1

Tpxpp1 021 L 0 m — /£
ToTpy1 :2<L<m 0 -1 m — /£
TeTpp1 :mF+1<L<2m|2m—L|2m —L+1 [ —m—1

edges of C,, when n is even and odd. So it implies that that
dim,(C,) < 3.

Also, it is clear that dim,,,(C,,) > 3. So dim,,(C,)) = 3.

Let F be a family of graphs which are connected, F has
bounded mixed metric dimension if every graph within this
family has bounded mixed metric dimension. On the contrary,
F has an unbounded mixed metric dimension. If all graphs
within F have the same unbounded mixed metric dimension,
then F has a constant mixed metric dimension. The path P,,,
C, and grid graphs are the families of graphs with constant
mixed metric dimension.

The following proposition shows a comparison between
metric, and edge metric dimension among cycle, path, and
complete graphs.

Proposition 5  [15]: For any integer n > 2,
dim(P,) = dim.(P,) = 1, dim(C,) = dim.(C,) = 2, and
dim(K,) = dim.(K,,) =n — 1.

In this paper, three families of graphs are considered gener-
ated from cycle graphs, denoted as D, A,, and R,,. We proved
that for prism graph D,,, dim,,(P,) = dim.(P,) = dim(P,),
for even n, and dim,,(D,,) > dim.(D,,) > dim(D,,) for odd n.
In case of anti-prism graphs 4, for both even and odd n,
we proved that dimy,,(A,) = dim.(A;). The graph of R, has
mixed metric dimension of 5.

In the end of this section, we give some known results
concerning metric and edge metric dimension of D,,
and A,,.

Lemma 1 [4]: Let D, be the prism graph, for n > 4, then
we have,

2, nisodd;
3, niseven.

dim(Dy) = !

Lemma 2 [13]: Let A, be the anti-prism graph for n > 3,
then we have dim(A,) = 3.
Lemma 3 [7]: Let D, be the the prism graph which is also
called G(P(n, 1)), for n > 4, then we have, dim.(P,) = 3.
Lemma 4 [23]: Let A, be the anti-prism graph for n > 3,
then we have,

4, niseven;

dimy(A,) =
ime(An) {5, nis odd.
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Il. THE GRAPH OF PRISM D,
In this section, mixed metric dimension for D,;, is presented.
The prism graph D, is aregular graph with degree 3 studied
in [9]. The prism graph is generated by the cartesian product
of a cycle graph C, and a path graph P,. In this particular
case the outer cycle comprises of yo, y1, ..., Yn—1, vertices
and an inner cycle xg, x1, ..., x,—1. The prism graph is also
equivalent to Petersen graph G(P(n, 1)). The vertex and edge
set for D,, are as follows .
The vertex set of D,, is,

V(Dy) ={x¢,ye | £=0,...,n—1}
and the edge set of D, is,
E(Dp) = {(x¢, x¢41); (e, ye); e, ye+1) 1 €=0,...,n— 1}

The graph of D), is shown below,
'}{3 yn-1

Lemma 5: For a mixed metric generator Ly, of D,,
L, must contains vertices of both outer cycle, and inner cycle,
respectively.

Proof: Let us assume that, without loss of generality,
Ly contains elements of inner cycle, and {yo,y1,...,
Yn—1}(1Lm = @. In this scenario, we have r(x¢|Ly) =
r(yex¢|Lm), for 0 < £ < n — 1, which contradicts the
definition of mixed metric dimension. So Ly, is not the mixed
metric generator. It implies that L, must contain vertices from
both outer and inner cycles.

The standard metric dimension and edge metric dimension
for prism graphs are studied in see [13], and [7].

Now we give an exact value for mixed metric dimension
for D,,.

Theorem 1: Let (D,) be the prism graph with n > 5, then,

3, niseven;

dim,(D,) =
imn(Pn) 4, nisodd.

Proof: The proof of this theorem is obtained form
Lemma 6 to Lemma 8.

Lemma 6: If n is even then dim,,(D,,) < 3.

Proof: Now we can write as n = 2m, and m € Z*. For
this particular case, let Ly, = {y1, ym+1, X0} The representa-
tion of the vertices and edges of D, with respect to Ly, are
shown in the following tables.

Note that from the above mentioned tables, there are no
two vertices and edges having same representation with Ly,.
This shows that Ly, = {y1, Ym+1, X0} resolves vertices and
edges of D,,, which indicates that dim,,(P,) < 3. Conversely,
we need to show that dim,,(D,) > 3. It is straight forward to
see from from Proposition 4, and Lemma 5 so dim,,,(D,,) > 3,
which proves that when 7 is even dim,,,(D,) = 3.
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TABLE 5. Representation of outer vertices of Dj,.

r(v|Lm) Y1 Ymt1 xo

y:0<£<1 1—¢ m+£—1 {+1

y:2<L€<m -1 m—{+1 £+ 1
y.m+1<£€<2m—-1{2m—¥{¢+1|f—m—1|2m—L+1

TABLE 6. Representation of inner vertices of Dp,.

