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ABSTRACT Ensuring the integrity of outsourced data is one of several functional requirements in cloud
storage services, although designing an effective and secure public auditing scheme remains an ongoing
research challenge. For example, a number of existing schemes are designed based on symmetric bilinear
pairing, which are computationally expensive. While certificate-based auditing schemes can simplify certifi-
cate management and mitigate key escrow concern, such schemes are not popular in the literature. Therefore,
we propose a lightweight certificate-based public/private auditing scheme based on asymmetric bilinear
pairing for cloud storage. Specifically, we describe a newmethod of designing lightweight auditing schemes.
Additionally, our proposed scheme is proven to be secure in the random oracle model. We then implement
our scheme by using type D curve of the pairing-based library. The findings demonstrate that our auditing
scheme significantly reduces client’s computation cost in the tag-generation (TagGen) phase, particularly in
comparison to several other competing schemes. For example, when the block size is 10 KB, our on-line
computation cost in the TagGen phase takes only 0.45 seconds, while it requires at least 62.83 seconds
in other schemes. Furthermore, the findings show that when the number of blocks is fixed, the on-line
computation cost in our TagGen phase is constant despite varying file sizes.

INDEX TERMS Certificate-based auditing, public/private auditing, lightweight, provable data possession,
cloud storage.

I. INTRODUCTION
Cloud storage is now a deeply entrenched practice in our
society. However, there remains a number of issues and chal-
lenges that have not been resolved. For example, how do
users ensure the integrity of the outsourced data, particularly
in cases where the users may not have the complete copy

The associate editor coordinating the review of this manuscript and

approving it for publication was Gautam Srivastava .

of the data on their local systems and devices? Potential
solutions that have been presented in the literature include
provable data possession (PDP) model [1] and proof of
retrievability (POR) model [2], [3]. In the PDP model, if the
outsourced data successfully passes an audit without the user
having to retrieve the data, then the user is assured of the
data’s integrity. For the POR model, the user can extract the
data only when the outsourced data successfully passes an
audit.
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Generally speaking, there are two main phase in data
integrity auditing, namely: TagGen and Proof phases. In the
TagGen phase, the user generates the tags associated with the
data, and uploads both data and tags to the cloud server. In the
Proof phase, the auditor sponsors a challenge, the cloud server
returns a response, and the auditor determines integrity of the
outsourced data by verifying the validity of the response.

Furthermore, data integrity auditing can be broadly cate-
gorized into public auditing and private auditing, depending
on whether public verifiability is supported. Private auditing
schemes, such as those presented in [2], [4], are more effi-
cient. However, unlike public auditing schemes, in private
auditing schemes only the owner can audit the data, and the
judge cannot intervene when a dispute occurs. Therefore,
public auditing schemes are generally more practical.

Many public auditing schemes [2], [5]–[8] are designed
based on conventional public key infrastructure (PKI)-based
cryptography. However, a key limitation of PKI-based audit-
ing schemes is expensive certificate management, since the
schemes require the use of certificates generated by some
trusted third-party to bind the user’s identity and public key.
There have been attempts to design schemes that do not
require such expensive certificate management, such as the
identity-based PDP scheme of Wang et al. [9]. There have
also been a large number of ID-based auditing schemes in the
literature, such as those presented in [10]–[15] for different
application scenarios.

Schemes based on certificateless cryptography [17] and
certificate-based cryptography [18], [19] have also been pre-
sented in the literature, designed to solve the key escrow
problem [16] inherent in ID-based cryptography. Examples of
certificateless auditing schemes include those of [20]–[24].
Certificate-based auditing schemes, on the other hand, appear
to be significantly less popular. We are only aware of one
such scheme [25], which focuses only on private auditing.
However, this particular scheme’s efficiency is low.

While public auditing schemes allow third-party interven-
tion (i.e., by a judge) in the case of a dispute, public auditing
schemes are generally inefficient. This significantly limits its
deployment in a real-world application and hence, interest in,
such schemes. In other words, ’’How doweminimize compu-
tation, communication, and storage overheads in public audit-
ing schemes?’’ is an open research issue [26], [27]. In order
to minimize the overheads associated with storage and/or
communication, Shacham and Waters [2] proposed compact
proofs of retrievability scheme to minimize storage space for
tags. The approach of Shacham and Waters [2] also inspired
the design of several other schemes in the literature [7],
[12]–[14], [20]. In addition, to reduce the computation cost,
most existing schemes support batch auditing and third-party
auditing. A number of schemes achieve constant verification
time in the proof phase [11], [20].

However, there are only a small number of schemes that
had reduced computation cost in the tag-generation (TagGen)
phase. According to prior research [1], [14], if 1% of the
total blocks are tampered with, then the auditor can detect the

misconduct with a 99% possibility by challenging 4.6% of the
total blocks. Thus, the computation cost of the Proof phase
is smaller than that of the TagGen phase. Furthermore,
most user devices are resource-constrained mobile devices
(e.g., Android and iOS devices) and improving effi-
ciency [28] is an important research direction for cryptogra-
phy researchers. Therefore, it is more intuitive to minimize
the computation overhead during the TagGen phase. One
could attempt to reduce the computation overhead in the
TagGen phase by using a trusted third-party. For example,
Li et al. [29] used a cloud audit server to generate tags
of the data, on behalf of the user, before uploading to the
cloud server. However, in this scheme, the cloud audit
server can potentially reveal the user’s data and secret key.
Wang et al. [10] used a proxy to facilitate the user to generate
tags, and the user only need to encrypt the data prior to
sending it to the proxy to ensure data privacy. Shen et al. [30]
proposed a lightweight auditing scheme by using a third-party
medium to help the user to generate tags. In this scheme, the
user blinds the data before sending to the third-party medium
to ensure data privacy. Han et al. [31] proposed a lightweight
auditing schemewithout bilinear pairings for smart city. Their
scheme allows a third-party auditor to generate tags for the
data on behalf of the user, and preserve data privacy from
the third-party auditor. Furthermore, all trusted third parties
(i.e., cloud audit server, proxy, or some third-party entity) are
assumed to be honest, in the sense that they will not corrupt
the data, in the schemes of [10], [29]–[31]. In other words,
in these schemes the user will not be able to detect the third-
party’s misbehavior. Therefore, we need to be able to mini-
mize computation cost of the TagGen phasewithout involving
a third-party.

We also observe that in the literature, most pairing-based
data integrity auditing schemes, such as those of [2], [11],
[12], [14], [22], [23], are based on symmetric bilinear pairing,
despite the acknowledgement that asymmetric bilinear pair-
ing is more suited for data integrity auditing schemes [14].

