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ABSTRACT Quadcopter is an important way for the human to explore the physical world.
The brain-computer interface (BCI) technology is used to control the quadcopter flight in order to help
disabled persons communicate with the external world freely. In this study, a quadcopter control system
using a hybrid BCI based on off-line optimization and enhanced human-machine interaction was designed
to control the quadcopter flight in 3D physical space. The proposed system implemented the control of
quadcopter moving up/down, forward/backward, left/right by six different SSVEP, and turning left/right
by left-hand and right-hand motor imagery. Meanwhile, the optimization of the control system and the
human-machine interaction enhancement improved practicability in real-time use. Five subjects participated
in an on-line experiment to control the quadcopter flight in real-time. The average classification accuracy
of EEG-based commands in the on-line experiment was 87.09±2.82% and information transfer rate (ITR)
was 0.857±0.085 bits/min. The results demonstrated the feasibility of multidirectional control of quadcopter
flight in 3D space by using hybrid BCI technology and revealed the practicality and operability of the hybrid
BCI control system based on off-line optimization and human-machine interaction enhancement.

INDEX TERMS Quadcopter control system, motor imagery, steady-state visual evoked potential, off-line
optimization, human-machine interaction.

I. INTRODUCTION
In recent years, the brain-computer interface (BCI), as
technology in connecting the human brain with the exter-
nal world, has been widely concerned due to the increasing
needs and fast development of the human-machine inter-
face. The BCI is aimed at assisting persons with severe
motor function disability to communicate with the external
world freely [1]. Meanwhile, the BCI has been applied to
human-computer interaction, virtual reality and human-robot
coordination [2]–[4]. The quadcopter, as an important way
for the human to explore the physical world, becomes an
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emerging application in human daily life, which has the
advantage of multi-degree of freedom(MDOF) and simple
operation tomeet the demands of multidirectional and contin-
uous control. Therefore the BCI and quadcopter control can
be combined to explore the external world directly with users’
intention [5].

The quadcopter control system based on BCI is mainly
divided into SSVEP-based BCI and motor imagery-based
BCI. In the applications of SSVEP-based BCI, Lenis et al.
proposed an asynchronous system, which accomplished the
control of quadcopter in 3D space by six different frequen-
cies visual stimuli, and the detection of the idle state was
introduced in this control system to avoid the fatigue of
users [6]. Meng et al. achieved the control of quadcopter
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flight using visual stimuli with four different frequencies
by a head-mounted device where all stimuli and feedbacks
were presented [7]. The flexible frequencies of visual stimuli
generated by the sinusoidal modulation method can ensure
a large number of commands in quadcopter control [8].
However, there is a weak correlation between SSVEP and
users’ intention, and the continuous visual stimuli will make
users fatigue and discomfort [9]. In the applications of motor
imagery-based BCI, Lafleur et al. controlled the vertical
and rotated flight of quadcopter by motor imagery while
the quadcopter went forward with a constant velocity [10].
Shi et al. constructed a semi-autonomous quadcopter sys-
tem that was designed to select the feasible directions from
the motor imagery-based navigation system to control the
quadcopter flight [11]. The motor imagery-based BCI usu-
ally consists of left-hand, right-hand, feet, leg and tongue
tasks [12], [13]. The limited number of imagery tasks will
restrict the degree of freedom (DOF) in quadcopter control.
However, the motor imagery-based BCI maintains a more
direct correlation between EEG signals and users’ intention
than SSVEP-based BCI [14]. In addition, the hybrid BCI
based on EEG, EMG, and EOG were also used in quadcopter
control [15], [16]. Kim et al. accomplished the eight angles of
quadcopter flight control by the combination of EEG signals
and eye-tracking [17]. Khan et al. proposed a control system
based on eight commands by using EEG signals and near-
infrared spectral signals [18]. The hybrid BCI based on the
multi-signals was similar to the SSVEP-based BCI which
lacks the correlation between signals and users’ intentions
[19]. Some studies have demonstrated the feasibility of quad-
copter control by combining SSVEP-based BCI and motor
imagery-based BCI in the physical world. Duan et al imple-
mented the quadcopter control using multi-modal BCI in the
physical environment [20], [21]. However, this quadcopter
control system would cause fatigue due to using the eye-
blinking to distinguish SSVEP andmotor imagerymodalities.
Besides that, lacking analysis of the off-line experiment could
not offer optimal configurations to control system which may
reduce the performance of the system in real-time.