T(U‘Lm) Y1 Ym+1 zo
zp: =0 2 m 0
zy:1<l<m l m— £+ 2 l
zp-m+1<L<2m—-1[2m—£0+2| £—m |[2m—~¥
TABLE 7. Representation of outer edges of Dp.
T(ele) Y1 Ym+1 xo
Yoye41 £ =0 0 m—1 1
Yeyer1 : 1 << m—1 -1 m— 0 +1
YeYet1 :L=m m—1 0 m
YeYer1 :m+1<L<2m—-1|2m—L|[L—m —1|2m — /¢

TABLE 8. Representation of inner edges of Dp.

r(e[Lm) Y1 Ym+1 g
Tprp 1 :£=0 1 m 0
Torpp1 1< L<m—1 Y m—f+1 I3
TpToqyr :l=m m 1 m—1
oo mF+1<L<2m—12m —4+1] £—m [2m—/(—1
TABLE 9. Representation of outer and inner edges of Dj,.
r(e[Lm) Y1 Ym41 Zo
yxy :0< <1 1—/ m+£—1 l
Yy :2<L<m -1 m—{04+1 l
yxryg . m+1<£€<2m—-1[2m—¥C¢+1|{—m—1|2m—/¢

TABLE 10. Representation of outer vertices of Dp,.

7(v[Lm) Y1 Y4 Ym+3 Zo
v 0< <1 T—7¢ I—7 |m+0—2] 0+1
v 2<6<3 7—1 17 m 7+1
yr:4<Ll<m (-1 {—4 m—L+3 (+1

y:m+1<L<m+2 m {—4 m—C0+32m—40+2
y-m+3<L<m+42m —L+2[{—m+3|{—m—32m — £+ 2
y:m+5<L€<2m 2m—€+22m — L+ 5[ —m —3[2m —{+2

Remark 2: Let D,, be a prim graph with n > 3. If n is even,
then dim,,(D,,) = dim.(D,) = dim(D,,).

Lemma 7: If n is odd then dim,,(D,,) < 4.

Proof: Now we can write asn = 2m + 1, m > 5, and
m € Z. For this particular case, let Ly, = {y1, Y4, Y13, X0}-
The representation of the vertices and edges of D, with
respect to the Ly, are shown in the following tables.

Note that from the above mentioned tables, vertices and
edges do not posses same representation with the resolving
set Ly,. This shows that dim,,,(D,,) < 4.

Lemma 8: If n is odd then dim,,,(D,,) > 4.

Proof: Suppose that when 7 is odd, then dim,,(D,) = 3.
From Lemma 5, there should be at least one vertex in each
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TABLE 11. Representation of inner vertices of Dp.

TABLE 15. Contradictions for Dp.

zp:m+1<l<m+2] m+1 {—3 m—0+42m—C0+1
zp.m+3<L<m+42m—£€+3 -3 —m—22m — £+ 1
zp:m+5<L<2m 2m—€4+32m —L+6|L—m —22m — L+ 1

TABLE 12. (a) Representation of outer edges of Dj. (b) Representation of
outer edges of Dp,.

r(v[Lm) Y1 I Ym+3 0 Resolving vertices Contradictions
zp:0<0<1 2—/ 5—0 m+l—-1 [ {yo, ¢, Tt41}
xzp:2<0<3 0 5—1¢ m+1 l ze(0 <t <n-—2) r(zol{yo, zt, Te4+1}
zp:4<f<m ¢ {—3 |m—0+4 l =r(zn—120/{yo, Tt, Tt4+1}

= (17t7t+ 1)
For0<t<m—1.
r(zn—170l{y0, Tt, Tr+1}
= 7(Yn—12n—1{yo, t, zt+1}
=(1,2m—t,2m —t—1)
Form <t <n-—3.
r(zn—170[{y0, T, Tt41}
= 1r(Yn—1Tn—1{y0, Tt, Te41}

(a)

r(e|Lm) Z0
Yyeyer1 : 0 << 1 £+1
Yoyoy1 - 2< 4 <3 41
Yeyer1 : 4 << m +1

Yoyor1 - m+1<L<m+2|2m—-~(+1
Yoyor1 -m+3<L<m+4|2m—-~(+1
Yeyoy1 -m+5<L<2m |2m—{C+1

(b)

TABLE 13. Representation of inner edges of Dj.

r(e|Lm) Y1 Y4 Yj+3 Zo
xorpyy 1 0<L<1 1 4—0 m+L—1 ¢
Tpxpqpq 12<0<3 l 4—0 m—L043 ¢
xpxpp1 1 4<Ll<m l {—3 m—£0+4+3 ¢

oxprr - m+1<Ll<m+2P2m—0+2 (—3 |m—L+32m—/
ooy m+3<L<m+42m—LC+2] (-3 [ —m—22m —{
ooy m+5<L0<2m 2P2m —L+22m — L+ 5 —m — 22m — {

TABLE 14. Representation of outer and inner edges of Dj.

7(e[Lm) Y1 Ya Ym+3 o

yexy : 0 < <1 1—-7 4—0 [m+4+0-—2 l

yexp :2<£0<3 -1 4 -4 m l

yexg: 4<L<m {—1 {—4 |m—{0+3 ¢
yoxg m~+1 <0< m+ 2 m ¢ —4 2m — ¢ —42m — ¢+ 1

yorg :m+3<L<m+42m—~L+2[ (-4 —m—32m—£f+1
yexrg . m+5<L<2m 2m —L+22m —L+5f{—m—32m — L+ 1

cycle of a graph, so the following possibilities are shown in
the table below.

