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ABSTRACT Deep learning has recently been applied to automatically classify the modulation categories
of received radio signals without manual experience. However, training deep learning models requires
massive volume of data. An insufficient training data will cause serious overfitting problem and degrade
the classification accuracy. To cope with small dataset, data augmentation has been widely used in image
processing to expand the dataset and improve the robustness of deep learning models. However, in wireless
communication areas, the effect of different data augmentation methods on radio modulation classification
has not been studied yet. In this paper, we evaluate different data augmentation methods via a state-of-
the-art deep learning-based modulation classifier. Based on the characteristics of modulated signals, three
augmentation methods are considered, i.e., rotation, flip, and Gaussian noise, which can be applied in both
training phase and inference phase of the deep learning-based classifier. Numerical results show that all three
augmentation methods can improve the classification accuracy. Among which, the rotation augmentation
method outperforms the flip method, both of which achieve higher classification accuracy than the Gaussian
noise method. Given only 12.5% of training dataset, a joint rotation and flip augmentation policy can achieve
even higher classification accuracy than the baseline with initial 100% training dataset without augmentation.
Furthermore, with data augmentation, radio modulation categories can be successfully classified using
shorter radio samples, leading to a simplified deep learning model and a shorter classification response
time.

INDEX TERMS Data augmentation, deep learning, modulation classification, wireless communication.

I. INTRODUCTION
Benefiting from the improvement of computing power and
big data, deep learning has achieved unprecedented develop-
ment in many applications, i.e., speech and audio process-
ing [1], natural language processing [2], object detection [3],
and so on. In recent years, it also achieves dramatic devel-
opment in the field of wireless communications, e.g., mod-
ulation classification [4], symbol detection [5], end-to-end
communication [6], and mobile edge computing [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Guan Gui .

Deep learning-based modulation classification automati-
cally and efficiently classify received signals without prior
knowledge. Modulation classification is a fundamental step
for many applications in wireless communication sys-
tems, such as spectrum management in cognitive com-
munication systems [8] and unauthorized signal detection
in secure communications [9], [10]. Traditional modula-
tion classification method either requires high computational
complexity or greatly depends on manual operations [9].
Recently, deep learning is successfully introduced to clas-
sify signals [11]–[16], which feeds raw signal data or its
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transforms into a deep neural network and instantly obtains
the modulation category at the network output. It achieves
higher classification accuracy than traditional methods for
automatic modulation classification based on expert features
such as higher order cumulants based features [17], while
requiring a little extra computational overhead computation
time.

Although deep learning-based approaches can greatly
improve the performance of the modulation classifier,
it requires a large volume of training radio samples. How-
ever, in practice, collecting a large amount of high quality
and reliable training radio samples sometimes is costly and
difficult. Data augmentation has been widely used to deal
with lack of training data by artificially expanding the train-
ing dataset with label preserving transformation. Different
data augmentation methods have been proposed in the liter-
ature, i.e., random cropping, rotation and mirroring in image
classification [18], [19] and pitch shifting, time stretching
and random frequency filtering in speech recognition [20].
For deep learning-based radio modulation classification, data
augmentation can improve its invariant, especially for small
radio signal dataset.

FIGURE 1. Different data augmentation methods for both image and
modulated signal: (a) raw data, (b) rotation, (c) flip, (d) Gaussian noise.

Augmenting modulated radio signal is similar to augment
images as shown in Fig. 1. Specifically, we consider three
basic augmentation methods, i.e. rotation, flip, and Gaussian
noise, for both an image and a quadrature phase-shift key-
ing (QPSK) modulated radio signal sample illustrated in
constellation diagram. For the image, after rotation or flip
augmentation, the same cat is displayed but from differ-
ent viewpoints. In the constellation diagram of the QPSK
modulated radio signal, the black circles indicate four ideal
reference points, and the red crosses are the received sym-
bols which are shifted due to the imperfection of transmit-
ter/receiver hardware and wireless channel [21]. In Fig. 1,
we consider two received symbols with positive phase shift
(1, 1) and (−1, 1), which are counter-clockwise shifted
from their reference points. In wireless communication, each
received symbol will be demodulated and mapped to one
of the reference points based on the transmitted content.
After rotation augmentation, two new symbols (−1, 1) and