The above observations motivate our focus in this paper.
Specifically, we design a certificate-based auditing scheme
that has a reduced computation cost in the TagGen phase
without involving a third party. We are also inspired by
Zhang et al.’s certificate-based signature scheme [32],
and hence our proposed scheme is also certificate-based.
We leverage the fact that a user generally has more infor-
mation than the auditor, and therefore divide the Proof phase
into PublicVerify phase and PrivateVerify phase. Therefore,
our scheme is a public/private auditing scheme. We also
acknowledge that most user devices are resource-constrained,
and thus ensure that the user side’s requirement is rela-
tively lightweight. Using specific information of the user,
we manage to reduce users’ computation cost in the TagGen
phase. Furthermore, the public/private auditing scheme also
reduces the computation cost of the user in the Proof phase.
In other words, our contribution in this paper is a lightweight
certificate-based public/private auditing scheme, based on
asymmetric bilinear pairing.
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To facilitate understanding of our proposed scheme,
we will introduce relevant background materials (e.g., bilin-
ear pairing, co-computational Diffie-Hellman problem, and
certificate-based signature) in Section II. We then intro-
duce the public/private auditing model and certificate-based
auditing model in Section III, and present our pro-
posed certificate-based public/private auditing scheme in
Section IV. We prove the security of the proposed scheme
in Section V, and implement our scheme using type D curve
of the pairing-based library in Section VI. A comparative
summary of the proposed schemes and several others are
presented in Section VII. It is shown in this section that
our auditing scheme outperforms other schemes, in terms of
achieving reduced computation cost for users during TagGen
and without involving a third-party. The analysis also shows
that when the block size is 10 KB, our on-line computation
cost during TagGen is only 0.45 seconds, unlike the other
schemes (between 62.83 and 250.29 seconds). Furthermore,
if we fix the block numbers, the on-line computation cost
during TagGen in our scheme is constant even when the file
sizes change. In the last section, we present our discussion
and conclusion.

II. PRELIMINARIES
We will now review bilinear pairing [8], [11], [33],
[34], co-computational Diffie-Hellman problem [35],
pseudo-random function, pseudo-random permutation,
certificate-based signature [18], [19], [32], forking
lemma [36] in Sections II-A to II-E, respectively.

A. BILINEAR PAIRING
Let q be a prime, G1, G2, and GT be three cyclic groups with
order q. Let G1 and G2 be written additively with respective
generators P1 and P2, andGT be written multiplicatively. The
map e : G1 × G2 → GT is a bilinear pairing, only when the
following three properties are satisfied.

(1). Bilinearity: For any a, b ∈ Z∗q , e(a · P1, b · P2) =
e(P1,P2)ab holds.
(2). Non-degeneracy: e(P1,P2) 6= 1.
(3). Computablity: For any P̄1 ∈ G1, P̄2 ∈ G2, there exists

a polynomial time algorithm to calculate e(P̄1, P̄2) efficiently.
If G1 = G2, then it is said to be symmetric bilinear

pairing; otherwise, it is said to be asymmetric bilinear pairing.
Furthermore, asymmetric bilinear pairings can be categorized
into whether there is an efficiently computable homomor-
phism 8 : G2→ G1, or not.

B. CO-COMPUTATIONAL DIFFIE-HELLMAN PROBLEM
Let G1,G2,P1,P2, q be the parameters described in Subsec-
tion II-A and Q1 = a · P1, Q2 = b · P2 be two random
elements with a, b ∈ Z∗q unknown. The co-computational
Diffie-Hellman (co-CDH) problem [35] is to calculate Q3 =

a · b · P1.
At the time of this research, there is no efficient polynomial

time algorithm to solve the co-CDH problem. That is to say,
let the probability of a polynomial time algorithm solving the
co-CDH problem, ε, is negligible.

C. PSEUDO-RANDOM FUNCTION AND PSEUDO-RANDOM
PERMUTATION
1) PSEUDO-RANDOM FUNCTION
This algorithm takes α ∈ Z∗q , β ∈ N ∗ as input and returns
β different pseudo-random numbers from Z∗q . We denote this
algorithm as ϕ(α, β) : Z∗q × N

∗
→ (Z∗q )

β .

2) PSEUDO-RANDOM PERMUTATION
This algorithm takes α ∈ Z∗q , β ∈ N

∗, γ ∈ N ∗ as input and
returns a sequence with β different pseudo-random numbers
from Z∗γ . We denote this algorithm as π (α, β, γ ) : Z∗q ×N

∗
×

N ∗→ (Z∗γ )
β .

D. CERTIFICATE-BASED SIGNATURE
There are three entities and five algorithms in a typical
certificate-based signature scheme [18], [19], [32]. The three
entities are the signer, the verifier, and the certifier, and the
five algorithms are Setup, SignerKeyGen, Certify, CBSign,
CBVeri. The certifier executes the Setup algorithm, and out-
puts the the global parameters and the global secret key. The
signer executes SignerKeyGen algorithm, and outputs his/her
secret key sk and public key PK . In the Certify algorithm,
the certifier generates the certificate Cert using the signer’s
public key and identity ID, prior to sending it to signer via a
secret channel. In the CBSign algorithm, given a message m,
the signer computes the signature σ = CBSign(sk,Cert,m).
In the CBVeri algorithm, given PK , ID, m and σ , the veri-
fier computes the value of CBVeri(ID,PK ,m, σ ). It outputs
1/0 based on whether or not the signature is valid.

E. FORKING LEMMA
The forking lemma [36]. Given only the public data as
input, if a probabilistic polynomial time Turing machine
can find a valid signature (σ1, h, σ2) on message m with
a non-negligible probability, then this machine can output
another valid signature (σ1, h′, σ ′2) on the same m by replay-
ing itself with the same random tape and a different oracle
with a non-negligible probability. Here, h is the hash value
of (m, σ1) and σ2 is dependent only on σ1. Note that the
forking lemma is appropriate for the security proof of both
the signature and auditing schemes, as the auditing scheme’s
framework is based on signature.

III. MODELS
In this section, we introduce the public/private auditing
model, the system model and the security model of the
certificate-based auditing.

A. Public/Private Auditing Model
Data integrity auditing is either public auditing or private
auditing. In the latter, it is the user’s duty to audit the
integrity of the outsourced data. Private auditing schemes
are more efficient, but the judge cannot intervene when a
dispute occurs. This is clearly not desirable in e-commerce
applications. In public auditing schemes, both the user and
the auditor can audit the integrity of the outsourced data.
When a dispute occurs, anyone can intervene as a judge.
Therefore, public auditing schemes are more geared for
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practical deployment. However, such schemes are generally
much less efficient.

In existing public auditing schemes, both users and audi-
tors have the same audit stages. However, the user clearly
has more information than the auditor. So, we divide the
audit phase into the PrivateVerify and PublicVerify phases.
The client executes PrivateVerify, which is more efficient due
to the fact that the user has more information. The auditor
executes PublicVerify when a dispute occurs or when the
user is not available to perform the audit. The PublicVer-
ify phase is executed as the audit phase in existing public
auditing schemes. Thus, we refer to such auditing scheme as
public/private auditing schemes.

B. SYSTEM MODEL OF CERTIFICATE-BASED PDP
There are four entities and eight algorithms in the
certificate-based PDP model. The four entities are the cer-
tifier, the cloud server, the user (also commonly referred to
client in the literature), and the auditor. The certifier is an
independent trusted third-party, whose duty is to produce its
own system parameters, and generate client’s certificate from
his/her identity and public key. The cloud server is an entity
with significant storage space and computation resources, and
provides storage services for the client. The client is generally
resource-constrained, and hence the need to outsource data
storage to the cloud server. The auditor is an independent
trusted third-party. With the client’s authorization, the auditor
checks the integrity of the outsourced data and returns the
result to the client.