By symmetry of the graph other relations can be
considered, they will have same kind of contradic-
tions. Hence, it is proved that, when n is odd, then
dim,(Dy) = 4.

Remark 3: Let D,, be a prim graph with n > 3. If n is odd,
then dim,,(D,,) > dim.(D,) > dim(Dy,).

Problem 1: The prism graph is also equivalent to gener-
alized petersen graph G(P(n, 1)). It would be interesting to
consider mixed metric dimension of other families of Gener-
alized Petersen graphs.

VOLUME 8, 2020

= 717
r(e[Lm) y1 Y4 Ymt3 Fort =n —2.
Yeyer1 0 <L <1 0 3—1 m+{—2 {yo,yt,z0}
Yeyes1 -2 <L <3 7—1 3—0 |m-—-0+2 yr(1<t<n—1) r(yol{yo, yt, zo}
YeYer1 A<l<m 7—1 -4 |m—0+2 = r(yn—1y0|{y0, yt,T0}
YeYerr m+1<l<m+22m—0+1| £—4 [2m—{—5 = (0,,1)
Yever1 -m+3<L<m+42m—E+1| (—4 |L—m—3 Forl<t<m.
Yever1 m+5<E<2m [2m—C+12m —C+ 4| —m—3 7(yol{yo, yt, z0}
= r(yov1l{yo, ys, w0}

=(0,2m —t+1,1)
Form+1<t<n-—1.
r(y1[{y1, Ym+3,zo}
= r(y1y2l{y1, ym+3, 20}
= (0,m—1,2)
r(yoy1[{y1,ya, o}
=r(y1z1[{y1, y4, z0}

{y1, ym+3, %0}

{y1,y4, 20}

737

lIl. THE GRAPH OF ANTI-PRISM A,
In this section, we give the mixed metric dimension for anti-
prism graph A,, with n > 3.

The anti-prism A, as defined in [1], [8] is a 4-regular
graph. The graph of anti-prism consist of an outer cycle
Y0, Y1, ---,Yn—1, and an inner cycle xg, x1, ..., xXp,—1. Now
mathematically the vertex and edge set are represented as,
The vertex set of V(A,) is,

V(AR ={x¢,ye 1 £=0,...,n—1}
and E(A,) is,

E(Ay) = {(xe, xe1); (e, yo); (xe, Yey1);
(ylvyl-Fl) | £ 201""”_ 1}

The graph of .4, is shown below,
Yn-1

Lemma 2, and Lemma 4 present the standard metric and
edge metric dimension of A,,.

Lemma 9 [23]: If for A, the edge metric generator con-
tains two vertices of one cycle than at least it contain two
vertices of other cycle respectively.
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TABLE 16. Representation of outer vertices of A;.

TABLE 21. Contradictions for A,.

Contradictions

TABLE 17. Representation of inner vertices of A,.

r(v[Lm) Yo Ym 2 Tm42
zp:0<0<1 1 m 2—1 m+4—2
zp:2<l<m /2 m—4{4+1 -2 m—4{4+1

zp:m+1<L<m+22m—L+1] L—m {—2 m—0+2
zg-m+3<L<2m—12m—4¢+1| £—m [2m—{04+2|{—m —2

TABLE 18. Representation of outer edges of .A,.

7A(ell"") Yo Ym, T2 Tm+2
Yeye41 :0< <1 l m—{—1 1 m+£—1
Yoye41 :2<L<m—1 0 m—¢—1 ¢—1 m—4+1

Yoyer1 -m<L<m+1 2m—L—-1 {—m -1 1

7(v|Lm) Yo Ym, T2 Tm+2 Resolving vertices
v 0< <1 7 |m—20] 2—-0 |m+0—1 {vo,y1, ¢}
v 2<0<m 7T m—¢€ -1 |[m-€+2 z(0<t<n—1) 7(yol{yo,y1, =t} = r(yn—19%0{yo,y1, ¢},
ye: =m+1 -2 1 -1 1 =(0,1,1),
yo.m+2<Ll<2m—12m —L[f—m|2m — £+ 2[0—m —1 For0 <t <1

r(yol{yo, y1,xt} = r(yn—190{yo, y1, ¢},
For2 <t <m.
r(Yol{yo, y1, Tt} = r(yox1[{yo, y1, ¢},
=(0,1,2m —t+1),
Form+1<t<n-—1.

{yo,yt,z0}
ye(1<t<n—-1) r(yol{yo,yt, 0} = r(yn—1%0l{y0,yt, 0},
=(0,t,1),

For1 <t<m—1.
r(yol{yo, yt, 0} = r(yox1/{yo,yt, o},
=(0,2m —t,1),

Form <t<n-—1.
r(Yol{yo, ym, r2} = r(yoro[{yo, Ym,x2},
= (0,m,2
{vo, ym, Tmy2} |r(yn—1H{wyo, ym,x2} = r(yn—120[{yo0, ym, z2},

=(1,m—-1,m—2).

