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ABSTRACT Automatic and reliable segmentation of the pancreas is an important but difficult task for vari-
ous clinical applications, such as pancreatic cancer radiotherapy and computer-aided diagnosis (CAD). The
main challenges for accurate CT pancreas segmentation lie in two aspects: (1) large shape variation across
different patients, and (2) low contrast and blurring around the pancreas boundary. In this paper, we propose
a two-stage, ensemble-based fully convolutional neural network (FCN) to solve the challenging pancreas
segmentation problem in CT images. First, candidate region generation is performed by classifying patches
generated by superpixels. Second, five FCNs based on the U-Net architecture are trained with different
objective functions. For each network, 2.5D slices are used as the input to provide 3D image information
complementarily without the need for computationally expensive 3D convolutions. Then, an ensemblemodel
is utilized to combine the five output segmentation maps and achieve the final segmentation. The proposed
method is extensively evaluated on a publicly available dataset of 82 manually segmented CT volumes via
4-fold cross-validation. Experimental results show its superior performance compared with several state-of-
the-art methods with a Dice coefficient of 84.10±4.91% and Jaccard coefficient of 72.86±6.89%.

INDEX TERMS Superpixel, ResNet, fully convolutional neural networks, ensemble learning, pancreas
segmentation.

I. INTRODUCTION
The pancreas, as an important organ of the human body, has
internal and external secretion functions and is susceptible
to various diseases. Pancreatic cancer, which is one of the
most prevalent cancers in the world, is a devastating malig-
nant disease with a median survival of 3–6 months and a
5-year survival rate of less than 5% [1]. Contrast-enhanced
CT is now the worldwide imaging modality of choice for
pancreatic disease evaluation and may be the best modal-
ity of the resectability of pancreatic cancer [1]. The seg-
mentation of pancreas in CT images can support clinical
workflows, including pancreas cancer diagnosis, treatment
planning, and surgical assistance, in multiple domains [2].
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Therefore, a robust, accurate, and automatic segmentation
method for the pancreas is worth exploring.

However, automatic pancreas segmentation remains a chal-
lenge due to the following reasons: 1) low soft tissue contrast
in CT images. As shown in Fig. 1 (a) and (b), the contrast
among the pancreas and surrounding organs, such as liver,
stomach, and spleen, is remarkably low, and the intensities of
voxels in the pancreas and surrounding organs are in similar
ranges, making it difficult to distinguish the organ bound-
aries. Moreover, the similarity in appearance and texture
patterns of the pancreas and neighboring tissues makes their
identification difficult. 2) Large anatomical variations. The
pancreas exhibits high anatomical variability in terms of size
and its location in the abdominal cavity of patients [3]–[6].
Furthermore, the pancreas is a deformable soft tissue. Thus,
the shape and appearance of the pancreas have large varia-
tions across different individuals, as shown in Fig. 1.
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FIGURE 1. (a) Examples of variations in appearance, shape, size and
location of the pancreas as seen in contrast-enhanced CT. Manual ground
truth annotations are shown in red. (b) Intensity distributions of pancreas
and the surrounding organs like liver, stomach and spleen.

Recently, learning-based methods have achieved sat-
isfactory performance in pancreas segmentation [6]–[8].
Erdt et al. [6] built a pancreas tissue classifier incorporating
spatial relationships among the pancreas, surrounding organs,
vessels, and meaningful texture features. Classification was
then used to guide a constrained statistical shape model
to fit the data. Cross-validation on 40 datasets obtained
a Dice coefficient of 61.2%. Farag et al. [7] proposed
a fully automatic bottom-up method, which differentiates
the pancreas from other elements by classifying superpixels
with a two-level cascade of supervised random forests. The
evaluation of the proposed approach was conducted on CT
volumes of 80 patients from a publicly available dataset in
6-fold cross-validation with a Dice coefficient of 70.7% and
Jaccard coefficient (JC) of 57.9%.