To solve the challenges mentioned above, a quadcopter
control system using a hybrid BCI based on off-line optimiza-
tion and enhanced human-machine interaction was designed
to control the quadcopter flight in 3D physical space. On one
hand, off-line optimization was performed to choose the opti-
mal number of channels and recorded data length used in
on-line experiments. On the other hand, the human-machine
interaction was enhanced by providing feedback information,
switching of SSVEP and MI base on the eyes-closed state,
and LCD-cued SSVEP and MI.

II. METHODS AND EXPERIMENTS
A. QUADCOPTER CONTROL SYSTEM
BASED ON HYBRID BCI
In this study, the hybrid BCI technology was used to control
the quadcopter flight with multiple commands in 3D physical
space. The architecture of quadcopter control system based

on the hybrid BCI is shown in Figure 1. Firstly, the users
gazed at the visual stimulus corresponding to the intentional
control command on the stimulator interface. The data acqui-
sition device recorded the scalp EEG and sent it to the data
processor. Then the scalp EEG data was processed by the data
processor and translated into a control command. The posi-
tion information of the quadcopter and the system control flag
were updated according to the control command. After the
android controller received the control command, the quad-
copter was controlled via Wi-Fi. Meanwhile, the first-view
images captured by the camera of quadcopter were sent back
to the data processor. Finally, the feedback information con-
tained first-view images and the quadcopter position informa-
tion was shown on the visual feedback interface. The system
control flag was sent to the stimulator interface to switch the
sub-control interfaces.

1) STIMULATOR INTERFACE
The stimulator interface is shown in Figure 2. The sub-
control interfaces of stimulators consisted of initialization
interface, control interface with SSVEP-based visual stim-
ulations and control interface with MI-based visual cues.
The frequencies of visual stimuli were chosen from 8Hz to
14Hz, due to the high SNR of SSVEP signals [22]. The
initialization interface was designed to control quadcopter
taking off and landing. The frequencies of visual stimuli were
8, 10 and 12Hz, which indicated the commands of interface
switching, quadcopter taking off and landing. The function of
the control interface with SSVEP-based visual stimulations
was providing visual stimuli for users to control the quad-
copter straight flight. The frequencies of visual stimuli were
8Hz to 14Hz, which indicated quadcopter move up/down,
forward/backward, left/right. The stimulator interface was
presented on a 24.5-inch LCD screen with a refresh rate
of 120Hz. The visual stimuli were generated by the sinusoidal
stimulation method [8]. The stimulus programwas developed
on MATLAB using Psychophysics Toolbox [23]. The func-
tion of the control interface with MI-based visual cues was
providing visual cues for users to control the rotated flight
of quadcopter. Circling with a pen by hands was selected as
visual cues to ensure the correlation between users’ intention
and quadcopter control, indicated the turning left and turning
right of the quadcopter [14].

2) VISUAL FEEDBACK INTERFACE
The visual feedback interface is shown in Figure 3. The
visual interface displayed the first-view images captured
by the camera of quadcopter and the quadcopter position
information in real-time. Meanwhile, the position of targets,
the present position of quadcopter and the landing location
showed on the interface. The feedback information helped
users to find an appropriate control strategy and make right
control commands in quadcopter flight, which enhanced the
human-machine interaction of the control system. The visual
feedback interface was presented on a 22-inch LCD screen
and developed on MATLAB.
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FIGURE 1. Architecture of quadcopter control system based on hybrid BCI. The system
consists of data acquisition device, data processor, stimulator interface, visual feedback
interface and quadcopter system. The arrow indicates the direction of the data stream. The
dotted box shows that data processor and visual feedback interface share the same
computer host.

FIGURE 2. Stimulator interface. The stimulator interface consists of
initialization interface, control interface with SSVEP-based visual
stimulations and control interface with MI-based visual cues. The
initialization interface and control interface with SSVEP-based visual
stimulation are switched by SSVEP, shown as start and back cues on
interface. The switch between control interface with SSVEP-based visual
stimulations and control interface with MI-based visual cues are achieved
by EEG in eyes close state.

3) DATA ACQUISITION DEVICE
The scalp EEG was recorded by using the 16-channels
g.USBampwith a sampling rate of 256Hz. 14 electrodes were
recorded (C1, C2, C3, C4, Cz, Pz, P3, P4, POz, PO3, PO4,
Oz, O1, O2) on the visual cortex and sensorimotor cortex,
according to the international 10-20 system. The reference
electrode was selected at FPz, and the ground electrode
was selected at the right mastoids. Electrode impedances
were kept under 10 k�. To improve the SNR of scalp EEG,
a 5-30Hz bandpass filter was applied in EEG recording [24].