{y07 Ym, 12}

Yoyer1 :m+2<0<2m—12m -4 -1 L—m P2m—{L+1{-m—1

TABLE 19. Representation of inner edges of A,.

r(e|Lm) Yo Ym T2 T2
Tz :0< <1 1 m— £ 1-2¢ m+L—2
TyTppq :2<L<m—1 0 m — /4 -2 m—L0+1
TyTpp1:m<L<m+1 2m —/ 1 -2 m—L+1
Tyxop m+2<UL<2m—12m—L[L—m|2m —L+1[f—m —2

TABLE 20. (a) Representation of outer and inner edges of Aj,.
(b) Representation of outer and inner edges of Aj,.

r(e|Lm) Yo Ym T2 T2
yexp:0<L<2 l m— £ 2—1 m+L—2
yexyg 13 <L <m l m — /4 {—2 m— L4+ 2
yxg:m+1<Ll<m+2[2m—£L|L—m {—2 m—4{+2
yexg - m+3<L<2m—-112m—L|[l—m|[2m — {0+ 2|0 —m —2

TABLE 22. (a) Representation of outer vertices of .4,. (b) Representation
of outer vertices of Ajp.

r(v|Lm) Yo Ym To
ye:0<£<1 l m—4L C+1
y:2<€<m l m—£L (41

y-m+1<e<m+22m—L+1[{—m[2m —£L+1
y:m+3<L€<2m 2m—L+1|[{—m[2m —L+1

(a)

d(.,.) T2 Tm+1
ye:0< <1 2—4 m—0+1
y:2<L€<m -1 m—£+1

y:m+1<L<m+42 -1 {—m
y-m+3<0<2m |[2m—£€+3| L—m
(b)

TABLE 23. (a) Representation of inner vertices of .4,. (b) Representation

r(e|Lm 0 m x2 Tm+2 . .
ye$z+1(i ‘0 S)f T y[ ,,EI, 7 T—7 prog Zﬁ 1 of inner vertices of Aj.
Yoxe41 :2<L<m 0 m — /£ -1 m—L+1
Yexor1 m+1<€<2m—1|2m —L[l—m[2m — L+ 1[{—m —1 r(v|Lm) Y0 Ym o
®) 7,:0<0<1 1 m—0+1 7
zp:2<fl<m 0 m—£0+1 Y
zp:m+1<L<m+22m—~4+2| £—m |2m—£L+1
zp:m+3<L<2m 2m—4+2| £—m |2m—£L+1
Proof: Since the mixed metric generator is a standard (a)
metric generator as well as edge metric generator, so this will o) = -
follow for mixed metric generator as well. 2 0< (<1 ) e
In the following theorem, the mixed metric dimension ze:2<l<m =2 |m—-f+1
Of.AnngiVGIl. zp:m+1<L<m+2 -2 {—m—1
zp:m+3<£L<2m 2m—L+3[f—m—1

Theorem 2: Let A, be an anti-prism graph for n > 3. Then
we have,

. 4, niseven;
dlmm(An) = { 5, nis odd.

Proof: The proof this theorem will be deduced from
Lemma 10 to Lemma 13.
Lemma 10: If n is even then dim,,(A,) < 4.
Proof: In case of even n, n = 2m, where m € Z*. We let
L = {y0, Ym>» X2, Xm+2}. In order to show that L, represents
mixed metric generator for .4,. We present representation of
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(b)

any vertices, and edges of V(A,) with respect to Lyin the
following tables.

Note that from the above mentioned tables, vertices and
edges do not show same representation with the Ly,. This
shows that Ly, = {0, Ym, X2, Xm+2} resolves vertices and
edges of (A,), which indicates that dim,,(A,) < 4.

Lemma 11: If n is even then dim,,(A,,) > 4.
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TABLE 24. (a) Representation of outer edges of .A,. (b) Representation
of outer edges of A;.

r(e[Lm) Yo Ym To
Yoyo+1 : 0 <L <1 l m—{—1| £+1
Yoye+1 :2<€<m—1 l m—L—1| £+1
Yoyor1 - m<L<m+1 2m — ¢ {—m 2m — /¢
Yeyoy1 - m+2<L<2m—1|2m—k {—m 2m — /¢
YeYey1 1 € =2m 0 l—m 1
(a)
r(e[Lm) T2 Tm+1
Yeyey1 : 0 << 1 1 m—{
Yoye+1 :2<L<m—1 -1 m— £
YeYer1 :m << m+1 -1 1
Yoyet1 - m+2<L<2m—-1[2m—L+2 [ L—m
Yoyet+1 i L =2m 2 {—m
(b)
TABLE 25. Representation of inner edges of .A;.
r(e[Lm) Yo Yym | o T2 Tmt1
Tprpyq :0< A< 1 m—{ [ 1—¢ m—/{
TpTpp1 :2<L<m—1 12 m— £ 2 -2 m— £
T m<L<m+1 m 1 2m—+¢ {—2 0
Torop1 :m+2<L<2mP2m —L+ 1l —m2m —{]2m — L+ 2[{ —m — 1

TABLE 26. (a) Representation of outer and inner edges of .A,.