Compared with the other PDP models, our proposed
scheme is designed to achieve the benefits in both public and
private auditing by dividing the ProofVerify phase into Pri-
vateVerify phase and PublicVerify phase. In order to improve
audit efficiency, the client executes the PrivateVerify phase to
audit the outsourced data. When a dispute happens or when
the client is not available to perform the audit, the auditor is
authorized to audit the outsourced data by using PublicVer-
ify. The eight algorithms are Init, ClientKeyGen, Certify,
TagGen, Chall, ProofGen, PrivateVerify, and PublicVerify in
the certificate-based PDP model. Fig. 1 presents the system
model of certificate-based PDP, and the algorithms are also
explained in detail as follows.

The Init algorithm is performed by the certifier (see step
1 of Fig. 1). Given the security parameters, it generates the
global parameters gp and global secret key gsk . The certifier
keeps gsk secret, and publishes gp.

The ClientKeyGen algorithm is performed by the client
(see steps 2 and 3 of Fig. 1). Given gp, the client picks his/her
secret key sk randomly, and computes the corresponding
public key PK . The client keeps his/her sk secret, and sends
his/her PK and identity ID to the certifier.

The Certify algorithm is executed by the certifier (see steps
4 and 5 of Fig. 1). Given the client’s ID and PK , the certifier
generates the certificate Cert , and sends Cert to the client via
a private channel. Upon receiving Cert , the client checks the
validity of Cert .

FIGURE 1. System model of certificate-based PDP.

The TagGen algorithm is performed by the client and the
cloud server (see steps 6 and 7 of Fig. 1). Given a file F ,
the client generates the tags by using his/her secret key sk
and certificate Cert , and sends the data and tags to cloud
server. The cloud server stores the data and tags.

The Chall algorithm is performed by the client (see step
8 of Fig. 1). The client sponsors a challenge, and sends it to
the cloud server.

The ProofGen algorithm is performed by the cloud server
(see step 9 of Fig. 1). Given the challenge, the cloud server
responds it.

The PrivateVerify algorithm is performed by the client (see
step 10 of Fig. 1). Given the response, the client checks its
validity. Upon receiving the response from the cloud sever,
the client checks the validity of the response.

The PublicVerify algorithm is performed by the auditor
(see steps 11 to 18 of Fig. 1). There are only two cases where
this algorithm will be activated. The auditor performs case
1 when a dispute occurs, and case 2 when the client is not
available for audit.

Case 1 (see steps 11 to 13). Given the forwarded response
from the client, the auditor solves the dispute and returns the
result.

Case 2 (see steps 14 to 18). Upon receiving the authoriza-
tion from the client, the auditor sponsors a challenge, and the
cloud server responds it. Then the client checks its validity,
and sends the result to client.

C. SECURITY MODEL OF CERTIFICATE-BASED PDP
Similar to certificate-based signature model, there are two
adversaries in certificate-based PDP, i.e., the public key
replacement adversary and the malicious certifier adversary.

If an adversary has the ability to select clients’ identities
and replace the public keys at his/her will, but it cannot have
access to the global secret key, then we say this adversary is
the public key replacement adversary 21.

We say that a certificate-based PDP scheme is (q, ε1)
secure against public key replacement adversary 21, if the
probability ε1 of the adversary 21 winning the following
game by making at most q queries is negligible.

The challenger 9 performs the Setup phase to generate
gp, gsk and send gp to 21. Then, 21 adaptively submits
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ClientKeyGen queries, Client secret key query, Public key
replace queries, Certify queries, and TagGen queries to 9
and obtains the corresponding value. Here, the queries are
described in the proof of Theorem 1 in section 5. Finally,21
wins the game if he/she successfully forges a valid response
resp∗ = {F∗0 ,F

∗

1 ,F
∗

2 , . . . ,F
∗

s−1,T
∗
} for client ID∗ on the

challenge chal∗ under the public key PK∗ in the Forgery
phase. Here, ID∗ has not been submitted to the Certify query,
and (ID∗, l,F∗l ) has not been submitted to the TagGen query,
where l ∈ L∗, and L∗ is generated by chal∗.

If an adversary can successfully obtain the global secret
key and attempt to impersonate the user, but it cannot replace
the public key, then we say this adversary is the malicious
certifier adversary.

We say that a certificate-based PDP scheme is (q, ε2)
secure against a malicious certifier adversary 22 if the prob-
ability ε2 of the adversary winning the following game by
making at most q queries is negligible.
The challenger 9 performs the Setup phase to generate

gp, gsk and send them to 22. Then, 22 adaptively submits
ClientKeyGen queries, Client secret key query, Certify
queries, and TagGen queries to 9 and obtains the cor-
responding value. Here, the queries are described in the
proof of Theorem 2 in Section 5. Finally, 22 wins the
game if he/she successfully forges a valid response resp# =
{F#

0 ,F
#
1 ,F

#
2 , . . . ,F

#
s−1,T

#
} for client ID# on the challenge

chal# under the public key PK # in the Forgery phase. Here,
PK # is the output of ClientKeyGen query, and (ID#, l,F#

l )
has not been submitted to the TagGen query, where l ∈ L#,
and L# is generated by chal#.
If a certificate-based PDP scheme can resist both the public

key replacement adversary and the malicious certifier adver-
sary, then we say the scheme is secure.

IV. OUR PROPOSED CERTIFICATE-BASED PDP SCHEME
Our proposed scheme comprises Init, ClientKeyGen, Certify,
TagGen, Chall, ProofGen, PrivateVerify, and PublicVerify.
These eight algorithms are also described below.

A. INIT
This algorithm is performed by the certifier. Let parameters
G1,G2,GT ,8,P1,P2, q, e with P1 = 8(P2), be described
in Subsections II-A. Let h(·) : {0, 1}∗ → Z∗q , h

′(·) :
{0, 1}∗ → Z∗q , H (·) : {0, 1}∗ → G1 be three hash
functions, and the first two be ordinary hash functions,
and the last one be the map to point hash function. Let
ϕ(α, β) : Z∗q × N ∗ → (Z∗q )

β be a pseudo-random func-
tion, and π (α, β, γ ) : Z∗q × N ∗ × N ∗ → (Z∗γ )

β be a
pseudo-random permutation. The certifier chooses a random
number gsk ∈ Z∗q as the global secret key, and calculates
Ppub = gsk · P2. Let CBSign(·, ·, ·) and CBVeri(·, ·, ·, ·)
be the certificate-based sign and verify algorithms described
in Section II-D. For example, the certificate-based sign and
verify algorithms can be Zhang et al.’s certificate-based sig-
nature [32]. Then, the certifier publishes the global param-
eters gp = {G1,G2,GT ,P1,P2, q, e, h(·), h′(·),H (·),Ppub,

ϕ(·, ·), π(·, ·, ·),CBSign(·, ·, ·),CBVeri(·, ·, ·, ·)}, and keeps
the global secret key gsk secret.

B. CLIENTKEYGEN
This algorithm is performed by the client. The client chooses
a random number sk ∈ Z∗q as his/her secret key, calculates
PK = sk ·P2 as his/her public key, and sends his/her identity
ID and public key PK to the certifier.