One main limitation of the aforementioned learning-based
methods is the need to predefine the features for a specific
learning model. In this case, the distinctiveness of features
may considerably influence the learning accuracy. To address
this limitation, deep learning methods have been widely used,
in which features can be learned automatically and effec-
tively through convolutional neural networks (CNNs [9])
[10]-[16]. To segment the pancreas, Roth et al. [13] pro-
posed a coarse-to-fine classifier on image patches and regions
via CNN and achieved a Dice coefficient of 71.8 ± 10.5%
in testing. The authors further improved the segmentation
(Dice coefficient of 81.27 ± 6.27%) by introducing pan-
creas localization and 3D information [15]. Zhou et al. [16]
designed a fixed-point model with a predicted segmentation
mask to shrink the input region and update the results itera-
tively. 4-fold cross-validation was performed on the datasets
of 82 patients with CT scans and obtained a Dice coefficient
of 82.37%. Various deep learning-based methods has been
proposed to overcome the challenges, but the variable shape,
size, and location in the abdomen of the pancreas still limit
the segmentation accuracy of these deep learning methods.

In this paper, to segment the pancreas accurately in CT
images, we propose an ensemble-basedmultiloss fully convo-
lutional neural network (FCN). Fig. 2 illustrates the flowchart
of the proposed method. Given that the CT image covers a
large region of the human body but the target (pancreas) is
relatively small, a two-stage framework is further designed
to segment the pancreas robustly from the coarse level to the
fine level. The first stage presents the dense labeling of local
image patches generated by superpixels via residual neural
network (ResNet). This labeling is designed for the pancreas
region detection of the entire CT image. Section II-A pro-
vides the details of this stage. The second stage involves
multiloss FCNs, which are designed for accurate pancreas
segmentation on the basis of the detected regions from the
first stage. In this stage, multiloss FCNs initially learn the
probability maps by separately using five different loss func-
tions. Section II-B elaborates the details of this stage. Finally,
an averaging-based ensemble algorithm is proposed to inte-
grate these probability maps from the second stage to produce
a final segmentation result. Section II-C describes the details
of this part.

The main contributions of this study are summarized as
follows:

1) We present a strategy for generating candidate regions
by classifying patches generated by superpixels. This
approach not only obtains increased location accuracy but
also remarkably improves the segmentation speed.

2) We ensemble multiple same-architecture networks with
different loss functions to help enhance the accuracy and
robustness of the conventional deep network for this chal-
lenging segmentation task. To the best of our knowledge, this
is the first work to use different loss functions for pancreas
segmentation.

3) We demonstrate that our proposed method outperforms
state-of-the-art methods on the public dataset for pancreas
segmentation.

The remainder of this paper is organized as follows. The
technical motivation and details of our proposed approach are
described in Section II. The experiments and results are pre-
sented in Section III and IV. The discussion and conclusions
are drawn in Section V.

II. METHOD
A. PANCREAS LOCATION
The first stage aims to detect the target organ location in CT
image effectively and then provide the region proposal of this
organ (resulting in a bounding box) to the second stage for
segmentation. This approach helps reduce the input candidate
space, which not only efficiently helps our architecture to
learn the differences between the pancreas and surrounding
anatomy but also reduces the occupied graphics memory and
improves the segmentation speed.

Regression is a widely used method for object detection
and localization [17]-[19]. However, a local classification-
based approach is more robust than an approach using global
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FIGURE 2. The flowchart of the proposed method. First, candidate region generation via dense labeling of local image patches generated by
superpixels via residual neural network. Second, accurate pancreas segmentation with multiloss FCNs. Finally, averaging-based ensemble to
get the final result.

FIGURE 3. The detailed architecture of classification network.

context due to the high anatomical variability of the pan-
creas inside the abdomen [20]. In this work, we use super-
pixel [21]-based over-segmentation to divide the images into
small perceptually meaningful regions. The superpixel-based
approach has the following advantages: (1) the superpixel
being an irregular patch, the pixels in which demonstrate sim-
ilarities in color, texture, and intensity, (2) computationally
fast, and (3) ease of use.

We only need to determin which superpixels belong to the
pancreas and then specify the bounding box on the basis of
the labeled superpixels. We use ResNet to classify the central
pixels of superpixel patches. If the central pixel is labeled
as the pancreas, then we classify the entire superpixel patch
as the pancreas. Our strategy for classifying central pixels
is presented as follows: We extract different scale image
patches centered on the superpixel centers, classify them

into pancreas and nonpancreas via ResNet, and ensemble the
classification results of different scale image patches to obtain
the final label of the central pixel. In our experiment, we select
three scales (64, 48, and 32) of the patch size for training.