(b) Representation of outer and inner edges of A,. (c) Representation of
outer and inner edges of A,. (d) Representation of outer and

inner edges of Aj.

r(e[Lm) Yo Ym o
ygajg:ogfgl l m — £ [
ygl‘g:QSZSm l m — £ [

yxg - m+1<Ll<m+2(2m—{¢+1[f—m|[2m—L+1
Yyxg - m+3<L€<2m |[2m—L+1|{L—m|2m —L+1
(a)
r(e[Lm) z2 Tm41

yxy :0<L< 1 2—/ m

yxy:2<L<m l—2 m—f+1
yerg:m+1<l<m+2 l—2 —m—1
yxg - m+3<€<2m |[2m—L+3|L—m—1

(b)
r(e[Lm) Yo Ym To
yg$[+lioge§1 0 m—L| 41
Yoxpy1 2 0<m—1 l m—L| £+4+1
Yexor1 - m<L<m+1 m {—m|2m — ¢
Yoxop1 - m+2<L<2m|2m —L+ 1L —m|2m — ¢

(©)

r(e|Lm) z2 Tm41
yYoxpyr :0<L<1 1-7 m— £
Yoxpyr1 :2<L<m -1 m— £

Yoxor1 - m+1 <L <m+2 -1 {—m
Yexor1 -m+3<L<2m [2m—L+2|L—m

(d

Proof: Suppose, dimy,(A,) = 3. From Lemma 9, the graph
of A, have at least two vertices in both the cycles, so the
following possibilities are shown in the table below.

By symmetry of the graph other relations can be consid-
ered, they will have same kind of contradictions. Hence, it is
proved that, when n is even, then dim.(A,) = 4.

Remark 4: Let A, be a anti-prism graph withn > 5. If nis
even, then dim,,(A,) = dim.(A,).

Lemma 12:Let dim,,(A,;)) <5, when n is odd.
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TABLE 27. Contradictions for A,.

Resolving vertices Contradictions

{yo,y1, 2, xe 41}
z¢(0<t<n-—2)

r(yo|{yo, y1, T, Te41}
= r(yn—190l{vo, y1, ¢, Tt 41}
=(0,1,1,t+1)
For0 <t <1.
r(yol{yo,y1, ze, xe11}
= r(yn—120l{yo, y1, Tt, zt4+1}
=(0,1,¢t,t+ 1),
For2 <t<m—1.
r(zo[{yo,y1, Tt, Te41}
= r(Yn—120{yo, y1, Tt, Te4+1}
=(1,2,m,2m — t),
Form <t<m+ 1.
r(zol{yo,y1, Te, ze 41}
= 7(yn—170/{y0,y1, Tt, Tr+1}
=(1,2,2m —t+1,2m — t),
Form+4+2<t<n-—1.
T(Yn—190[{¥0, Ym, To, T2}
= r(yo{yo, Ym,z0, T2}
= (07m7172
{y07ym,107$m+1} T(ynflyOHyO»y'rnny:ﬁerl}
= r(yoz1{yo, Ym, 0, Tm+1}
= (0,m,1,m)
{y0, Ym, 22, Tm+1}| 7 (Yn—190{¥0, Ym, T2, Tmy1}
= T(yoﬂco\{yo, Ym, T2, wm+1}
= (0,m,2,m)

{y0,Ym, z0, z2}

TABLE 28. Representation of exterior vertices of R .

r(v[Lm) 20 Y1 Ym T2 Tm+2
z0:0<2<1 l 2—¢ m—4+1 3-—¢ m—+ L
zp:2<€<m / l m—{+1 l m — £+ 3]
zo:b=m—+1 2m — {2m — £ + 2 2 2m — £ + 2 2

zo:m+2<L0<2m—12m —2m — £+ 2l —m +12m — £+ 3| £—m

TABLE 29. (a) Representation of central vertices of Rp. Representation
of central vertices of Rp.

r(v[Lm) 20 Y1 Ym
ye:0<£<1 {41 1—-¢ m— 4L
yp:2<l<m l+1 -1 m— £
y:b=m—+1 2m — L+ 12m — £+ 1| 1

y-m+2<L<2m—112m—£€+1|2m —L+1|L—m
(a)
7(v|Lm) z2 Tm42
y:0<4<1 2—4 m4+£—1
y:2<€<m -1 m—L{+2

y:lb=m+1 2m — {41 1

Yy m+2<€<2m—1{2m—¥¢+2|{—m—1
(b)

Proof- Now n = 2m + 1, where m € Z+*. We let L, =
{vo, Ym, X0, X2, Xm+1}. In order to show that Ly represents
mixed metric generator for .A,. We present representation of
any vertices and edges of V(A,) with respect to Ly, in the
following tables.

Note that from the above mentioned tables, vertices and
edges do not show same representation with the resolving
set Ly,. This shows that Lm = {yq, yu, X0, X2, X+1} resolves
vertices and edges of (A,), which indicates that dim,,(A,) <
4. Conversely, we will examine that dim,,(A,) > 5.

Lemma 13: If n is odd then dim,,(A,;) > 5.
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TABLE 30. (a) Representation of interior vertices of Rp.
(b) Representation of interior vertices of Rp.

r(v[Lm) 20 Y1 Ym
T 0< (<1 2 27 m
zp:2<l<m {+1 {—1 m—{+1
zp:l=m+1 2m — 4+ 2|2m — £+ 1 1
zp:m+2<L<2m—112m —L+2{2m —L+2| L—m
(@)
7‘('U|Lm) 2 Tm+2
zp:0<£<1 2—/ m+£—2
zp:2<f<m {—2 m—£L+2
zp:l=m+1 2m — £ 1
g -m+2<L<2m—-1[(2m—L+2|L—m —2
(b)
TABLE 31. (a) Representation of exterior edges of R .
(b) Representation of exterior edges of Rp,.
r(e[Lm) 20 Y1 Ym
zezp41 0 <L <1 2 1 m— /£
Zezp41 1 2<€<m—1 2 0 m — £
zezgr1 - m<L<m+1 2m—{¢—1 m {—m+1
zezgr1  m+2<L<2m—-12m -4 —-12m —{L+1{ —m +1