(−1, −1) are generated as shown Fig. 1(b), which are also
positively phase shifted. Therefore, for the radio modulation
classification task considered in this paper, rotating the mod-
ulated radio signal is similar to rotating an image, without
losing features for classification. However, flipping the radio
signal generates two new QPSK modulated symbols whose
phases are negatively shifted in the clockwise direction,
as shown in Fig. 1(c). Although both rotation and flip aug-
mentation methods achieve similar accuracy improvements
for image classification [22], [23], it is an open question about
which one is preferred for radio modulation classification.
After the Gaussian noise augmentation, the image is full
of ’snow’ and the received radio symbols are deviated as
shown in Fig. 1(d). Can all these three augmentation methods
improve the classification accuracy for deep learning-based
radio modulation classification? To the best of our knowl-
edge, the effect of different data augmentation methods on
radio modulation classification has not been evaluated yet.

In this paper, we study data augmentationmethods for deep
learning-based radio modulation classification. Specifically,
a state-of-the-art deep learning-based modulation classifier,
is used to automatically classify the modulation category of
each radio signal sample. Based on the characteristics of
the modulated signal, we study three augmentation methods,
i.e., rotation, flip, and Gaussian noise. After extensive numer-
ical evaluations on an open radio signal dataset, we obtain the
following contributions:

(1) We propose algorithms to augment radio signals at
both training phase and inference phase of the deep learning
algorithm, which achieves around 2.5% improvement on the
baseline in terms of classification accuracy.

(2) We discover that the rotation augmentation method
outperforms the flip method, both of which achieve higher
classification accuracy than the Gaussian noise method.

(3) We propose a joint augmentation policy with both
rotation and flip methods for insufficient training dataset.
Given only 12.5% of training dataset, the joint augmenta-
tion method expands the dataset to be a size of 75% of
the initial dataset and achieves an even higher classification
accuracy than the baseline with 100% training dataset without
augmentation.

(4) With data augmentation, we successfully classify radio
samples by using only one half of the sampling points.
Therefore, the deep learning model can be simplified with
a significantly reduced inference complexity. Furthermore,
in the future field deployment, the modulation category can
be successfully classified upon receiving only half number of
radio sampling points, which greatly reduces the classifica-
tion response time.

The remainder of this paper is organized as follows.
Section II presents related work. Section III provides an
overview of the studied radio signal dataset and the deep
learning-based modulation classifier. We introduce three data
augmentation methods in Section IV and propose an algo-
rithm to augment signals at both deep learning phases in
Section V. In Section VI, we present the simulation setup and
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the final experimental results. We finally conclude this paper
in Section VII.

II. RELATED WORK
A. DEEP LEARNING IN RADIO MODULATION
CLASSIFICATION
Deep learning has been applied to automatically classify
radio modulation categories in recent literature. By convert-
ing radio signals into images, two convolutional neural net-
work (CNN)-based deep learning models, GoogleNet [24]
and AlexNet [18], originally developed for image classifica-
tion, are used for modulation classification [13], [14]. The
modulation classification accuracy is further improved by
a modified deep residual network (ResNet) [12], which is
fed with modulated in-phase (I) and quadrature phase (Q)
signals. Considering channel interference, the CNN structure
also achieves a considerable classification accuracy [11].
In addition to the CNN-based models, the Long Short-Term
Memory (LSTM) architecture with time-dependent ampli-
tude and phase information can achieve the state-of-the-art
classification accuracy [16]. To reduce the training time of
deep learning models, different subsampling techniques are
investigated in [15] to reduce the dimensions of input signals.

B. DATA AUGMENTATION IN DEEP LEARNING
Data augmentation is widely used in deep learning algo-
rithms to increase the diversity of training dataset, prevent
model overfitting, and improve the robustness of the model.
For image classification tasks, generic data augmentation
methods include flip, rotation, cropping, color jittering, edge
enhancement, and Fancy PCA [22]. Other complex data aug-
mentation methods synthesize a new image from two training
images [25] or fromGenerativeAdversarial Nets (GAN) [26].
Although there are many augmentation methods for images,
AutoAugment [27] is proposed to automatically search for
augmentation policies based on the dataset. In addition to
images, augmentation methods such as synonym replace-
ment, random insertion, random swap, and random deletion
are used for text classification [28], where the same accuracy
as normal in all training data is achieved when only half of
the training data is available. For speech recognition tasks,
training audio is augmented by changing the audio speed [29],
warping features, masking blocks of frequency channels, and
masking blocks of time steps [30].