ResNet [22] permanently utilizes shortcut connections
between shallow and deep layers to control and adjust
the training error rate. We select a simple architecture to
overcome the limitations in training time and the size of
input patches. Fig. 3 shows that a total of 13 identity
and 3 convolution blocks exist. Each identity block has
two convolutional layers with a 3 × 3 convolution ker-
nel size, which increases the width of residual networks.
Every convolution block has three convolutional layers
with one 3 × 3 convolution surrounded by dimensionality-
reducing and dimensionality-expanding 1 × 1 convolution
layers. Batch normalization (BN) [23] and rectified linear
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units (ReLUs) are adopted after every convolutional layer.
The former ensures that the network activation follows a unit
Gaussian distribution after each update to prevent internal
covariate migration and overfitting.

The localization of superpixel-labeled pancreas will pro-
vide us with the initial bounding box region of the pancreas
while removing a large amount of background in the image.
To ensure 100% recall, the bounding box is then enlarged
by adding additional pixels of the margin. Fig. 4 presents
the examples of superpixel segmentation, patch labeling, and
bounding box generation.

FIGURE 4. Examples of superpixel segmentation, patch labelling and
bounding box generation. (a)(e) depicts two slices with pancreas
segmentation map in red. (b)(f) depicts over-segmentation results with
the contours of each superpixel region superimposed on the image. Red
stars in (c)(g) show the centers of superpixels which are used to extract
patches next.(d)(h) show the results of patch labelling and bounding box
generation. Light yellow regions are the patches belong to pancreas. Red
rectangular is the generated bounding box from labeled result and blue
rectangular is the bounding box after enlarged.

B. FINE-SEGMENTATION BY MULTI-LOSS FCNs
On the basis of the bounding box generated in the first
stage, we ensemble multiple same-architecture deep net-
works with different loss functions to achieve accurate and
robust segmentation of pancreas. Moreover, to enhance the
segmentation without remarkably increasing the computa-
tional burden, we use 2.5D context input.

1) NETWORK ARCHITECTURE
In Fig. 5, we provide the schematic of our variant U-Net [24]
model, which consists of an encoder path that captures global
features and a decoder path that enables precise segmentation.
MobileNet [25] architecture based on depthwise separable
convolution is applied in the encoder path. This architecture is
an extreme case of the inception module, wherein a separate
spatial convolution is applied for each channel and denoted
as depthwise convolutions. Then, a 1 × 1 convolution with
all the channels is used to merge the output, which is denoted
as the pointwise convolutions. On the one hand, separation
in depthwise and pointwise convolutions is used to improve
computational efficiency. On the other hand, it improves
accuracy as the cross channel and spatial correlation mapping
are learned separately.

The following decoder path includes operations arranged
in five increasing resolution level. The blue blocks function as
the convolution units with the following layers: (1) a convo-
lution layer with a learned kernel, (2) batch normalization to
accelerate robust gradient propagation and reduce overfitting,
and (3) a nonlinear ReLU represents the nonlinear functions.
Mathematically, the convolutional units are denoted as

c(X ,W , β) = r(b((X ∗W ), β)), (1)

where W is a convolutional kernel, batch normalization
b(X , β) transforms the mean of each channel to 0 and the
variance to a learned per-channel scale parameter β, and the
ReLU r(X ) = max(0,X ) induces non-linearity. The yellow
blocks perform 2 ×2 upsampling. At each resolution level,
a skip connection is included to fuse the upsampled feature
maps with the same-level feature maps obtained from the
previous encoder path and complementarily combine global
contextual information with spatial details for the precise
detection and location of pancreas. The final green block
performs 1 × 1 convolution and sigmoid activation to cal-
culate the pixel-wise pancreas probability map from highly
dimensional feature maps. Similar to the U-Net, the concate-
nation operation is adopted as a combination strategy to fuse
of feature maps with the same resolution in both paths.

2) 2.5D CONTEXT INPUT
Specifically, the pancreas region proposals extracted from
consecutive slices are the inputs of the network instead of
the 3D inputs, and the output is the corresponding label
region proposal of the middle slice. In this way, the adequate
neighborhood information of the 3D image can be efficiently
leveraged to train the segmentation model while avoiding the
heavy burden of 3D computing.