(a)
r(e[Lm) T2 Tyn+2
zpzp41 : 0 <0< 1 2 m+ £
zpzp41 2 <0 <m—1 Y4 m—{+2
zpzp41 im0 <m+41 Y4 2
zpZp41 - m+2<L<2m—-1{2m —L+2| L—m
(b)

TABLE 32. (a) Representation of exterior and central edges of R,.
(Representation of exterior and central edges of Rj.)

r(e|Lm) 20 Y1 Ym
zeye :0< €< 1 l 1—7 m —/
zoye :2<L<m l -1 m —/

2pye :L=m+1 2m —€2m — £+ 1] 1
zeye :m+2<L<2m—1|12m —£|2m — L+ 1{L—m

(a)
r(e|Lm) x2 Tmi2
zeye :0< €< 1 2/ m+¢—1
zeye 12 < €< m -1 m—{+2
zeye :=m+1 -1 1
Zeye -m+2<L0<2m—1|12m -0+ 2| —m —1
(b)

Proof: When n is odd, then dim,,(A,)) > 5. Then a table is
shown.

Hence, it follows from the above table that there are no
mixed metric generator with four vertices for A,, by symme-
try of graphs other relations can be obtain which shows the
same kind of contradictions, so dim,,(A,) = 5.

Remark 4: If A, is an Anti-prim graph for n > 3, when n
is odd, then dim,,(A,) = dim.(A,).

IV. THE GRAPH OF R
The graph of R, is formed by the combination of anti-prism
and prism graph. It is defined in [2].

Mathematically the vertex and edges set are as follows,

VR =f{xe;ye520:£=0,...,n—1}
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TABLE 33. (a) Representation of central edges of Rp. (b) Representation

of central edges of Rp.

r(e]Lm) 20 Y1 Ym
ygyprl:()gégl {+1 0 m—{—1
Yeyoy1 2 <m—1 l4+1 | £—1 |m—£—1
Yoyor1 - m<L<m+1 2m — 4| m—1 {—m
Yeyoy1 - m+2<L<2m—-1[2m—L|2m —L| L—m
(a)
r(e|Lm) o Tm42
Vi1 0< I <1 1 mtl—1
Yoyr41 2L <m—1 -1 m—f+1
Yoyoy1 - m <L <m+1 -1 1
Yoyry1 - m+2<0<2m—-1(2m -0+ 1|l —m—1
(b)

TABLE 34. (a) Representation of central and interior edges of Rp.
(b) Representation of central and interior edges of R .
(c) Representation of central and interior edges of Rp.
(d) Representation of central and interior edges of Rp.

r(e]Lm) 20 Y1 Ym z2
yexg : 0<L<1 {+1 1—7¢ m—/ 22—/
yexg:2< < m L+1 -1 m — /4 -2
yexp: L=m+1 2m —fC+1|2m —£0+1 1 2m — £
yxg:m—+2<L<2m—1[2m—L+1|2m—L+1|[l—m|[2m — L+ 2
(a)
r(e|Lm) T2
yexg: 0 <L <1 m+0—2
yexp:2<L<m m—4L0+2
yexg: L =m+1 1
yexg:m—+2<L<2m—1{{—m—2

(b)

T(ele) Z0 Y1 Ym T2

Yooy :0<L<1 {+1 1-¢ m—4L 1-—/¢

Yexo41 :2<L<m {41 (-1 m—f (-1
Yoo :m+1<L0<2m—12m —L+12m —L+ 1| —m|[2m —(+ 1

(©)

r(e[Lm) T2
Yooy :0< L <1 m+{—1
Yoxoy1 :2<L<m m—0+1
Yooy -m+1<L<2m—-1f—m—1

(d)

and edge set

E(Rn) = {(x¢, xe41); (e, ¥e); (Xea1, ye);
Oes ye+1); Oes z0)s (zes ze41) 1€ =0, ...,n— 1}

In order to avoid any ambiguity, we say cycles induced by x¢,
ye and zp for £ = 0, ..., n — 1, the interior cycle, the centre
cycle and the exterior cycle respectively. The graph of R, is
shown below,
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TABLE 35. (a) Representation of interior edges of Rp. (b) Representation
of interior edges of R,.

r(e[Lm) 20 Y1 Ym
Tprep1 :0<2<1 2 1 m — £
Toxppq 2 << m—1 l+1 {—1 m—V4

Tprpgp; -m<Ll<m+1 2m—-—0+1 (-1 1
Toxpr1 - m+2<L<2m—12m —L+12m — L+ 1[{ —m
(@)

r(e[Lm) z2 Tm42
Toxpp1 1 0<L< 1 1—-7 m+L—2
Toxrpp1 :2<<m—1 -2 m—f+1
Toxpr1 - m<L<m+1 -2 m—f+1
Toxpp1 m+2<L<2m—-1|2m -0+ 1|l —m —2
(b)
TABLE 36. Contradictions for R .
Resolving vertices Contradictions

{20, yt, yt+1, 20}
(0 <t <n-—2) r(20{20, yt, yt+1,z0}
= r(zn—120/{20, yt, yt+1,T0}
= (0,t+1,t+2,2)

For0 <t < 1.
7(Yn—1{z0, yt, Yt+1, %0}
=r(Yn—12n—1/{20,Yt, yt+1, 0}
=(2,t+1,2m—t—2,1)
For2 <t<m—1.
r(yn—1{20,yt, yt+1, o}
=r(yn—12n—1/{z0,yt, yt+1,T0}
—(2.2m—t—1,2m—t—21)
Form <t<n-—2.