There are few related works on data augmentation for radio
modulation classification in the literature. The most related
work is a GAN based data augmentation method proposed
in [14]. The authors first converted the signal samples into
Contour Stellar Images which were further used to train the
GAN network so as to generate new signal training samples.
With GAN-based augmentation, the modulation classifica-
tion accuracy is improved by no more than 6%. However,
training GAN network still requires sufficient signal samples
to guarantee the convergence. Moreover, as reported in [14],
the classification accuracy based on augmented dataset is

lower than on real dataset with the same amount of signal
samples. Therefore, an efficient augmentation method for
insufficient radio signal dataset is still absent.

III. PRELIMINARIES
In this section, we introduce the radio signal dataset and the
architecture of the state-of-the-art LSTM model [32], which
will be used to evaluate different data augmentation methods
presented in Sec. IV.

A. RADIO SIGNAL DATASET
We evaluate the radio signal modulation classification based
on an open radio signal dataset, RadioML2016.10a [31].
The radio signals in the dataset consider sample rate off-
set, center frequency offset, multi-path fading and additive
white Gaussian noise. Specifically, there are 220,000 modu-
lated radio signal segments belonging to 11 different mod-
ulation categories, i.e., binary phase-shift keying (BPSK),
QPSK, eight phase-shift keying (8PSK), continuous phase
frequency-shift keying (CPFSK), Gauss frequency-shift key-
ing (GFSK), pulse-amplitude modulation four (PAM4),
quadrature amplitude modulation 16 (QAM16), quadra-
ture amplitude modulation 64 (QAM64), double-sideband
AM (AM-DSB), single-sideband AM (AM-SSB) and wide-
band FM (WB-FM). Each radio signal sample is composed
of 128 consecutive modulated in-phase (I) signal and quadra-
ture phase (Q) signal. The labels of each signal sample
include its value of signal-to-noise ratio (SNR) and its cor-
responding modulation category. There are total 20 differ-
ent SNRs ranging from −20dB to 18dB with a step size
of 2dB. In the dataset, these 220,000 signal samples are
uniformly distributed among 11 modulation categories and
20 SNRs. In other words, there are 1,000 signal samples for
each modulation category at each SNR. In Fig. 2, we plot
examples of 11 modulation categories in forms of con-
stellation diagrams under different SNRs. In the following
subsection, we introduce a deep learning algorithm which
automatically predicts the radio’s modulation category based
on its raw I/Q signals.

B. LSTM NETWORK ARCHITECTURE
LSTM is a special category of Recurrent neural network
(RNN), which is widely used to process time series data.
Benefited from a specific LSTM memory cell mechanism,
LSTM effectively solves the exploding and vanishing gradi-
ent problem of traditional RNN during training process and
learns long-term dependencies in sequential data. The LSTM
memory cell mainly consists of a forget gate, an input gate
and a update gate [33], which implement selective retention
and discard of input information.

The LSTM network takes each data sample with con-
secutive modulated in-phase (I) and quadrature phase (Q)
signals as input and maps them to a specific modulation
category, whose architecture is shown in Fig. 3. Specifically,
the modulated I/Q signals are first converted into amplitudes
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FIGURE 2. Constellation diagrams of 11 modulated signals [31] under different SNRs.

FIGURE 3. The architecture of LSTM network.

and phases [16], as:{
A =

√
I2 + Q2

φ = arc tan(Q/I ),

where A and φ represent the amplitude and phase of the
modulated signal, respectively. The obtained signals are then
fed into a two-layer LSTM network to extract characteristic
features, where each layer has 128 LSTM cells. Finally,
a fully connected layer with Softmax function is used to
map the radio signal sample to one of these 11 modulation
categories. Adam optimizer [34] with dynamic learning rate
is used to minimize the cross-entropy loss as follows:

` = −

K∑
k=1

yk log(ŷk ),

where K is the number of classes, yk represents the ground
truth label, and ŷk denotes the probability that the input
sample will be predicted as k−th class.