C. CERTIFY
This algorithm is performed by the certifier. Upon receiving
ID and PK , the certifier chooses a random number r ∈ Z∗q ,
computes CERT = r ·P2, cert = r+gsk ·h(ID||PK ||CERT )
mod q. Then, the certifier sends Cert = (CERT , cert) to the
client via a private channel. Upon receiving Cert , the client
checks whether cert ·P2 = CERT +h(ID||PK ||CERT ) ·Ppub
holds. If the equation holds, then the client accepts Cert
otherwise, it rejects.

D. TAGGEN
There are 7 steps in this algorithm. Steps 1-6 are executed by
the client, and step 7 is executed by the cloud server. Note that
step 1 can be precomputed off-line.

1) STEP 1
Picks random element ρ ∈ Z∗q , generates s − 1 random
elements X = ϕ(ρ, s − 1) = (x1, x2, . . . , xs−1) ∈ (Z∗q )

s−1,
and keeps ρ secret. Then, computes Uj = xj · P1, j =
1, 2, . . . , s− 1, and denoted as U = (U1,U2, . . . ,Us−1).

2) STEP 2
Let |q| be the bit-length of q, and ζ = |q| − 1. Given a file
with file size fz, appends some bits ‘‘0’’ followed by a ζ -bits
integer (fz (mod s·ζ )) to the end of the given file (Themethod
is similar to that of secure hash function [38]), so that file size
of the padded file F is the multiple of (s · ζ ). Then, we pick a
file name FN ∈ Zq for the given file F randomly.

3) STEP 3
Divides the padded file F into n equal blocks with
block size (s · ζ )-bits, and divides each blocks into
s equal sections. i.e., F = (F1,F2, . . . ,Fn),Fi =

(Fi0,Fi1,Fi2, . . . ,Fi,s−1)(1 ≤ i ≤ n). Therefore, Fij ∈ Zq
since the bit-length of Fij is ζ , where 1 ≤ i ≤ n, and
0 ≤ j ≤ s− 1.

4) STEP 4
Computes the signature σC = CBSign(sk,Cert,
FN ||U ||n) = (σ ∗C ,CERT ), where σ

∗
C = (cert + sk · h′((

FN ||U ||n)||ID||PK ||CERT ||Ppub)) · H ((FN ||U ||n)||ID||
PK ||Ppub). Note that any secure signature algorithm can be
used in this step.

5) Step 5
Computes ω = h′(ID||PK ||Ppub), and for i = 1 to n, �i =

H (FN ||i||U ), Ti = (sk · ω + cert) · (�i + Fi0 · H (Ppub) +
(
∑s−1

j=1 Fij · xj) · P1).
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6) STEP 6
Uploads the data and tags {Fi,Ti}(1 ≤ i ≤ n), FN , ID, PK ,
U , and σC to the cloud server. Stores FN , n, s, ρ, and deletes
{Fi,Ti}(1 ≤ i ≤ n),U , σC from the local storage.

7) STEP 7
Upon receiving {Fi,Ti}(1 ≤ i ≤ n), and FN , ID,PK ,U , σC ,
the cloud server stores them.

E. CHALL
The client picks two random elements ρ′, ρ′′ ∈ Z∗q , a random
integer ξ ∈ N ∗, sponsors the challenge chal = (ρ′, ρ′′, ξ ) to
the cloud server.

F. PROOFGEN
Received the challenge chal, the cloud server computes L =
{δi}1≤i≤ξ = π (ρ′, ξ, n+ 1) ∈ (Z∗n+1)

ξ , {al}l∈L = ϕ(ρ′′, ξ ) ∈
(Z∗q )

ξ , F ′j =
∑

l∈L al · Flj, 0 ≤ j ≤ s − 1, T ′ =
∑

l∈L al · Tl
and sends the response resp = {F ′0,F

′

1,F
′

2, . . . ,F
′

s−1,T
′
} to

the client.

G. PRIVATEVERIFY
Upon receiving resp, the client computes (x1, x2, . . . , xs−1) =
ϕ(ρ, s − 1), L = π (ρ′, ξ, n + 1), and {al}l∈L = ϕ(ρ′′, ξ ) ∈
(Z∗q )

ξ , checks the validity of T ′ using equation (1).

e(T ′,P2)

= e(
∑
l∈L

al ·�l + F ′0 · H (Ppub)+ (
s−1∑
j=1

F ′j · xj)

·P1, ω · PK + CERT + h(ID||PK ||CERT ) · Ppub) (1)

If the equation holds, then the file is not corrupted, other-
wise, the file is corrupted.

According to Equation (2), we know that Equation (1) is
correct.

e(T ′,P2)

= e(
∑
l∈L

al · Tl,P2)

= e(
∑
l∈L

al · ((sk · ω + cert) · (�l + Fl0 · H (Ppub)

+ (
s−1∑
j=1

Flj · xj) · P1),P2)

= e(
∑
l∈L

al ·�l +
∑
l∈L

al · Fl0 · H (Ppub)+ (
∑
l∈L

al

·

s−1∑
j=1

Flj · xj) · P1), (sk · ω + cert) · P2)

= e(
∑
l∈L

al ·�l + F ′0 · H (Ppub)+ (
s−1∑
j=1

F ′j · xj)

·P1, ω · PK + CERT + h(ID||PK ||CERT ) · Ppub) (2)

H. PUBLICVERIFY
There are only two cases where this algorithm is used. The
auditor performs case 1 when a dispute occurs, and case
2 when the client is not available for audit.

Case 1. Given the forwarded response resp from the client,
the auditor then computes L = π (ρ′, ξ, n+1), and {al}l∈L =
ϕ(ρ′′, ξ ) ∈ (Z∗q )

ξ , and checks the validity of T ′ using Equa-
tion (3).

e(T ′,P2)

= e(
∑
l∈L

al ·�l + F ′0 · H (Ppub)+
s−1∑
j=1

F ′j · Uj, ω · PK

+CERT + h(ID||PK ||CERT ) · Ppub) (3)

If the equation holds, then the file is not corrupted, other-
wise, the file is corrupted.

According to Equation (1), and Uj = xj · P1 we know that
Equation (3) is correct.

Case 2. Upon receiving the authorization from the client,
the auditor sponsors a challenge chal to the cloud server, and
the cloud server responds with resp to the auditor by using the
method described in the ProofGen phase (see Section IV),
The auditor checks the validity of resp using the method
described in case 1 of the PublicVerify phase (see Section IV).
The results will be sent by the auditor to the client.