FIGURE 3. Visual feedback interface. On the left side was the images
captured by the camera of quadcopter. On the right side was the position
information of the quadcopter.

4) DATA PROCESSOR
The data processor was designed to process EEG from
the data acquisition device. The processing steps contained
preprocessing, feature extraction, classification, and signals
translation. Meanwhile, the data processor updated the sys-
tem control flag according to the translated command. The
feedback information was sent to the visual feedback inter-
face and the updated system control flag was sent to the
stimulator interface. The updated system control flags based
on control commands are shown in Table 1.

5) QUADCOPTER SYSTEM
The quadcopter used in the system is Parrot Bebop 2 due
to the sustainable development and strong stabilization [6],
[7], [10], [11], [17], [18]. In the proposed system, eight
EEG-based control commands transmitted via the wire-
less network to control the quadcopter flight in 3D space.
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TABLE 1. The updated system control flags based on the commands to switch the sub-control interface.

TABLE 2. The movement displacement and yaw angle of the control commands based on the control time.

FIGURE 4. The control of quadcopter. (a) Move up/down in straight flight
(b) move forward/backward in straight flight (c) move left/right in
straight flight (d) turn left/right in rotated flight.

The control of the quadcopter is shown in Figure 4. The
straight flight indicated quadcopter moving in the straight
line, including moving up/down, moving forward/backward,
moving left/right. The rotated flight indicated quadcopter
turning left/right. The left/right movements of quadcopter
were designed to adjust the quadcopter position to reduce
the location errors caused by the low control precision of
quadcopter. Meanwhile, the android controller based on the

mobile app was designed to control the movement displace-
ments and yaw angles in quadcopter flight. The quadcopter
control times were adjusted to select the optimal displace-
ment and angle when the speed of quadcopter is set at a
constant. The straight movement speed of quadcopter is set
at 1.5m/s, and the rotation speed of quadcopter is set as
12.5◦/s. The movement displacements and yaw angles of
control commands are shown in Table 2.

B. METHODS
In the proposed system, the scalp EEG filtered in 5-30Hz
was recorded with 14 electrodes on the position of visual
cortex and sensorimotor cortex, and translated into the con-
trol command to control the quadcopter flight. The most
prominent challenge in the algorithm of the system is the
classification of SSVEP and motor imagery [9], [25], [26].
the EEG in eyes-closed state was chosen as the switch signal
of two modal EEGs. The detection of EEG in eyes-closed
represented the switching from one modal to the other modal.
This design could reduce the fatigue of users and increase
the classification accuracy of two modals EEG, which ensure
the practicability and operability of the control system. The
classification of SSVEP was achieved by the canonical cor-
relation analysis (CCA) algorithm, and the classification of
motor imagery was achieved by the combination of com-
mon spatial pattern algorithm and linear distinction analysis
algorithm. The classification results were translated into the
control commands to control the quadcopter flight. The flow
chart of the classification algorithm is illustrated in Figure 5.
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FIGURE 5. The flow chart of BCI algorithm in data processor. The data
processing included the detection of eyes close and open, SSVEP
classification and motor imagery classification.

1) DETECTION OF EYES CLOSED AND OPEN
The EEG in the eyes-closed and eyes-open state recorded
on the position of the visual cortex was discriminated by
the power in the alpha-band due to the alpha-band power
obviously rose in the eyes-closed state [27]–[29]. X indi-
cates the filtered EEG recorded with 3 electrodes (O1, O2,
Oz) on the visual cortex [30]. The EEG was divided into
several frequency bands EEG by wavelet packet decomposi-
tion [31]–[34]. The powers of divided EEG are calculated as
the following (1). Y , E indicates the EEG in the alpha band
and the power in the alpha band [35], [36]. The percentage
ϕ of the alpha-band power in EEG signals was calculated as
following (2), in which Y and X indicated the EEG in the
alpha band and unfiltered EEG signals.