IV. DATA AUGMENTATION METHODS
Data augmentation is a method widely used in deep learning
because it improves the generalization ability of the model

and alleviates overfitting. In this section, we describe in
detail three data augmentation methods for modulation signal
recognition, including rotation, flip, and Gaussian noise. The
dataset is expanded by a scale factor N .

A. ROTATION
By rotating a modulated radio signal (I ,Q) around its origin,
we obtain augmented signal sample (I ′,Q′) as follows:[

I ′

Q′

]
=

[
cos θ −sinθ
sin θ cosθ

] [
I
Q

]
,

where θ is the angle of rotation. In this paper, the radio signal
is rotated in the counter-clockwise direction by 0, π/2, π ,
and 3π/2. In Fig. 4(a), we plot the constellation diagram of

FIGURE 4. Constellation diagram of an QPSK radio signal sample with
different data augmentation methods.
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an QPSK sample where one set of raw data is augmented into
four radio signal samples.

B. FLIP
For a given modulated radio signal (I ,Q), we define the
horizontal flip by switching the I value to its opposite, as:[

I ′

Q′

]
=

[
−I
Q

]
,

and define the vertical flip by switching the Q value to its
opposite, as: [

I ′

Q′

]
=

[
I
−Q

]
,

to augment the radio signals. We can perform horizontal flip,
vertical flip, or both flips at the same time such that the
signal dataset is expanded by a scale factor N = 4, as shown
in Fig. 4(b).

C. GAUSSIAN NOISE
By adding a Gaussian noise N (0, σ 2) to the modulated
radio signal (I ,Q), we obtain the augmented signal sample
(I ′,Q′) as: [

I ′

Q′

]
=

[
I
Q

]
+N (0, σ 2),

where σ 2 is the variance of noise. In Fig. 4(c), we show the
augmented signal samples by adding Gaussian noise with
different standard deviations σ = 0, σ = 0.0005 σ = 0.001
and σ = 0.002. For each data augmentation method, the orig-
inal radio signal dataset is expanded by a default scale factor
N = 4, as illustrated in Fig. 4. Note that the Gaussian noise
data augmentation is supposed to significantly expand the
dataset by choosing enough different values of σ . However,
in the next section, we show that the Gaussian noise data
augmentation is not preferred for radio data augmentation.

V. DATA AUGMENTATION TIME
The execution of a deep learning algorithm includes train-
ing phase and inference phase. Data augmentation can be
performed in both phases, resulting in three possible com-
binations of augmentations, i.e., test-time augmentation,
train-time augmentation, and train-test-time augmentation.

A. TRAIN-TIME AUGMENTATION
Train-time augmentation performs data augmentation during
the training stage of the model. That is the training dataset
is augmented and expanded by a scale factor N while the
test dataset remains the same. Taking the rotation data aug-
mentation as an example, the training dataset is expanded
from 110,000 radio signal samples to 440,000 samples after
train-time augmentation. In general, a larger size of training
dataset leads to a higher modulation classification accuracy.

B. TEST-TIME AUGMENTATION
Test-time augmentation fuses features of all augmented radio
signal samples in inference phase. In the inference phase, one
radio signal sample (I ,Q) in the test dataset is augmented
into N samples {(I ′,Q′)n|n ∈ N }. Then each augmented
sample (I ′,Q′)n is fed into the LSTM network, and we obtain
a vector of corresponding predicted probabilities ŷnk . The
predicted modulation category is decided through summing
the predicted probabilities ŷnk over all N augmented samples
and choosing the one with maximum conference [35], as:

argmax
1≤k≤K

N∑
n=1

ŷnk .

C. TRAIN-TEST-TIME AUGMENTATION
Train-test-time augmentation conducts both train-time aug-
mentation and test-time augmentation, where both training
and test datasets are augmented and expanded by a factor N .

FIGURE 5. Classification accuracy under different augmentation times.

FIGURE 6. Classification accuracy under different augmentation methods.

In Fig. 5, we numerically study the performance of the
data augmentation at different phases, where the rotation
augmentation with a scale factor N = 4 is considered.
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FIGURE 7. Confusion matrices under different data augmentation methods with 100% training dataset when SNR is −2dB.