{z0, yo, xt
zip1}, (0 <t <n—2) r(yol{z0, Yo, Tt,Te+1}
= r(yn—1Y0l{20, Y0, Tt, Te4+1}
= (I,O,I,t-‘rl)
For0 <t <1.
r(yol{z0, Yt, Yyt+1, o}
= r(yozol{z0,¥t, yt+1, o}
= (1,0,t,t+1)

For2 <t<m—1.
r(yoxo|{z0,yt, yt+1, 20}
= r(yn—1Y0l{20, yt, yt+1, o}
=(1,0,2m —t,2m —t — 1)
Form <t <n-—2.

TABLE 37. (a) Representation of exterior vertices of R .
(b) Representation of exterior vertices of Rp.

r(v|Lm) 20 Ym o
zp:0<£<1 0 m—f+1 L+ 2
zp:2</l<m 3 m—0+1 042

zeom+1<L<m+22m—L+1|{—m+1|2m—~+2
ze-m+3<L€<2m [2m—{l+1|[{—m+1|2m—~L+2

(2)

r(v|Lm) z2 Tm+1
zp:0<£<1 33—/ m—£+2
zp:2<l<m [ m—f+2
ze-m4+1<L<m-+2 l —m+1
zeem+3<€<2m [2m—{0+4|{—m+1

(b)

Lemma 14 [12]: When n > 5, the standard metric dimen-
sion for R,,,is dimR,, = 3.

In the following theorem, we give the exact value of mixed
metric dimension of R,,.
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TABLE 38. (a) Representation of central vertices of Rp.
(b) Representation of central vertices of Rp.

r(v[Lm) 20 Ym xo x2
ye:0<£<1 (+1 m —{ {41 m—{—2
y:2<L<m l+1 m—£ {+1 -1

Yy -m+1<L<m+2|2m—L4+2[{—m|2m—{L+1 -1
yo . m+3<L<2m |[2m —L4+2[L—m|2m -0+ 1|2m —{+ 3

(2)

T(Ule) Tm+1
yr:0<£<1 m—{4+1
y:2<L€<m m—{4+1

y:m+1<L<m+2| £—m
yo:m—+3<L<2m {—m

(b)

TABLE 39. (a) Representation of interior vertices of Rp.
(b) Representation of interior vertices of Rp.

7(v|Lm) 20 Ym, 0
. 0<f<1 2 m— 1 7
zp:2<l<m 41 m—4{+1 l
zp:m+1<4l<m+2(2m—£L4+3] L—m 2m — 0+ 1
zg:m+3<L<2m [2m—L+3| L—m 2m — ¢+ 1
(a)

r(v[Lm) T2 Tm+1
ry:0<(<1 2—/ m
zp:2<Ll<m l—2 m—{+1

zp:m+1<Ll<m+2 l—2 {—m—1
zp:m+3<f€<mj 2m—L+3[{—m—1

(b)

TABLE 40. (a) Representation of exterior edges of Rp.
(b) Representation of exterior edges of R .

r(e|Lm) 20 YUm o
zpzp41 : 0 <0< 1 l m —/ {42
zpzp41 2 <0< m—1 0 m —/ {42

zpzpp1 i m < l<m+1 2m — Ll —m+1(2m — L+ 1
2ezgr1 -m+2<L<2m—-1[2m —L|[f—m+1|2m —L+1

2ezp41 : £ =2m 0 —m+1 2
(@)
r(e|Lm) T9 Tm+1
zpzp41 :0<L<1 2 m—f+1
zpZp41 12 <0< m—1 [ m—0+1
zpzpp1 :m < l<m+41 0 2
zpzp41 - m+2<0<2m—1|2m — L+ 3[{—m+1
zpZo41 £ =2m 3 —m+1
(b)

Theorem 3: Let R, be a graph, then for n > 5, then

dimy, R, = 5.
Proof: The proof of this theorem will follow the proof
of Lemma 15 to Lemma 17.
Lemma 15: In case of even n,dim,,(R;) < 5.
Proof: There are two possible cases.

Case 1: When n is even. Now n = 2m, where m € ZT.
We let Ly, = {20, Y1, Ym>» X2, Xm+2}. In order to show that
Ly, represents mixed metric generator for R,,. We present
representation of any vertices and edges of V(R,), and E(R;,)
with respect to Ly, in the following tables.
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TABLE 41. (a) Representation of exterior and central edges of R,.
(b) Representation of exterior and central edges of Rp.

r(e[Lm) 20 Ym o
Zgyg:(]gfgl 0 m — £ 41
Zgyg:?S@Sm 0 m — £ {41

zoye -m+1<l<m+2[2m—{C4+1|L—m|2m—{L+1
zoye :m+3<L<2m [2m—{L+1|L—m|2m —L+ 1

(@

r(e|Lm) T3 Tm41
zeye :0< £ <1 2—/ m—{+1
zeye 1 2<£€<m -1 m—f+1
zeye :m+1<l<m+2 -1 {—m
zeye -m+3<L<2m |2m—£+3| L—m
(b)