Furthermore, our scheme supports batch auditing for dif-
ferent files. For example, if there are two files F =

{Fi}1≤i≤n = {(Fi0,Fi1,Fi2, . . . ,Fi,s−1)}1≤i≤n and F̃ =

{F̃i}1≤i≤ñ = {(F̃i0, F̃i1, F̃i2, . . . , F̃i,s−1)}1≤i≤ñ with file name
FN and F̃N respectively. Therefore, their tags are {Ti}1≤i≤n =
{(sk · ω + cert) · (�i + F̃i0 · H (Ppub) + (

∑s−1
j=1 Fij · xj) ·

P1)}1≤i≤n and {T̃i}1≤i≤ñ = {(sk · ω + cert) · (�̃i + Fi0 ·
H (Ppub) + (

∑s−1
j=1 F̃ij · xj) · P1)}1≤i≤ñ respectively, where

ω = h′(ID||PK ||Ppub), {�i}1≤i≤n = {H (FN ||i||U )}1≤i≤n,
{�̃i}1≤i≤ñ = {H (F̃N ||i||U )}1≤i≤ñ.
In the ProofGen phase, the cloud server computes
{F̄ ′j }0≤j≤s−1 = {

∑
l∈L al · Flj +

∑
l∈L̃ ãl · F̃lj}0≤j≤s−1, 0 ≤

j ≤ s − 1, T̄ ′ =
∑

l∈L al · Tl +
∑

l∈L̃ ãl · T̃l , and sends the
response resp = {{F̄ ′j }0≤j≤s−1, T̄

′
} to the client.

In the PrivateVerify phase, the client checks the validity of
T̄ ′ by using the following equation.

e(T̄ ′,P2)

= e(
∑
l∈L

al ·�l +
∑
l∈L̃

ãl · �̃l + F̄ ′0 · H (Ppub)+ (
s−1∑
j=1

F̄ ′j

· xj) · P1, ω · PK + CERT + h(ID||PK ||CERT ) · Ppub)

where {�l}l∈L = {H (FN ||l||U )}l∈L , and {�̃l}l∈L̃ =

{H (F̃N ||l||U )}l∈L̃ .
In Case 1 of the PublicVerify phase, the auditor checks the

validity of T̄ ′ by using the following equation.
e(T̄ ′,P2)

= e(
∑
l∈L

al ·�l +
∑
l∈L̃

ãl · �̃l + F̄ ′0 · H (Ppub)+
s−1∑
j=1

F̄ ′j

·Uj, ω · PK + CERT + h(ID||PK ||CERT ) · Ppub)
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where {�l}l∈L = {H (FN ||l||U )}l∈L , and {�̃l}l∈L̃ =

{H (F̃N ||l||U )}l∈L̃ .

V. SECURITY PROOF
In this section, inspired by [32], [37] we demonstrate that our
scheme is secure by using Theorems 1 and 2.
Theorem 1: Our scheme can resist the public key replace-

ment adversary if the co-CDH problem [35] of the group G1
and G2 is hard.

Proof: Let (P1,P2, a ·P1, b ·P2) be a random instance of
co-CDH problem,21 be a public key replacement adversary,
and9 be a challenger we constructed. If21 can forge a valid
response with a nonnegligible probability ε1, then 9 can try
to output a · b · P1, by using the following methods with a
nonnegligible probability.

First, we give the framework of the proof. 9 sets Ppub =
b · P2 and IDO as the challenge identity, then sends gp to21.
21 adaptively submits queries to 9, to be answered by 9.
Note that 9 sets a · P1 as a part of the output of H (·) query
with probability 1 − λ. Then, 21 successfully forges a valid
response with probability ε1. 9 uses the Forking lemma [36]
on h(·) query and21 outputs another valid response.9 solves
the co-CDH problem by using the two responses forged by
21. In other words, 9 outputs the value of a · b · P1 with
probability ε′1. The value of ε

′

1 is computed at the end of the
proof. The detailed proof is as follows.
Setup:9 sets Ppub = b ·P2, and sends gp = {G1,G2,GT ,

P1,P2, q, e, h(·), h′(·),H (·),Ppub , ϕ(·, ·), π (·, ·, ·), CBSign
(·, ·),CBVeri(·, ·, ·, ·)} to 21. 9 picks a challenge identity
IDO and answers the following queries.
h(·) Query: With the query message {IDη,PKη,CERTη},

9 checks whether there is a tuple {IDη,PKη,CERTη, hη} in
Lh. If so, returns hη to21; otherwise, picks a random number
hη ∈ Z∗q , adds {IDη,PKη,CERTη, hη} into the list Lh, returns
hη to 21.
h′(·) Query: With the query message {IDη,PKη,Ppub}, 9

checks whether there is a tuple {IDη,PKη,Ppub, ωη} in Lh′ .
If so, returns ωη to 21; otherwise, picks a random number
ωη ∈ Z∗q , adds {IDη,PKη,Ppub, ωη} into the list Lh′ , returns
ωη to 21.
H (·)Query:With the querymessage {FN , θ,U},9 checks

whether there is a tuple {θ, cθ , zθ ,Zθ } in LH . If so, returns
�θ = Zθ −Fθ0 ·�−

∑s−1
j=1 Fθ j ·Uj to21; otherwise, picks a

random bit cθ ∈ {0, 1} such that Pr[cθ = 0] = λ, (0 < λ < 1,
and note that the value of λ can be regarded as the probability
of ’’coin tossing’’, i.e., λ = 1/2), picks a random number
Zθ ∈ Z∗q , if cθ = 0, Zθ = zθ · P1, otherwise, Zθ = zθ · a · P1,
adds {θ, cθ , zθ ,Zθ } into the list LH , returns �θ = Zθ − Fθ0 ·
�−

∑s−1
j=1 Fθ j · Uj) to 21.

ClientKeyGen Query: With the query message {IDη}, 9
checks whether {IDη, skη,PKη} exists in Lk . If so, returns
PKη to 21; otherwise, selects a random number skη ∈ Z∗q ,
computes PKη = skη · P2, adds {IDη, skη,PKη} into Lk ,
returns PKη to 21.
Client Secret Key Query:With the query message {IDη},9

checks the list Lk and returns skη to 21.

Public Key Replace Query: With the query mes-
sage {IDη,PK ′η}, 9 checks whether there is a tuple
{IDη, skη,PKη} in the list Lk . If so, setsPKη = PK ′η, skη =⊥;
otherwise, adds {IDη,⊥,PK ′η} into Lk .
Certify Query: With the query message {IDη,PKη}, 9

checks whether IDη = IDO. If so, 9 aborts; otherwise, 9
checks whether {IDη,PKη} exists in Lc. If not,9 chooses two
random numbers hη, certη ∈ Z∗q , computes CERTη = certη ·
P2− hη · b ·P2, checks whether {IDη,PKη,CERTη} exists in
Lh. If the latter is true, then 9 picks another certη ∈ Z∗q until
there is no collision. 9 will also add {IDη,PKη,CERTη, hη}
into Lh, add {IDη,PKη,CERTη, certη} into Lc, and return
Certη = (CERTη, certη) to 21.
TagGen Query: With the query message {IDη,Fθ }, 9

makes the H (·) query and obtains {θ, cθ , zθ ,Zθ } from LH .
If cθ = 1, then aborts; otherwise, computes Tθ = zθ ·8(ωη ·
PKη + CERTη + hη · Ppub), and sends {θ,Fθ ,Tθ } to 21.
Forgery: Finally, 21 outputs a valid forgery response

resp∗ = {F∗0 ,F
∗

1 ,F
∗

2 , . . . ,F
∗

s−1,T
∗
} of a client ID∗ on subset

L∗ with probability ε1, where L∗ is generated by challenge
chal∗. Here, ID∗ has not been submitted to the Certify query,
and (ID∗, l,F∗l ) has not been submitted to the TagGen query,
where l ∈ L∗, and L∗ is generated by chal∗.
Then, 9 uses the Forking lemma [36] on h(·) query,

and 21 outputs another valid forgery response resp∗∗ =
{F∗0 ,F

∗

1 ,F
∗

2 , . . . ,F
∗

s−1,T
∗∗
} of the same client on the same

subset L∗.
Solving Co-CDH Problem: If the client’s identity is actu-

ally IDO, and at least one of cl 6= 0(l ∈ L∗), then 9 looks up
Lh,L ′h,LH and obtains

e(T ∗,P2) = e(
∑
l∈L∗

�l + F∗0 · H (Ppub)+
s−1∑
j=1

F∗j · Uj, ωO

·PKO + CERTO + h∗O · Ppub)

e(T ∗∗,P2) = e(
∑
l∈L∗

�l + F∗0 · H (Ppub)+
s−1∑
j=1

F∗j · Uj, ωO

·PKO + CERTO + h∗∗O · Ppub)