FIGURE 8. Confusion matrices under different data augmentation methods with 100% training dataset when SNR is 18dB.

Comparing with the baseline without augmentation, augmen-
tations at different phases all improve the classification accu-
racy when the SNR is greater than −10 dB. The train-time
augmentation achieves better performance than test-time aug-
mentation, and the train-test-time augmentation generates the
highest accuracy. Specifically, comparing with the baseline,
the train-test-time augmentation improves the modulation
classification accuracy by 8.87% when SNR is −6dB and by
about 2.2% when SNR is greater than 4 dB. In the following
numerical studies, we use the train-test-time augmentation by
default.

VI. AUGMENTATION PERFORMANCE
In this section, we numerically study the performance
of different radio data augmentation methods in terms
of modulation classification accuracy. The open dataset,
RadioML2016.10a, is divided equally into a training dataset
and a test dataset, each containing 110,000 radio signal
samples. In order to avoid overfitting, we set dropout rate
to be 0.5 at both two LSTM layers. The number of train-
ing epoch is 80 and the mini-batch size is 128. The value
of the learning rate is initially set as 0.001 and is halved
when the training accuracy is not improved during three
consecutive epochs. The model is implemented based on
PyTorch [36].

FIGURE 9. Classification accuracy versus different data augmentation
methods under different SNRs with 12.5% training dataset.

A. AUGMENTATIONS ON FULL DATASET
In Fig. 6, we study the modulation classification accuracies of
the LSTM model after deploying all three data augmentation
methods presented in Sec. VI. Comparing with the baseline
without augmentation, all augmentationmethods improve the
classification accuracy when the SNR is greater than−10dB,
especially for the rotation data augmentation and flip data
augmentation. In particular, the rotation data augmentation
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FIGURE 10. Confusion matrices under different data augmentation methods with 12.5% training dataset when SNR is 18dB.

method achieves the greatest improvement by 8% when SNR
is between −6dB and −2dB and by about 2% at higher SNR
(≥4dB). Meanwhile, the Gaussian noise data augmentation
performs better at lower SNR when it is between −16dB
and −10dB. Intuitively, adding Gaussian noise reduces the
SNR of the original data sample which in turn generates more
signal samples with low SNR. However, the improvement is
trivial since the resulting classification accuracy is too small,
less than 2% when SNR is smaller than 10 dB. Therefore,
rotation data augmentation and flip data augmentation are
more preferred for radio signals in modulation classification.

To further evaluate the improvements of different aug-
mentation methods on classification accuracy, we present the
corresponding confusion matrices these at low SNR (−2dB)
and high SNR (18dB) in Fig. 7 and Fig. 8, respectively. Most
values at diagonal entries of these matrices are increased after
argumentation, which means the modulation classification
accuracy is improved. Specifically, the proposed augmen-
tation methods successfully reduce the confusion between
QAM16 and QAM64 and solve the short-time observation
problem presented in [37]. At low SNR, the LSTM model
is difficult to classify 8PSK and QPSK, whose classification
accuracy is greatly improved after rotation augmentation as
shown in Fig. 7. At high SNR, the accuracy of the LSTM
model is mainly limited by the confusion between AM-DSB
and WBFM, which dues to frequent radio samples without
information in the dataset [37]. In general, rotation and flip
achieve better classification accuracy than Gaussian noise for
all modulation categories.

B. AUGMENTATIONS ON PARTIAL DATASET
In Fig. 9, we further study the performance of different
data augmentation methods with insufficient training dataset.
To form new training sub-dataset, we randomly sample partial
radio signal samples from the initial 110,000 radio signal
training samples, i.e., 12.5% of the initial training dataset.
Then, the LSTM network is trained by feeding the obtained
training sub-dataset and is testedwith the initial 110,000 radio
signal testing samples. Note that 12.5% of the training dataset
is insufficient to train the LSTM network, resulting a low
modulation classification accuracy around 45% under high
SNR, as shown in Fig. 9. After deploying different radio

data augmentation methods, the classification accuracy is
improved. As expected, both the rotation augmentation and
the flip augmentation outperform the Gaussian noise data
augmentation. Interestingly, while the training sub-dataset is
expanded by a scale factor N = 4 after augmentation, in the
same size of 50% of the initial dataset, the rotation/flip aug-
mentation achieves a higher classification accuracy, around
0.04%-4.03%, than the baseline by training the LSTM with
50% of the initial training dataset without augmentation.