3) MULTI-LOSS
We use five different loss functions to train our network. Dice
loss [26] is a common used semantic segmentation loss func-
tion on the basis of Dice coefficient, and the network trained
with dice loss function as denoted as D-Net. n represents the
number of pixels in the considered image or mini-batch. Let
Y = {y1, y2, . . . , yn} be the ground-truth segmentation prob-

abilistic maps over n pixels and
∧

Y = {
∧
y1,
∧
y2, . . . ,

∧
yn} be the

predicted probabilistic maps over n pixels. In this study, s
was set to 1 and used to ensure the loss function stability
by avoiding the division by 0. The dice loss function can be
expressed as

loss(dice) = −
2

∑N
n=1 yi·

∧
yi + s∑N

n=1 yi +
∑N

n=1
∧
yi+s

. (2)

Focal loss [27] introduces a tunable focusing parameter γ
to reshape the loss function into down-weight easy examples
and focus training on hard negatives; a balancing parameter α
is used to balance the importance of positive/negative exam-
ples. The network trained with focal loss function is denoted
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FIGURE 5. Architecture of segmentation network based on U-Net.

as F-Net. In our experiments, we set α and γ to 0.6 and 2,
respectively. The focal loss function can be expressed as:

L(each−element) =

{
−α(1−

∧
yi)γ log(

∧
yi) yi = 1

−(1− α)
∧
yi
γ

log(1−
∧
yi) yi = 0,

(3)

loss(focal) =
∑n

i=1
L(each−element). (4)

Jaccard distance loss is derived from common evaluation
measures for the semantic segmentation of the Jaccard Coef-
ficient (JC) [28], [29], which measures the intersection over
the union of the labeled segments for each class and obtains
the average. The network trained with Jaccard distance loss
function is denoted as J-Net. The Jaccard distance loss func-
tion can be expressed as:

loss(Jaccard) = −

∑N
n=1 yi ·

∧
yi+s∑N

n=1 yi+
∑N

n=1
∧
yi−

∑N
n=1 yi ·

∧
yi+s

. (5)

We use a simpler strategy as the complementary policy,
wherein a class-balancing weight is introduced on a per-pixel
term basis to offset the imbalance between positive/negative
examples. The network trained with class-balanced cross-
entropy loss function is denoted as C-Net and is expressed
as follows.

loss = −
∑n

i=1
[β · yi log(

∧
yi)+(1−β) · (1−y) log(1−

∧
yi)].

(6)

where β = n−/n and 1 − β = n+/n. n− and n+ denote the
number of negative and positive pixels, respectively.

A commonly used and fundamental loss function binary
cross-entropy loss [11] is also adopted and expressed as
follows:

loss(BCE)=−
∑n

i=1
[yi log(

∧
yi)+(1−yi) log(1−

∧
yi)]. (7)

The network trained with this loss is denoted as B-Net.

C. AVERAGING-BASED ENSEMBLE FCNS
Ensemble techniques are helpful in reducing overfitting prob-
lems in the training data of complex models [30], [31].

This type of approach combines multiple learning models
to obtain better predictive performance than any of the con-
stituent learning algorithm when used alone. The use of
ensemble models includes two aspects: 1) networks trained
with different loss functions can learn different attributes of
the training data during batch learning; thus, their ensemble
can boost the segmentation results. 2) Bias–variance trade-
off. Bias and variance are critical for determining the behavior
of prediction models and understanding the occurrence of
overfitting and underfitting. This study aims to lower the
model variance by averaging the model output. An FCN with
millions of parameters and overtrained on different boot-
strapped/subsampled training sets can qualify for unbiased
and highly variant models.

As shown in Fig. 2, five FCN models with different loss
functions are trained with random parameter initialization
and shuffle data in the batch learning process. This training
creates sufficient diversity in the trained models to allow
the averaged predictions of the ensemble to outperform the
individual models significantly. We attempt to add diversity
to the models by varying the sets of data that each model sees,
but our results do not change significantly. Each FCN model
generates a probability segmentation map when a test image
is given. Then, sample averaging will be applied to transform
five score maps into a binary segmentation map.

III. EXPERIMENTS
A. DATASET
The National Institutes of Health Clinical Center performed
82 abdominal contrast-enhanced 3D CT scans with a resolu-
tion of 512 × 512 pixels, varying pixel sizes, and slice thick-
ness between 1.5 mm and 2.5 mm. Such scans were acquired
on Philips and Siemens MDCT scanners. Our experiments
were conducted on 4-fold cross-validation, and the dataset
was randomly grouped into four groups of 20, 20, 21, and 21.
The division was performed at the patient level. Hence, all
scans of a given patient were either in the training or test set.
Image intensities were rescaled within [0, . . ., 255] using a
soft-tissue window of [−110,190] HU to increase the contrast
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TABLE 1. The average (±standard deviation) performance by different number of input channels.