Let h̃ = h∗∗O − h
∗
O, and we have

e(T ∗∗ − T ∗,P2)

= e(
∑
l∈L∗

�l + F∗0 · H (Ppub)+
s−1∑
j=1

F∗j · Uj, h̃ · b · P2)

= e(
∑
l∈L∗

Zl, h̃ · b · P2)

= e(
∑

l∈L∗,cl=0

zl · P1 +
∑

l∈L∗,cl=1

zl · a · P1, h̃ · b · P2)

= e(
∑

l∈L∗,cl=0

zl · P1, h̃ · b · P2) · e(
∑

l∈L∗,cl=1

zl · a · P1, h̃

· b · P2)

= e(P1, h̃ ·
∑

l∈L∗,cl=0

zl · b · P2) · e(P1, h̃ ·
∑

l∈L∗,cl=1

zl

· a · b · P2)

2264 VOLUME 8, 2020



F. Wang et al.: Lightweight Certificate-Based Public/Private Auditing Scheme

= e(h̃ ·
∑

l∈L∗,cl=0

zl ·8(b · P2),P2) · e(h̃ ·
∑

l∈L∗,cl=1

zl

·8(a · b · P2),P2)

= e(h̃ ·
∑

l∈L∗,cl=0

zl ·8(b · P2),P2) · e(h̃ ·
∑

l∈L∗,cl=1

zl

· a · b · P1,P2)

i.e.,

e(T ∗∗ − T ∗ − h̃ ·
∑

l∈L∗,cl=0

zl ·8(b · P2),P2)

= e(h̃ ·
∑

l∈L∗,cl=1

zl · a · b · P1,P2)

Then, 9 can compute a · b · P1 = (h̃ ·
∑

l∈L∗,cl=0 zl)
−1
·

(T ∗∗ − T ∗ − h̃ ·
∑

l∈L∗,cl=0 zl ·8(b · P2)).
Probability: According to the game, 9 can compute a · b ·

P1, iff, the following three events happen.
Â: 9 does not abort in the Certify query.
B̂: 21 outputs a valid forgery response with at least one of

cl 6= 0(l ∈ L∗).
Ĉ : When B̂ happens,21 outputs the valid forgery response

with the identity IDO.
We have pr[Â] ≥ (1− 1

qh
)qC , pr[B̂ | Â] ≥ (1− λ|L

∗
|) · ε1,

pr[Ĉ | (Â ∧ B̂)] ≥ 1
qh
, where qh and qC are the number of

h query and Certify query respectively, |L∗| is the number
of elements in set L∗. so, the probability of 9 solving the
co-CDH problem is ε′1 = pr[Â ∧ B̂ ∧ Ĉ] ≥ 1

qh
· (1− 1

qh
)qC ·

(1− λ|L
∗
|) · ε1.

Theorem 2: Our proposed certificate-based PDP scheme
can resist the malicious certifier adversary if the co-CDH
problem [35] of the group G1 and G2 is hard.

Proof: Let (P1,P2, a · P1, b · P2) be a random instance
of co-CDH problem, 22 be a malicious certifier adversary,
and9 be a challenger we constructed. If22 can forge a valid
response with a nonnegligible probability ε2, then 9 can try
to output a · b · P1 by using the following methods with a
nonnegligible probability.

First, we give the framework of the proof. The 9 sets IDO
be the challenge identity, then sends gp, gsk to 22. The 22
adaptively submits queries to 9, and 9 answers them. Note
that 9 sets a · P1 as a part of the output of H (·) query with
probability 1−λ, andPKη = b·P2 as the output of ClientKey-
Gen query when IDη = IDO. Then, 22 successfully forges
a valid response with probability ε2. 9 solves the co-CDH
problem by using the response forged by22. that is to say,9
outputs the value of a · b · P1 with probability ε′2. The value
of ε′2 are computed in the end of the proof. The detail proof
can be seen as follows.
Setup: 9 picks a random number gsk ∈ Z∗q as the global

secret key, computes Ppub = gsk · P2, and returns the global
public parameters gp = {G1,G2,GT ,P1,P2, q, e, h(·), h′(·)
,H (·),Ppub, ϕ(·, ·), π(·, ·, ·),CBSign(·, ·),CBVeri(·, ·, ·, ·)}
and the global secret key gsk to 22. 9 picks a challenge
identity IDO and answers the following queries. Note that

h′(·) and H (·) queries are executed as those in the proof of
Theorem 1.
ClientKeyGen Query: With the query message {IDη}, 9

checks whether {IDη, skη,PKη} exists in Lk . If so, returns
PKη to 22; otherwise, if IDη 6= IDO, selects a random
number skη ∈ Z∗q , computes PKη = skη · P2, adds
{IDη, skη,PKη} into Lk , returns PKη to 22; otherwise, sets
PKη = b · P2, adds {IDη,⊥,PKη} into Lk , returns PKη
to 22.
Client Secret Key Query: With the query message {IDη},

9 checks whether IDη = IDO. If so, 9 aborts; otherwise, 9
checks the list Lk and returns skη to 22.
Certify Query: 9 holds two list Lc and Lh, which are

initialized to be empty. With the query message {IDη,PKη},
9 checks whether {IDη,PKη} exists in Lc. If so, {IDη,PKη}
is in Lh too; 9 returns Certη = (CERTη, certη) and the hash
value hη of {IDη,PKη,CERTη} to 22. Otherwise 9 chooses
a random number rη ∈ Z∗q , computes CERTη = rη ·P2, picks
a random number hη ∈ Z∗q , adds {IDη,PKη, rη,CERTη, hη}
into Lh. Then, 9 computes certη = rη + gsk · hη, adds
{IDη,PKη, rη,CERTη, certη} into Lc, and returns Certη =
(CERTη, certη) and the hash value hη of {IDη,PKη,CERTη}
to 22.
TagGen Query: With the query message {IDη,Fθ }, 9

makes the H (·) query and obtains {θ, cθ , zθ ,Zθ } from LH .
If IDη 6= IDO, computes Tθ = (sk · ωη + certη) · Zθ , else
if cθ = 1, then aborts; otherwise, computes Tθ = zθ · ωη ·
8(PKη)+ certη · Zθ , and sends {θ,Fθ ,Tθ } to 22.
Forgery: Finally, 22 outputs a valid forgery response
{F#

