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ABSTRACT Rotation-invariant feature extraction is crucial for object detection in Very High
Resolution (VHR) optical remote sensing images. Although convolutional neural networks (CNNs) are good
at extracting the translation-invariant features and have been widely applied in computer vision, it is still a
challenging problem for CNNs to extract rotation-invariant features in VHR optical remote sensing images.
In this paper we present a novel Double-Net with sample pairs from the same class as inputs to improve
the performance of object detection and classification in VHR optical remote sensing images. Specifically,
the proposed Double-Net contains multiple channels of CNNs in which each channel refers to a specific
rotation direction and all CNNs share identical weights. Based on the output features of all channels, multiple
instance learning algorithm is employed to extract the final rotation-invariant features. Experimental results
on two publicly available benchmark datasets, namelyMnist-rot-12K and NWPUVHR-10, demonstrate that
the presented Double-Net outperforms existing approaches on the performance of rotation-invariant feature
extraction, which is especially effective under the situation of small training samples.

INDEX TERMS Convolution neural network (CNN), feature learning, object detection, rotation-invariant,
very high resolution (VHR).

I. INTRODUCTION
Extracting rotation-invariant features is crucial for object
detection in very high resolution (VHR) optical remote sens-
ing images. VHR optical remote sensing images are captured
at high altitude, and they usually contain sophisticated chal-
lenges such as rotation variations, geometric transformation
changes, scale changes, illumination changes, etc. Conse-
quently, object detection and classification in VHR optical
remote sensing images is significantly different from that of
nature image dataset (like ImageNet [1], CIFAR-10) which
rarely considers rotation variations.

To address the rotation-invariant problem, most of
conventional machine learning approaches employ hand-
crafted or shallow-learning-based features [2], [3]. One of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeeb Dey .

most famous handcrafted feature is Scale-invariant feature
transform (SIFT) [4], [5] which has been widely applied in
imagematching. SIFT is able to extract rotation-invariant fea-
tures and transformation-invariant features. However, such a
local feature descriptor fails to represent the whole object
in object detection and classification tasks. Histogram of
oriented gradient (HOG) feature [6] has also widely used
in remote sensing image classification and object detection.
The core idea of HOG feature is to capture the edge or local
shape information of the objects by using edge direction
histogram of cell units of small connected regions in an
image. The combination of HOG feature and SVM classifier
has shown great success in object detection task. HOG has
also been extended to rotation-invariant version and applied
to object detection in VHR optical remote sensing images [7].
These handcrafted or shallow-learning-based features, such
as SIFT, HOG, and bag-of-words (BoW) [8], have gained
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satisfying performance in remote sensing image classifica-
tion and object detection due to their simplicity, efficiency,
and invariance under viewpoint changes and background clut-
ter. However, they expose deficiencies in description capabil-
ity and generalization capability when the application scene
is becoming more complex.

The research of feature invariance by neural network (NN)
can date back to 1990s. Yoshitaka et al. [9] used image
preprocessing methods to obtain rotation-invariant and
transformation-invariant features. They adopted a three layer
feed-forward network with back-propagation for learning and
recognition, in which data augmentation is used to obtain
more training samples. This idea motivates recent studies on
invariant feature learning by deep NN (DNN) a lot. Recently,
after the AlexNet model [10] showing powerful feature rep-
resentation capability and generalization capability in nature
scene images, many researches have been carried out based
on Convolutional Neural Networks (CNNs) to extract both
rotation-invariant and transformation-invariant features. For
example, Cheng et al. [11] modified the architecture of
AlexNet [10] by replacing ‘FC8’ layer with a new rotation-
invariant layer, which averages the features extracted from
different angles of the same training sample to obtain a
rotation-invariant feature. The TI-Pooling (transformation-
invariant pooling operator) takes advantage of the tiny rota-
tion invariance of max-pooling, which uses many angles
of input sample to expand the rotation invariance of max-
pooling [12]. Dielemanet et al. [13] presented a deep neural
network for galaxy morphology classification by exploiting
translational and rotational symmetry. The Deep-HiTS [14]
builded a rotation-invariant convolutional neural network for
classifying images of transient candidates into artifacts or real
sources for the High Cadence Transient Survey (HiTS).

Though CNN-based approaches have achieved success
in rotation-invariant and transformation-invariant feature
extraction, the size of objects in VHR remote sensing images
is much smaller and their background is more complex
than nature images. Moreover, the labeled samples are often
rare for VHR remote sensing images, especially for that
acquired over aviation or space platforms. Therefore, more
powerful feature extraction algorithms are required for object
detection in VHR remote sensing images. In this paper,
a novel Double-Net with sample pairs from the same class
as inputs is proposed to improve the performance of object
detection and classification in VHR optical remote sens-
ing images. Specifically, the proposed Double-Net contains
multiple channels of CNNs in which each channel refers to
a specific rotation direction and all CNNs share identical
weights. Based on the output features of all channels, multiple
instance learning algorithm is employed to extract the final
rotation-invariant features. Moreover, a new objective func-
tion is designed to train the proposed Double-Net with the
within-class distance and softmax loss. We evaluate the pro-
posed method on two publicly available benchmark datasets:
Mnist-rot-12K and NWPU VHR-10, to validate rotation-
invariant performance by comparing it with state-of-the-art

rotation-invariant algorithms, including RICNN [11],
TI-Pooling [12] and traditional CNN features. This work
is an extension of our preliminary work published in [15].
Here, we improve the rotation-invariant feature extraction
algorithm by designing new loss function, and conduct more
extensive and comprehensive experiments including verifi-
cation analysis and image segmentation to verify the per-
formance of object detection in VHR optical remote sensing
images.