E =
∑

YY T (1)

ϕ =

∑
YY T∑
XXT

(2)

The classification threshold was calculated by (3), in which
ϕ1, ϕ2 were the alpha power percentage in the eyes-closed
state and eyes open state. The detections of the eyes-closed
state and the eyes-open state were depended on comparison
results between the power percentage ϕ and the power thresh-
old v in (4).

v = 4× ϕ1 + 1× ϕ2 (3){
ϕ < v,K ∈ eyes close
ϕ > v,K ∈ eyes open

}
(4)

2) SSVEP CLASSIFICATION
Canonical correlation analysis (CCA) was chosen as the
algorithm of SSVEP classification for its high accuracy and
robustness [37], [38]. The CCA algorithm constructed the
template signals with the frequencies of visual stimuli, maxi-
mized the correlation coefficient between the template signals
and SSVEP, and selected the frequency of template signals
with the maximal correlation coefficient as the frequency of
SSVEP [39].
X indicates the EEG recorded with 9 electrodes (Pz, P3,

P4, POz, PO3, PO4, Oz, O1, O2) on the visual cortex [40].
Y indicates the sine and cosine signals with frequencies of
visual stimuli, shown in (5). fi indicates the frequency of
visual stimuli [41].

Y =


Y1
Y2
...

YK

 =


sin(2π f1t); cos(2π f1t);
sin(2π f2t); cos(2π f2t);

...

sin(2π fK t); cos(2π fK t);

 (5)

CCA provided the spatial filter a, b to maximize
the Pearson correlation coefficient ρi between X and Yi
(i = 1, ..K ) as the following (6). The frequency with the
maximal correlation coefficient ρs between X and Yi was
selected as the frequency of SSVEP in (7) [42].

ρi =
E(aTXbTi Yi)√
E(aTX )E(bTi Yi)

(6)

ρs = max(ρi) (7)

3) MOTOR IMAGERY CLASSIFICATION
The classification of motor imagery was implemented by
combining the common spatial pattern algorithm and the
linear distinction analysis algorithm. Firstly, the features
were extracted from the motor imagery by the common spa-
tial pattern algorithm. After that, motor imagery was clas-
sified by the features with the linear distinction analysis
algorithm [43].

The motor imagery EEG was recorded with 5 electrodes
(C1, C2, C3, C4, Cz) on the position of sensorimotor cortex.
The training motor imagery EEG is divided into the left-hand
dataset X1 and the right-hand dataset X2. The spatial filterW
was calculated from the training dataset by CSP method. The
feature extraction of EEG is shown in (8). Z1, Z2 indicated
the feature series of left-hand dataset and right-hand dataset.

Z1 = W TX1, Z2 = W TX2 (8)

The linear classifier was constructed by feature series of
two classes dataset in equation (9). m1 , m2 indicated the
mean of two classes dataset. Sb, Sw indicated the intra-class
and inter-class variance.Wb, b are the parameters of the linear
classifier.

Wb = S−1w (m1 − m2), b = −Wb(0.5m1 + 0.5m2) (9)

The classification results of the test dataset T achieved by
the linear classifier. p is the output of the linear classifier
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calculated by the equation (10), When p > 0, the test dataset
T belongs to the left-hand motor imagery. When p < 0, the
test dataset T belongs to the right-hand motor imagery.

p = wTb T + b (10)

C. EXPERIMENTAL PARADIGM
The performance of the control system was evaluated in
two experiments, an off-line experiment I and an on-line
experiment II. The experimental procedures were approved
by Xi’an Jiaotong University Ethics Committee. The off-line
experiment I was designed to test the accuracy and robustness
of the algorithm in extracting features and classifying the
control intentions from scalp EEG. Meanwhile, the results
of the off-line experiment I gave support to the parameter
selection of the control system. The on-line experiment II
was designed to evaluate the BCI control capacity of the
system, by controlling quadcopter going through targets and
reaching the designated position. All subjects were recruited
from Xi’an Jiaotong University. They were informed of the
purpose and procedure of experiment I and experiment II, and
signed informed consents before the experiment.

Ten subjects (5 males, 5 females), at the age of 20 to
24 (averaged age 22.7), participated in the off-line exper-
iment I. All participants have no history of epilepsy, and
normal or corrected to normal eyesight. During the off-line
experiment procedure, subjects sat with a distance of 70 cm
between the monitor and their eyes, and kept no movement
with the body as possible as they can. Meanwhile, the envi-
ronmental factors, such as lighting, were maintained at a
comfortable level for subjects to help them keep sober and
focused. Off-line experiment I contained 3 sessions, includ-
ing SSVEP session 1, motor imagery session 2 and eyes-
closed session 3. Each trial in session 1 and session 2 lasted
for 10 seconds. Stage 1 of 0-1 seconds in the trial was the
display of cues. Stage 2 of 1-6 seconds in the trial was
the execution of the tasks according to the cues. Stage 3 of
6-10 seconds in the trial was the waiting stage for the next
trial. The procedure of experiment I is shown in Figure 6.
SSVEP session 1 consisted of 56 trials, indicated to the
frequencies from 8 Hz to 14Hz. Motor imagery session
2 consisted of 50 trials, half of them were left-hand cues,
the others were right-hand cues. In eyes-closed session 3,
the trial consisted of two stages, executing cues in 0-5 seconds
and waiting in 5-10 seconds. The cues were achieved by the
sounds to prompt the subject to close eyes or open eyes.
The users had 30 seconds break between the blocks to avoid
fatigue in the off-line experiment. The off-line experiment
I lasted for approximately 50 minutes with 5 minutes for
resting between sessions.