0 ,F
#
1 ,F

#
2 , . . . ,F

#
s−1,T

#
} of a client on subset L# with

probability ε2, where L# is generated by challenge chal#.
Here, PK # is the output of ClientKeyGen query, and
(ID#, l,F#

l ) has not been submitted to the TagGen query,
where l ∈ L#, and L# is generated by chal#.
Solving Co-CDH Problem: If the client’s identity is IDO,

and at least one of cl 6= 0(l ∈ L#), then9 looks up Lh,L ′h,LH
and obtains

e(T #,P2)

= e(
∑
l∈L#

�l + F#
0 · H (Ppub)+

s−1∑
j=1

F#
j · Uj, ωO · PKO

+CERTO + hO · Ppub)

= e(
∑
l∈L#

Zl, ωO · b · P2 + rO · P2 + hO · gsk · P2)

= e(
∑
l∈L#

Zl, ωO · b · P2) · e(
∑
l∈L#

Zl, (rO + hO · gsk)

·P2)

= e(
∑

l∈L#,cl=0

zl · P1 +
∑

l∈L#,cl=1

zl · a · P1, ωO · b

·P2) · e((rO + hO · gsk) ·
∑
l∈L#

Zl,P2)

= e(
∑

l∈L#,cl=0

zl · P1, ωO · b · P2) · e(
∑

l∈L#,cl=1

zl · a
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TABLE 1. Field size of G1 in each type of curves (bits) [40].

·P1, ωO · b · P2) · e((rO + hO · gsk) ·
∑
l∈L#

Zl,P2)

= e(ωO ·
∑

l∈L#,cl=0

zl ·8(b · P2),P2) · e(
∑

l∈L#,cl=1

zl

·ωO · a · b · P1,P2) · e((rO + hO · gsk) ·
∑
l∈L#

Zl,P2)

In other words, we have the following:

e(T #
− ωO ·

∑
l∈L#,cl=0

zl ·8(b · P2)− (rO + hO · gsk)

·

∑
l∈L#

Zl,P2) = e(ωO ·
∑

l∈L#,cl=1

zl · a · b · P1,P2)

Then, 9 can compute a · b · P1 = (ωO ·
∑

l∈L#,cl=1 zl)
−1
·

(T #
−ωO ·

∑
l∈L#,cl=0 zl ·8(b·P2)−(rO+hO ·gsk)·

∑
l∈L# Zl).

Probability: According to the process, 9 can compute a ·
b · P1, iff, the following three events happen.
Ê : 9 does not abort in Client secret key query.
F̂ :22 outputs a valid forgery response with at least one of

cl 6= 0(l ∈ L#).
Ĝ: When F̂ happens,22 outputs the valid forgery response

with the identity IDO.
We have pr[Ê] ≥ (1− 1

qckg
)qcsk , pr[F̂ | Ê] ≥ (1−λ|L

#
|)·ε2,

pr[Ĝ | (Ê∧F̂)] ≥ 1
qC

, where qckg, qcsk and qC are the number
of ClientKeyGen query, Client secret key query and Certify
query respectively, |L#| is the number of elements in set L#.
so, the probability of 9 solves the co-CDH problem is ε′2 =
pr[Ê ∧ F̂ ∧ Ĝ] ≥ 1

qC
· (1− 1

qckg
)qcsk · (1− λ|L

#
|) · ε2.

VI. IMPLEMENTATION AND EVALUATION
In this section, we implemented our auditing scheme on a
notebook with the following specifications: Lenovo with an
I7-6500U 2.59GHz processor, 8G bytes memory and Win-
dow 10 operating system), a Workstation 8.0 virtual machine
(with the Ubuntu operating system), and using pairing-based
library (version 0.5.12) [39].

A. CURVE SELECTION
There are seven types of curves in pairing-based library
(version 0.5.12) [39]. Types A, B, C, and E curves are for
symmetric pairings, and Types D, F and G curves are for
asymmetric pairings. When the order q of groups is around
160 bits, Lynn [40] suggested a field size of G1 in each type
of curves – see also TABLE 1. According to TABLE 5 in
Section VII-C, the size of tags mainly depends on the size of
G1. Therefore, the asymmetric pairing is a good choice for
minimizing storage space and communication cost.

We will omit operations with minimal computation costs,
and there remains eight operations in our scheme to

FIGURE 2. Time cost of 1 MB file with different block sizes in our scheme.

be considered. These eight operations are SM1,PA1,H1,

SM2,PA2, SMT ,PAT ,Pair . SMi(i = 1, 2,T ) refers to
scalar multiplication operation in group Gi,PAi(i =

1, 2,T ) refers to point addition operation in group Gi,H1
denotes map-to-point hash function in group G1, and
Pair denotes bilinear paring operation. Furthermore, these
eight operations are the main operations of the schemes
reviewed in Section VII-B (as shown in TABLE 4). Note
that there are seven type curves in pairing-based library
(version 0.5.12) [39], and Types B and C are not imple-
mentable [39]. So, we implement those operations in each
type of curves, and evaluate their runtime – see TABLE 2.

From TABLE 4, we observe that the computation costs
in the TagGen phase mainly depends on those of opera-
tions in G1. Furthermore, computation costs introduced in
the TagGen phase are the main costs for the data integrity
auditing schemes. According to the runtime summarized in
TABLE 2, it is clear that the asymmetric pairing is a good
choice for minimizing computation cost. So, the data integrity
auditing schemes based on asymmetric pairing aremore prac-
tical. Therefore, we will next describe the implementation our
scheme using Type D curve (d159.param).

B. IMPLEMENTATION
We fixed a 1 MB file, and increased the block size from
0.3KB to 45KB. As shown in Fig. 2, the on-line time cost
in the TagGen phase is only 0.45 seconds with a block size
of 10 KB, and the time decreases as the block size increases.
Compared with the time cost of 157 seconds for all block
sizes in [14], our results are significantly more promising.
According to prior studies [1], [14], we selected 4.6% of the
entire blocks to sponsor a challenge. Therefore, the time cost
of private/public verify phases is less than that of the TagGen
phase – see Fig. 2, particularly when the block size is less than
10KB.When the block size is larger than 10KB, the time cost
of private/public verify phases becomes a little bigger than
the actual value, which is because the number of challenging
blocks becomes too small and we round it up. Fig. 6 depicts
the findings for the large file of 6 MB in size.
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TABLE 2. Runtime of key operations in each curve curve (milliseconds).

FIGURE 3. On-line time cost of fixed block numbers in TagGen with
different file sizes in our scheme.

We fixed the block numbers as ‘‘10,000, 5,000, 1,000,
and 500’’, increased the file size from 0.2MB to 6MB, and
investigated the on-line time cost introduced in the TagGen
phase (as shown in Fig. 3). As shown in Fig. 3, we can
observe that the on-line time cost in the TagGen phase
is determined by the number of blocks, rather than the
file size.