TABLE 42. (a) Representation of central edges of Rp,. (b) Representation
of central edges of Rp.

r(e[Lm) 20 Ym g
Yeyoy1 1 0< <1 {41 m—f—1| £+ 1
Yeyory1 2 <m—1 {4+ 1 m—f—1| £+ 1
Yeyoy1 :m < €<m-+1 2m—L+ 1| £—m |[2m — ¢
Yoyry1 - m+2<0<2m—-112m—L0+1] £—m [2m —/¢
Yeyot1 - £ =2m 1 {—m 1
(a)
r(e|Lm) Zo Tyn+1
Vel 0< (<1 T [m—¢
Yeyoy1 :2<L<m-—1 -1 m — £
Yeyoy1 -m<L<m-+1 -1 1
Yeyry1 - m+2<L<2m—-1[2m—L+2|f—m
Yeyot1 - L =2m 2 {—m
(b)

TABLE 43. (a) Representation of central and interior edges of Rp.
(b) Representation of central and interior edges of Rp.
(c) Representation of central and interior edges of Rp.
(d) Representation of central and interior edges of R,.

r(e|Lm) 20 Ym Z0
yxy :0< L <1 /41 m— £ I3
yexp:2<€<m /41 m— £ I3
yxg . m+1<l<m+22m—L0+2{L—m|[2m—L+1
yexrg:m—+3<€<2m |2m—{4+2|{—m|2m —L+1
(a)
r(e[Lm) 2 Tm+1
yoxy :0<L< 1 2—/ m
Yy :2<L<m l—2 m—f+1

Yyoxg -m+1<Ll<m-+2 l—2 {—m—1
yxg - m+3<€<2m |[2m—L4+3|L—m—1

(b)
r(e|Lm) 20 Ym T
Yexp41 :0< <1 {4+ 1 m—4L| £+1
Yoxop1 :2<L<m—1 {4+ 1 m—4L| £+1
Yexor1 - m<L<m+1 m+ 1 L—m|2m — /¢
Yoxygr1 - m+2<0<2m|2m —L+2({{—m|2m —/{
(©
r(e|Lm) xo T+l
Yexpyr :0< <1 1—2¢ m—
Yooy :2<l<m—1 -1 m— 0
Yoxor1 :m<l<m+1 -1 {—m
Yoxor1 - m+2<L<2m|2m —L+ 2[4 —m
(d)

As it can be seen from the above tables there are no
vertices and edges having the same representation with Ly,
so dim, R, <5.
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TABLE 44. (a) Representation of interior edges of R . (b) Representation
of interior edges of R,.

r(e[Lm) 20 Ym o 2
Toxpp1 :0<L<1 2 m—¥0 L 11—/
Toxpp1 2 <l<m—1 l4+1 |m—¢ ¢ {—2
Toxpr; - m<L<m+1| m+41 1 2m—4¢ (-2

oo - m+2 <L 2mP2m — L4 20 —m2m — £2m — £ 4 2
(@)

r(e|Lm) Tm41
Toxp41 :0<L<1 m— 0
Texpp1 :2<f<m—-1| m—{
Torpr :m<L<m+1 0
ToTpr1 :m+2<L<2ml—m—1

(b)

Lemma 16: If n is even then dim,,(R,) > 5.

Proof: In case of even n, then dim,,(R,) > 5. We let
dim,,(R,) = 4. Then a contradiction table is shown below.

Hence, it can be seen clearly seen from the table that
dim, R, > 5. So from the above lemmas dim,,(R,) = 5.

Case 2: When n is odd. Now we let n = 2m + 1, where
m € ZT. Welet Ly, = {20, Ym, X0, X2, Xm1}. In order to show
that Ly, represents mixed metric generator for R,,. We present
representation of any vertices and edges of R,,.

From the above mentioned tables, there are no two ver-
tices and edges with same mixed metric dimension for R,,.
So dim,y(R,;) < 5. As shown before the contradiction table
for even n, same kind of contradiction occur in case of odd n,
so dim,,(R,) > 5. Hence, it is proved that dim,,(R,) = 5.

Problem 2: Since mixed metric generator is a metric gen-
erator as well as edge metric generator. So a natural question
arise in case of the graph of R,,. As we know from Lemma 14,
the metric dimension is 3. In case of edge metric dimension,
is the minimum edge metric dimension is equal to mixed
metric dimension for R,,?.

V. CONCLUSION

In this paper, we have found the exact values of the mixed
metric dimension of three families of graphs generated from
cycle graphs, P, A, and R,,. We conclude that for P, when
n is even mixed metric dimension equals the edge and metric
dimension. For A,, n is even and odd; the mixed metric
dimension equals the edge metric dimension. Moreover, both
P,, and A, has bounded mixed metric dimension while for
R, it has a constant mixed metric dimension.

The standard and edge metric dimensions have been stud-
ied for various well know families of graphs Petersen graphs,
Circulant graphs, and many families of Convex polytopes,
especially the standard metric dimension. The future research
can be thought of as finding the mixed metric dimension for
these particular families of graphs. Besides this, it would be
interesting to know for which families of graphs dim,, =
dim, = dim.
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