Five subjects (2 males, 3 females), at the age of 20 to 24
(average age 23.1), participated in on-line experiment II. Five
subjects continued to participate in on-line experiment II.
They were familiar with the procedure of the experiment and
the approach of system operation. The sketch of the experi-
mental site and the position of targets are shown in Figure 7.

FIGURE 6. The procedure of the experiment I. (a) The procedure of
session 1 and session 2. In session 1 (n = 8, M = 7), 56 trials (7 blocks)
were involved. In session 2 (n = 5, M = 10), 50 trials (10 blocks) were
involved. The cues were achieved by words in session 1 and image in
session 2. (b) The procedure of session 3. 25 trials were involved. The
cues were achieved by the sounds.

The on-line experiment II was conducted in the atrium of
the laboratory building. The length of the atrium is 10m,
while the width is 7.5m. The space outside the atrium was
regarded as the wall. Four targets at different heights were
placed in the atrium, with a length of 1m and width of 0.9m.
The recording time in experiment II was set as 5 seconds,
the control time of straight flight was set as 5 seconds, and the
rotated flight was set as 7 seconds. The on-line experiment II
was divided into three same sessions. The users controlled the
quadcopter flight by using the stimulator interface. The visual
feedback displayed the images captured by the camera of
quadcopter and the position information of targets and quad-
copter to help subjects make the right control command. In a
session, subjects controlled the quadcopter to take off from
the starting location, go through targets in turns, and land at
the landing location. The quadcopter would land and take off
again with the collision of the wall or the targets. The expert
controlled the quadcopter to finish the same tasks with the
android controller after 3 sessions of on-line experiment II.
The experiement site and the subject are shown in Figure 8.

III. RESULTS
A. EXPERIMENT I
The alpha-band powers of EEG in the eyes-closed and
eyes-open state were calculated with 10 subjects in off-line
experiment I. The EEG in eyes-open state consisted of
SSVEP and motor imagery. Furthermore, the percentage of
alpha-band power in EEG signals with 10 subjects in two
states and the classification thresholds were calculated by (3).
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FIGURE 7. The sketch of site and targets in experiment II. (a) The site of
experiment II. The length of the site is 7.5m and the width is 10m. Four
square targets, indicated by the number, are placed for quadcopter to go
through under the control of the users. The red and green star marks the
starting position and the ending position of the quadcopter. (b) The
schematic diagram of targets in experiment II. The target is 1.5m× 0.9m
in size. The targets 1, 3 are 1m above the ground, and the targets 2, 4 are
0.3m above the ground.

The results are illustrated in Figure 9. It can be observed from
the figure that the power percentages in eyes-closed state are
obviously higher than those in eyes-open state, which reveals
the feasibility of detection of two states by the percentage
of alpha-band power in filtered-band power. Moreover, due
to the alpha-band power differences in two states between
10 subjects, the selection of thresholds in detection are dif-
ferent between subjects.

The classification accuracies of SSVEP andmotor imagery
were compared between the different recorded data lengths
and the different numbers of channels. The results with
the one-way analysis of variance (ANOVA) are shown in
Figure 10. Figure 10(a) shows the classification accuracy of
SSVEP between the different recorded data lengths. There
was a statistically significant difference between 5s and 2s,
3s, 4s recorded data lengths for the classification of SSVEP
(p < 0.05). Figure 10(b) shows the classification accuracy
of SSVEP between the different numbers of channels. The
results illustrated a statistically significant difference between
1 channel, 3 channels and 9 channels selections for SSVEP
classification (p < 0.05). The highest classification accuracy
was 93.57±4.78% with 5s recorded data and 9 channels.
Figure 10(c) and 10(d) show the classification accuracy
of motor imagery between the different recorded data
lengths and numbers of channels. The results showed that
there was no statistically significant difference among the

different recorded data lengths for motor imagery classifica-
tion (p > 0.05). However, there was a statistically significant
difference between 2 channels and 5 channels selections for
the classification of motor imagery (p < 0.05). The highest
classification accuracy was 71.76±10.53% with 5s recorded
data length and 5channels selection.