VII. COMPARATIVE SUMMARY
Now, we will compare our scheme with seven existing PDP
schemes.

A. PROPERTIES
We can observe from TABLE 3 that our proposed
certificated-based PDP scheme not only removes the cer-
tificated verify phase in PKI-based PDP scheme, but also
addresses the key escrow problem in ID-based PDP scheme.
In order to reduce the computation overhead in TagGen,
we proposed a certificate-based public/private auditing
scheme. In our scheme, the client has more information;
thus, it can privately verify the response resp with a lower
computation cost. When a dispute occurs, the client autho-
rizes the auditor to publicly verify the response resp to
resolve the dispute. Furthermore, the client can autho-
rize the auditor to publicly verify the response resp when
he/she is not available (e.g., off-line). Clearly, PublicVer-
ify introduces additional computation cost. Furthermore,
we split TagGen into on-line and off-line phases. The
client can pre-compute in the TagGen phase for improved
performance.

TABLE 3. A comparative summary: Properties.

B. COMPUTATION COSTS
A summary of the computation costs of our scheme with
that of seven other PDP schemes [2], [11], [12], [14], [22],
[23], [25] is presented in TABLE 4. Although the seven
other schemes are based on symmetric pairing, we analyzed
their operations with asymmetric pairing of Type D curve
(d159.param). From TABLE 2, one can observe that these
seven schemes are more ineffective if the analysis is based
on symmetric pairing. In order to avoid the hash value stored
attack, we omit the hash function for data of reference [12]
in TABLEs 4 and 5. In TABLE 4, n, s, c is the number of the
block, the section, and the challenged block respectively, n′

and c′ are the special case with s = 1, and k is the attribute
number described in [14].

FIGUREs 4, 5, and 6 also describe the comparison reported
in TABLE 4. As discussed earlier, we implemented our
scheme using Type D curve. We calculated the computational
costs in the seven other schemes using TABLEs 2 and 4
without taking the Sign operation into account for simplic-
ity. The findings are presented in FIGUREs 4, 5, and 6.
As the block size in [11], [22], [23], [25] are constant (i.e.,
160 bits), we do not describe them in the figures. How-
ever, we do discuss them below. Note that the computation
costs of the scheme in [14] (see FIGUREs 4, 5, and 6)
are less than those in [14]. Thus, we set k = 1 instead
of 3.

In FIGURE 4, we fixed the file size to 1 MB and compared
the computation cost in the TagGen phase with different
block sizes. The computation costs of the schemes in [11],
[22], [23], [25] are constant at 250.296 seconds, 128.448 sec-
onds, 128.455 seconds, 128.448 seconds respectively. From
FIGURE 4, we can see that our computation costs in the
TagGen phase is much lower than those of other schemes. For
example, when the block size is 10 KB, our computation cost
in the on-line TagGen phase is only 0.45 seconds, compared
with that about 62.83 seconds in the schemes in [2], [12], [14].
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TABLE 4. A comparative summary: Computation costs.

In FIGURE 5, we fixed the block number to 5,000 and
compared the on-line computation cost in the TagGen phase
with different file sizes. Again, since the block sizes in the
schemes of [11], [22], [23], [25] are constant at 160 bits,
the block number of those schemes cannot be fixed at
5,000 blocks. Clearly, the computation costs of those schemes
increase as file size increases. As shown in FIGURE 5,
the computation costs of the schemes in [2], [12], [14]
increase as the file size increases, which is almost 400 sec-
onds when the file size is 6 MB. However, in the TagGen
phase of our scheme, the on-line computation cost is almost
constant to 21.8 seconds, and the total computation cost
linearly increases, but very slowly. The total computation
cost in the TagGen phase of our scheme is estimated to be
34.6 seconds when the file size is 1 GB.

In FIGURE 6, we set c = 0.046n and file size is 6MB.
Then, we compared the computation cost in the ProofVerify
phase with different block sizes. The computation costs of the
schemes in [11], [22], [23], [25] are constant at 0.022 seconds,
18.236 seconds, 18.239 seconds, 18.235 seconds, respec-
tively. We also remark that the computation cost of the

TABLE 5. A comparative summary: Storage and communication costs.

FIGURE 4. A comparative summary: Computation cost in the TagGen
phase for 1 MB file with different blocks.

scheme in [11] is not related to the file size. From FIGURE 6,
we can see that our computation costs in the PrivateVerify
phase is much lower than those of the other schemes with the
exception of [11], and the computation costs of PublicVerify
are the same for the schemes in [2], [12], [14]. However,
the computation cost in the TagGen phase of the scheme
in [11] is the highest.

C. STORAGE AND COMMUNICATION COSTS
A comparative summary of the storage space and communi-
cation costs for all eight schemes is presented in TABLE 5,
and we can see that the communication cost of our scheme
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FIGURE 5. A comparative summary: Time cost of 5,000 blocks in the
TagGen phase with different file sizes.

FIGURE 6. A comparative summary: Computation cost in the ProofVerify
phase of 6 MB file with different block sizes.

is lower than those of the seven other schemes in the Chall
phase.

FIGURE 7 also shows the storage costs of TABLE 5 in the
TagGen phase. As the block sizes of the schemes in [11], [22],
[23], [25] are constant at 160 bits, we do not describe them in
FIGURE 7. However, we can observe that the storage costs of
the schemes in [11], [22], [23], [25] are 2.0002MB, 2.4MB,
2.0005MB, 2MB, respectively. For simplicity, we omit the
size of sign in TABLE 5 for the schemes in [2], [11], [14], and
set k = 1 for the scheme in [14]. Let size of the file be 1MB,
and file section, G1 and Z∗q be all 160 bits. We used Type D
curve (d159.param) and point compression technology. The
findings reported in FIGURE 7 show that our storage costs in
the TagGen phase is as same as those of the scheme in [2],
and are much lower than those of the remaining schemes
except [12]. However, computation costs in the TagGen phase
of the schemes in [2], [12] are much higher than those of our
scheme.

FIGURE 7. The comparisons of storage cost of 1 MB file with different
block sizes.

VIII. CONCLUSIONS AND OPEN ISSUES
Data integrity auditing is one important approach to ensure
the integrity of outsourced data in cloud storage. Such
approach will be increasingly important as more data are
being outsourced and stored at the cloud or offshore loca-
tions. However, the TagGen phase in data integrity auditing
schemes is usually the cause of inefficiency. In addition, most
existing schemes are based on symmetric bilinear pairing, and
there is a lack of certificate-based auditing schemes.

Therefore, in this paper we presented our lightweight
certificate-based public/private auditing scheme based on
asymmetric bilinear pairing. Such a scheme can be used
to ensure the integrity of data outsourced to the cloud for
storage. We then evaluated both the security and the perfor-
mance of our scheme. In comparison to seven other exist-
ing auditing schemes, our auditing scheme has a significant
reduced computation cost for the client at TagGen, without
relying on a third-party. When the block size is 10 KB,
our on-line computation cost in the TagGen phase is only
0.45 seconds, while it needs about 62.83 to 250.29 seconds
in other schemes. Furthermore, if we fix the blocks numbers,
the on-line computation cost at Taggen is constant even when
file size changes.

In this paper, we also introduced the notion of pub-
lic/private auditing model. Specifically, the client executes
the private auditing phase, which is more efficient since the
client has more information. The auditor executes the public
auditing phase in the event of a dispute or when the client
is not available to undertake an audit. Such a notion is key
to the efficiency of our scheme. However, how to design a
public/private auditing scheme as efficient as private auditing
remains an open issue.
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