TABLE 2. The average (±standard deviation) performance by different combination strategies.

of soft tissues and show additional details of the abdominal
organs.

B. EVALUATION METRICS
To measure segmentation performance, we used four dif-
ferent evaluation metrics, namely, the Dice coefficient, JC,
recall, and precision. The Dice coefficient interprets the over-
lap between sample sets, and the JC computes the similarities
between the segmentation result and the reference standard.
These metrics are defined as follows:

(a) Dice coefficient: 2(|A∩B|) / (|A| + |B|).
(b) JC: (|A∩B|) / (|A∪B|), where A and B refer to the

algorithm output and manual ground-truth pancreas segmen-
tation, respectively.

(c) Recall: TP / (TP+FN).
(d) Precision: TP / (TP+FP), where TP and FP indicate the
numbers of true and false positives, respectively, and FN

denotes the number of false negatives.

C. IMPLEMENTATION DETAILS
Our method was implemented with Python based on the
Keras package[32] with the TensorFlow library[33] as the
backend. During training, the probability of each pixel
belonging to the pancreas was computed with a sigmoid
classifier. The weights of the network were optimized via
RMSprop optimizer with a mini-batch size of 16. The learn-
ing rate was set to 0.001 with a momentum coefficient
of 0.9 and reduced by a factor of 0.2 after five consecutive
epochs without improving the validation loss. During seg-
mentation, training takes approximately 5 hours on a single
NVIDIA Tian X and the testing time per patient is around
1.99 seconds.

IV. SEGMENTATION RESULTS
A. EVALUATION ON 2.5D CONTEXT INFORMATION
In our method, we use the sequential slices as the input to
predict the segmentation map of the middle slice. Table 1 lists

the influence of the 2.5D context information in Stage 2.
As shown in the table, the networks with the 2.5D context
information obtain better results compared with 2D input in
terms of Dice coefficient, JC and precision. These findings
prove that the use of neighbor slices information improves the
accuracy of distinguishing the difference between pancreas
and nonpancreas tissues. This differentiation is important for
segmenting the pancreas. Meanwhile, Table 1 shows that
additional slices are used as the input, but the results are not
sensitive to the number of input slices when it reaches three.
Moreover, using additional input slices makes the network
computationally expensive. Thus, we finally select three as
the number of 2.5 D input slices. This solution may be impor-
tant for deep learning methods applied to medical images
without adequate training samples.

B. EVALUATION ON ENSEMBLE METHOD
We further evaluate our ensemble model to show its effec-
tiveness. Three of the most common combination strategies
in ensemble learning are compared. The first is sample aver-
aging. The second and third strategies are majority voting
andmultiresponse linear regression (MLR) [30], respectively.
MLR is a basic method of stacking which takes the output
class probability of the basic classifier as the input attributes.
From Table 2, we have following observations: First, sample
averaging gets the best result compared with majority voting
and MLR in terms of the three evaluation criteria (i.e., Dice
coefficient, JC and recall). Second, MLR obtains higher stan-
dard deviations than sample averaging and majority voting.

As a main contribution of this study, the proposed ensem-
ble method adopts five loss functions to obtain five different
networks and combines the advantage of these networks.
To demonstrate its effectiveness, Fig. 6 shows the four evalu-
ation metrics of the different networks and ensemble model.
As the sample averaging of the five networks, the ensemble
model effectively improves the overall segmentation perfor-
mance and further refines the average Dice coefficient (from
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TABLE 3. Performance of different methods. k means the folds of the cross validation. MALF means the ‘‘Multi-Atlas and Label Fusion’’.

FIGURE 6. Performance of different networks and ensemble model in
terms of Dice, Jaccard Coefficient, Precision and Recall. Dotted line in the
box is the mean and standard deviation, real line is means the median
values.

81.92±6.53% generated by F-Net, 80.05±7.46% generated
by B-Net, 81.94±6.47% generated by J-Net, 79.73±5.53%
generated by C-Net and 82.86±5.14% generated by D-Net
to 84.10±4.91% generated by ensemble modal). Specifi-
cally, the proposed model makes an adjustment in JC (from
69.87±8.73%, 67.33±9.55%, 69.88±8.61%, 66.63±7.35%,
71.04±7.08% to 72.86±6.89%). Fig. 6 implies that the com-
bination of several deep learning techniques into one pre-
dictive model does improve the segmentation performance
and decrease variance. A possible reason could be that the
models are independent of one another, whereas individual
models have high variance. We have performed McNemar’s
test to compare the segmentation results achieved by five net-
works and ensemble model. Our test obtains small (<0.001)
p-values, thereby suggesting that the performance difference
among the six models is significant.