Considering the consistency of the recording time in
SSVEP and MI, the record time was set as 5s to ensure
the high classification accuracy of the system. Besides that,
the number of SSVEP channels was chosen 9 channels in the
visual cortex. Though there was no statistically significant
difference between 3 channels and 5 channels for motor
imagery classification, the number of channels was chosen
as 5 channels in the sensorimotor cortex due to the conser-
vative consideration of the highest classification accuracy.
Compared with the existing quadcopter control system [20],
the classification accuracy of hybrid EEG was targeted as
a priority in the parameter selection to optimize the control
system.

The individual accuracy results of classification of
eyes-closed state and eyes-open state, SSVEP classification
and motor imagery classification for 10 subjects are illus-
trated in Table 3. The average classification accuracy of
the eyes-closed state and eyes-open state was 90.86±6.43%.
Meanwhile, the classification accuracy of the hybrid EEG
in the off-line experiment was calculated by combined the
classification accuracies of EEG in three states as follow-
ing (11) and (12). ηhybrid indicated the classification accu-
racy of the hybrid EEG in the off-line experiment. ηclose
indicated the classification accuracy of the eyes-closed state.
ηopen indicated the classification accuracy of the eyes-open
state. ηSSVEP indicated the classification accuracy of SSVEP.
ηMI indicated the classification accuracy of motor imagery.
KSSVEP indicated the rate of SSVEP dataset in the eyes-
open EEG. KMI indicated the rate of motor imagery in the
eyes-open EEG.

ηopen = KSSVEP × ηSSVEP + KMI × ηMI (11)

ηhybird = ηclose × ηopen (12)

B. EXPERIMENT II
The BCI control capacity of quadcopter flight was evaluated
with 5 subjects in on-line experiment II. The capacity indica-
tors are shown in Table 4, including classification accuracy
in hybrid BCI, number of landing, command number rate
and information rate. The average classification accuracy in
hybrid BCI reached 87.09±2.82%, and the average infor-
mation transfer rate was 0.857±0.085 bits/min. The results
revealed the good detection performance of EEG-based com-
mands and high robustness of the quadcopter control system
based on hybrid BCI.

1) CLASSIFICATION ACCURACY IN HYBRID BCI
Classification accuracy in hybrid BCI indicates the
performance of classifying EEG signals. Hybrid BCI was
the combination of EEG in the eyes-closed state, SSVEP,
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FIGURE 8. The subject and experiment site in on-line expeiment II. (a) the subject gazed at the stimulator interface to control the quadcopter (b) the
targets in experiment site.

FIGURE 9. The percentage of the alpha-band power in the filtered-band power of the training
data in eyes close and eyes open states, the EEG in eyes open state consisted of SSVEP and
motor imagery EEG. The dotted line indicated the individual thresholds of the classifier in
eyes close and eyes open classification.

and motor imagery. Classification accuracy in hybrid BCI
was calculated by (13). In on-line experiment II, the clas-
sification accuracy in hybrid BCI was different due to the
individual control strategy in quadcopter flight. The average
classification accuracy in hybrid BCI with 5 subjects was
87.09±2.82%.

Accuracy in classification

=
Number of correct EEG-based commands

Number of EEG signals
(13)

2) NUMBER OF LANDING
Number of landing represented the number of quadcopter
landing after a collision on wall or targets happened, due
to the operational errors or the low precision of the control
system. The average number of landing is 0.532±0.3 with
5 subjects in experiment II.

3) COMMAND NUMBER RATE
Command number rate is the ratio of the number of control
commands based on the hybrid control system in one suc-
cessful control trial to the number of control commands based

on the android controller in one trial controlled by an expert,
describing the classification capacity of quadcopter control
system shown in equation (14). In experiment II, the expert
finished the same control tasks by using the mobile app. The
average control time was 3.4min, and the average number of
the control command is 20. The average command number
rate is 1.68±0.197. The results revealed the quadcopter con-
trol performance of hybrid BCI was lower than that of expert.