We further consider a joint augmentation policy with both
rotation and flip methods, which expands the dataset by a
scale factor N = 6 (with 2 redundant augmented radio signal
samples) as shown in Fig. 4(a-b). After this joint augmenta-
tion, the size of the training dataset is expanded from 12.5% to
be 75% of the initial training dataset. Interestingly, we obtain
similar classification accuracies at different SNRs as the
baseline with 100% training dataset without augmentation,
as plotted in Fig. 9. Note that such a classification accuracy
is achieved by using 25% less training data.

To further evaluate the advantages of joint rotation and
flip augmentation, we present confusion matrices in differ-
ent augmentation methods with 12.5% training dataset at
18dB in Fig. 10. When training dataset is insufficient, it is
difficult to classify BPSK, WBFM, QAM16 and QAM64,
whose classification accuracies are significantly improved
after joint augmentation. Specifically, in reducing the con-
fusion between QAM16 and QAM64, the joint augmentation
performs better than both the rotation augmentation and the
flip augmentation.

We have also evaluated another joint augmentation with
all three augmentation methods. However, adding Gaussian
noise method to the joint rotation and flip augmenta-
tion slightly reduces the classification accuracy. Therefore,
we conclude that both rotation and flip methods are preferred
for radio data augmentation and they can be jointly applied to
further improve the augmentation performance.

C. AUGMENTATIONS ON SHORT SAMPLE
We further evaluate data augmentation methods for modu-
lated radio signals with fewer sampling points. We halve each
original 128-point radio signal sample into two new samples
and obtained a new dataset consisting of 440,000 entries
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of 64-point radio signal samples. Similar to previous evalua-
tions, we randomly choose half of them to the LSTMnetwork,
which is further tested with the remaining half dataset. With
a shorter radio signal sample, the number of LSTM cells
in each LSTM layer in Fig. 3 is reduced from 128 to 64,
resulting a simpler inference model. Specifically, the number
of parameters of the LSTM network is reduced from 201.1K
to 54.1K and the inference complexity in FLOPs (floating-
point operations) is reduced from 2.8K to 1.4K.

FIGURE 11. Classification accuracy versus different data augmentation
methods under different SNRs with 64-length signal.

In Fig. 11, we evaluate modulation classifications with
64-point radio samples. Without augmentation, 64-point
modulated radio samples always lead to lower classification
accuracy than the baseline with 128-point, around an 8%
reduction when SNR is greater than 0 dB. The classification
accuracy is improved after deploying either rotation or flip
augmentation. Especially, the joint rotation and flip augmen-
tation can achieve 1% higher classification accuracy than the
baseline under high SNR. Therefore, with data augmentation,
the radio signal modulations can be successfully classified
upon receiving only half number of sampling points, which
significantly reduces the classification response time.

VII. CONCLUSION
In this paper, we studied radio data augmentation methods for
deep learning-based modulation classification. Specifically,
three typical augmentation methods, i.e., rotation, flip, and
Gaussian noise, were studied based on a well-known LSTM
model. We first studied radio data augmentations at training
and inference phases and revealed that train-test-time aug-
mentation achieves the highest accuracy. Then, we numeri-
cally evaluated all three augmentation methods based on the
full and partial training dataset. All numerical results show
that both the rotation and the flipmethods achieve higher clas-
sification accuracy than the Gaussian noise method and the
rotation method achieves the highest accuracy. Meanwhile,
a joint augmentation policy with both rotation and flip meth-
ods can further improve the classification accuracy, espe-
cially with insufficient training samples. Given only 12.5% of

initial training dataset, the joint augmentation method
expands the dataset to be a size of 75% of the initial dataset
and obtains even higher than the baseline with 100% training
datasets without augmentation. Furthermore, after deploying
data augmentation, a radio sample can be classified based
on only one half of the radio sampling points, resulting in
a simplified deep learning model and a shorter classification
response time.
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