C. VISUAL RESULTS
As a qualitative illustration, six automatic segmentations
are produced by F-Net, J-Net, B-Net, C-Net, D-Net, and
the ensemble model and compared in Fig. 7. Each column
in the figure demonstrates the results for a specific sub-
ject. We can observe that the ensemble model obtains more

FIGURE 7. Typical pancreas segmentation results of the same image:
(a) Original input image to the network, (b) the output of F-Net, (c) the
output of B-Net, (d) the output of J-Net, (e) the output of C-Net, (f) the
output of D-Net and (g) the output of Ensemble model. (h) The manual
ground-truth segmentations. Green line is the boundary where the output
probability value is processed through the 0.5 threshold.

accurate segmentation than the five other networks. All these
results demonstrate the effectiveness of our proposedmethod.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
Table 3 compares the performance of our method with
certain state-of-the-art methods. Based on 80 and 82 CT
datasets, our results are comparable and substantially better
than those of recent studies [4]–[8], [12]–[16]. For exam-
ple, the Dice coefficient of 84.10±4.91% is obtained (4-fold
CV), versus 70.7±13.0% in [7] (6-fold CV), 71.8±10.7%
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in [13], 78.01±8.2% in [14] and 81.27±6.27% in [15].
Table 3 demonstrates the superiority of deep learning-based
methods over the methods based on atlas and the powerful
capabilities of deep CNN in feature learning and classifica-
tion.

V. DISCUSSION AND CONCLUSION
In this paper, we present a novel segmentation strategy for
CT pancreas images. The key points of this novel approach
includes three folds: (1) coarse pancreas location via super-
pixel over-segmentation and classification; (2) an ensem-
ble model combined with five FCNs, which were trained
with different objective functions; (3) 2.5D image input.
The proposed method is extensively evaluated on the dataset
containing 82 pancreas CT images. In comparison with sev-
eral state-of-the-art CT pancreas segmentation methods, our
method demonstrates superior performance in segmentation
accuracy.

The main component of our method is the combination of
five basic CNNs into one predictive model. This approach
can address the challenges of increasing the robustness of
the feature representation on the large appearance variations
of the pancreas. During our experiments, we prove that the
ensemble model notably improves the accuracy of segmen-
tation and obtains low variance. Empirically, ensembles tend
to yield improved results when a significant diversity exists
among the submodels[34]. We calculate the measure of the
pairwise diversity matrix called the double-fault measure for
the five networks and obtain the averaged value of 0.965,
which indicates some diversity. Moreover, we train and test
the networks in 2.5D slice-by-slice. This strategy can not only
effectively utilize context information, but also reduce the
heavy burden of using 3D input.

Coarse location of abdominal organs plays a meaningful
role in the automatic segmentation of abdominal organs.
For example, Dice coefficient of 56% was obtained with
the original images in this experiment directly segmented
via 2D U-Net. It can not only improve the accuracy and
robustness of segmentation but also reduce the computational
cost and time. Currently, candidate region generation and
coarse segmentation is a useful pre-segmentation step for
abdomen organs segmentation [26], [35]. However, the com-
mon methods are volumetric image pre-segmentation based
on deep convolutional neural networks, which are high com-
putational and memory cost. Meanwhile, the downsampling
and upsampling in the pre-segmentation process will lose lots
of image details, especially in axial direction. In our method,
we use superpixel-based over-segmentation and classification
to generate the candidate regions. The experimental results
demonstrate the effectiveness of this simple approach.

The proposed method is limited by its two separate stages
for detection and segmentation, which may lead to slow
training and testing. In the future, research will focus on
transforming the method to an end-to-end learning frame-
work. The investigation of additional diverse classifiers, such
as different architecture networks and ensemble strategies

that take the intensity images and dissimilarity between basic
classifiers’ outputs into considerations will be our work next
too. At the same time, some failed segmentations still occur
because of the inconstant position. Hence, the spatial rela-
tionships of splenic, portal and superior mesenteric veins with
pancreas will be considered in the future work.
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