Command number rate =
Number of command use BCI
Number of command use phone

(14)

4) INFORMATION TRANSFER RATE
Information transfer rate indicated the speed of information
transfer, which was defined by Chen et al. [44], Shannon
[45], and Li et al.[46]. Considering quadcopter flight and
asynchronous BCI, information transfer rate was redefined
as equation (15) by Lafleur et al. [10]. Displacement traveled
to the target indicated the displacement between the starting
position and ending position. Time to reach the target indi-
cated the time of quadcopter flight from the starting position
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FIGURE 10. Diagrams showing the accuracy of SSVEP and motor imagery classification between the different
recorded data length and the different number of channels (a) the recorded data length of SSVEP, which are
2s, 3s, 4s, 5s (b) the number of channels of SSVEP, which are 1(Oz), 3(O1, Oz, O2), 9(O1, Oz, O2, PO3, POz,
PO4, P3, Pz, P4). (c) the recorded data length of motor imagery, which are 2s, 3s, 4s, 5s (d) the number of
channels of motor imagery, which are 2(C3, C4), 3(Cz, C3, C4), 5(Cz, C1, C2, C3, C4).

to ending position. The average information transfer rate was
0.857±0.085 bit/min in experiment II.

ITR =
log2(

Displacement traveled to the target
Length of the target + 1)

Time to reach the target
(15)

IV. DISCUSSION
In the study, a quadcopter control system was accomplished
by taking advantage of hybrid BCI technology. The
hybrid BCI avoided the limited number of commands in
MI-based BCI and the weak correlation between users’ inten-
tion and the control command in SSVEP-based BCI, which
was regarded as the combination of SSVEP-based BCI and
MI-based BCI. Moreover, the off-line optimization and the
human-machine interaction enhancement improved the prac-
ticability and operability in real-time use. Compared with the
existing quadcopter control system [5], [20], the proposed
system has three unique features. Firstly, the proposed system
has the advantage of multidirectional control in quadcopter
flight by the hybrid BCI. The degrees of freedoms contain six
directions in 3D space which demonstrates the feasibility of

the complex control in the physical world. Secondly, the pro-
posed system is optimized by the off-line experiment results.
The high classification accuracy is targeted as a priority in the
optimal parameter selections, which may reduce the speed
of the control system. However, the results in the on-line
experiment revealed the significance in the optimization. The
proposed control systemfinished themore complex route task
with a higher success rate than the other quadcopter control
system by hybrid BCI [20]. Thirdly, the proposed system
enhances the human-machine interaction in designs, includ-
ing choosing EEG in the eyes-closed state as the switch signal
between SSVEP and motor imagery, displaying the feedback
information for users and providing the LCD-cued SSVEP
andMI, which improves the operability of the control system.

The control precision is a common problem in quadcopter
control. Due to the draining battery, the movement displace-
ment and yaw angle with the same command often slightly
changed during the quadcopter flight, which led the diffi-
culties for users to control quadcopter to reach the targets.
Moreover, the quadcopter was hard to keep the stable state
during the hovering stage, which led to the position error
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TABLE 3. Individual classification of EEG in eyes close state, SSVEP and motor imagery EEG in experiment I.

TABLE 4. The performance of 5 subjects in on-line experiment II.

in physical space. All the above problems in quadcopter
control caused the differences between the simple machine
control and the practical quadcopter control [10], [47]. Two
novel commands were proposed to adjust the quadcopter dis-
placement by moving left and right to reduce the quadcopter
position errors in hovering. The results in this study revealed
the effectiveness of the proposed scheme in the position error
reduction of the practical quadcopter control.

In the proposed system, the eyes-closed state was chosen
as the switch signal of SSVEP and motor imagery. In fact,
some classification algorithms had been tried by using the
EEG signals from the off-line experiment [9], [25], [26]. The
results are shown in Table 5. The detections of the eyes-closed
state and the eyes-open state were achieved by the alpha-band
power percentage, due to the spontaneous activity of the mind
was more active in the eyes-open state [27]. The threshold
of the detection was selected as the weighted sum of the
alpha-band power in the eyes-closed state and the eyes-open
state as formula (3). The rate of weight and the detection

results are shown in Figure 11. It can be observed from the
figure that the optimal result corresponds to the weight rate
of 8:2 with powerclose and poweropen. The alpha-band power
gradually rose due to the fatigue of subjects in the eyes-open
state during the operation process. As shown in Figure 9,
the variance of the alpha-band power in the eyes-open state
is higher than the eyes-closed state, which illustrated the
fluctuation of the alpha-band power in the eyes-open state.
In the off-line experiment I, the alpha-band power percentage
of some datasets were higher than (powerclose+poweropen)/2,
which caused the detection result of 8:2 was better than 5:5.

The BCI control capacity of quadcopter flight was
evaluated in the on-line experiment II. The main capacity
indicators were classification accuracy in hybrid BCI and
information transfer rate. The classification accuracy of the
hybrid EEG in the off-line experiment I was 76.05±7.08%,
while the classification accuracy in the hybrid BCI in the
on-line experiment was 87.09±2.82%. The classification
results both in off-line experiment I and on-line experiment II
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TABLE 5. The classification accuracy of swithcing between ssvep and
motor imagery.

FIGURE 11. The detection results of eyes close and open with the
different thresholds selection. The thresholds were selected by variable
of selected weights in equation (21). The ratio of power percentage in
eyes close and open state, regarded as the selected weight, were shown
above. 1 indicated the ratio of 1:9, 2 indicated the ratio of 2:8, 3 indicated
the ratio of 3:7, 4 indicated the ratio of 4:6, 5 indicated the ratio of 5:5, 6
indicated the ratio of 6:4, 7 indicated the ratio of 7:3, 8 indicated the ratio
of 8:2, 9 indicated the ratio of 9:1.

indicated the classification capacity of the hybrid BCI. The
difference between classification accuracies in off-line exper-
iment I and on-line experiment II can be explained by the
following points. On one hand, the different control strategies
in on-line experiment II caused the EEG data imbalanced
distribution, which had an impact on the classification accu-
racy [48]. In off-line experiment I, the results revealed that
the accuracy classification of SSVEP was higher than motor
imagery. Compared with the amount of dataset recorded in
off-line experiment I, the percentage of SSVEP in the amount
of total dataset was higher in on-line experiment II. Consid-
ering the accuracy of SSVEP is higher than motor imagery,
it can be used to explain that the total classification accuracy
in experiment II is higher than in experiment I. On the other
hand, all 5 subjects in experiment II had participated in
experiment I. The familiarity of quadcopter control system
was also an explanation for the improvement of classification
accuracy. The average information transfer rate was only
0.857±0.085bit/min. After the construction of the control
system and design of the on-line experiment, the length of
targets and displacement travel to the target were set as a
constant. According to formula (15), the improvement of
information transfer rate would be achieved by reducing the
control time in the same control tasks. On one hand,
the recording time in experiment II was set as 5 seconds,
the control time of straight flight was set as 5 seconds, and

the rotated flight was set as 7 seconds. The too-long com-
mand time of the quadcopter control system was the key
reason for the low information transfer rate. On the other
hand, the unnecessary commands caused by the low control
precision of the control system increased the control time of
the system, which also led to the low information transfer
rate. Low information transfer rate is the primary defect of
the proposed system, we will focus on it in future work.

In future work, the improvement of information transfer
rate as the main optimization target of the proposed system
should be focused on. The results in experiment II revealed
that reduction of the control time in quadcopter flight with the
same tasks is an approach to improving the information trans-
fer rate in the control system. Firstly, the EEG recording time
and training time would be reduced by the improvement of
the feature extraction and classification algorithm under the
premise of the high accuracy of the control system [49]–[52].
Secondly, the framework strategy of the control system and
the procedure of the quadcopter control could be simplified to
reduce the unnecessary commands in the quadcopter control.
On one hand, the adjustment commands caused by the shifts
during the hovering stage should be reduced by improving
the precision of the control system. On the other hand, an
effective algorithm classifying between SSVEP and motor
imagery EEG would be proposed to reduce the control time
of the eyes-closed state. Moreover, the detection of idle time
should be considered into the control system to establish
an asynchronous BCI to improve the performance of the
quadcopter control system [53].

V. CONCLUSION
In this study, a quadcopter control system using a hybrid BCI
based on off-line optimization and enhanced human-machine
interaction was constructed to control the quadcopter flight
in 3D space. The proposed system controlled the quadcopter
with eight EEG-based control commands, including six com-
mands based on SSVEP controlling the straight flight and two
commands based on motor imagery controlling the rotated
flight, which met the demands of multidirectional control
in human daily life. Meanwhile, a scheme based on the
detection of eyes closed and open to classify SSVEP and
motor imagery was presented, which was able to accomplish
the high accuracy and high robustness of the control system.
Moreover, the parameters of the control system were opti-
mized and the human-machine interaction was enhanced to
improve practicability in real-time use. The proposed control
system establishes a framework for the implementation of the
quadcopter control based on hybrid BCI.
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