The rest of this paper is organized as follows. Section II
briefly introduces the preliminary knowledge including mul-
tiple instance learning and metric learning involved in this
paper. We describe details of our Double-Net and new objec-
tive function in Section III. Section IV introduces the object
detection framework with Double-Net in VHR optical remote
sensing images. Section V shows comparative experimental
results on two datasets. Finally, conclusions are drawn in
Section VI.

II. PRELIMINARY KNOWLEDGE
The presented Double-Net model uses two different training
samples from the same class as inputs to extract rotation-
invariance features in images. Our approach involves two
aspects of preliminary knowledge: multiple instance learning
andmetric learning.We briefly introduce them in this section.

A. MULTIPLE INSTANCE LEARNING
Multiple instance learning (MIL) [16]–[18] is a method
evolved from the supervised learning algorithm. Instead of
giving individual label for each instance, MIL just receives
a set of ‘bags’ with the bag labels. Each bag contains many
individual instances and an instance can be a single image
sample or feature. A ‘bag’ Xbag is defined as:

Xbag = {X1,X2, . . . ,Xn}, (1)

where Xi is the ith instance, and n is the number of instance
in the bag. For the binary classification task, the bag
is considered positive if it contains at least one positive
instance. In other words, if all instances of bag are negative,
the bag will be labeled as negative. Obviously, relativity
of sample from the same class is considered in multiple
instance learning (MIL). In this paper, we adopt the multiple
instance learning algorithm to solve within-class diversity
with metric learning during training our Double-Net.

B. METRIC LEARNING
Metric Learning [19], [20] is also known as similarity learn-
ing, which aims to maximize the inter-class distances and
minimize the intra-class distances. Euclidean distance and
Mahalanobis distance are usually used to measure the dis-
tance between different features. And the Euclidean distance
De andMahalanobis distanceDm are computed by (2) and (3),
respectively:

D2
e(xi, xj) = ‖xi − xj‖

2
2, (2)

Dm(xi, xj) =
√
(xi − xj)T6−1(xi − xj), (3)
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where x i and x j are d-dim features, and 6 is the covariance
matrix.

The existing metric learning works based on deep CNN
can be roughly divided into two classes: Siamese network and
triplet network.

1) SIAMESE NETWORK
Siamese network [21] is trained with training pair (x i, xj) and
it employs contrastive loss function:

Lcon =
1
2
yi,jD2

e(xi, xj)+
1
2
(1− yi,j)h(α − D2

e(xi, xj)), (4)

where yi,j describes the sample pair (xi,xj) has the same
identity or different identity. For example, if xi and xj are from
the same class, yi,j = 1; otherwise yi,j = 0. h(α − D2

e(xi, xj))
is a hinge loss function:

h(α − D2
e(xi, xj)) = max(α − D2

e(xi, xj), 0), (5)

where α is a predefined margin.
Contrastive loss function can effectively handle with the

relationship of a sample pair (x i, xj) in neural networks. If the
sample pair (x i, xj) is from the same class, the loss is Lcon =
1
2D

2
e(xi, xj), and we aim to decrease D2

e(xi, xj). Otherwise,
the loss is 1

2 max(α−D2
e(xi, xj), 0) and we increase D

2
e(xi, xj)

until it is larger than the margin α.

2) TRIPLET NETWORK
Unlike the Siamese network takes a sample pair as input,
the input of the Triplet network [22] is a triplet, (xa, xp, xn),
where xa is called as anchor, (xa, xp) from same class, and
xn from different classes. It is trained with the triplet loss
function:

Ltrip = max(D2
e(xa, xp)− D

2
e(xa, xn)+ α, 0)

2. (6)

Intuitively, we hope that the negative pair distance is larger
than the positive pair distance with a margin. To achieve
this, we aim to penalize the negative pair distances for being
smaller than positive pair distances plus a pre-defined mar-
gin. In this paper, we adopt the contrastive loss to train our
Double-Net. However, different from most of existing metric
learning works, the metric learning regularization is not only
used to learn discriminative feature representations but also
explored to train an effective classifier simultaneously.

III. PROPOSED METHOD
The Figure 1 illustrates the overall architecture of our pro-
posed Double-Net for feature learning and feature extraction.
In summary, it consists of the following three steps:

1) Image preprocessing: The goal of our proposed method
is to address the challenges of within-class diversity
in VHR optical remote sensing image. Thus, the input
of our proposed Double-Net is sample pair (X i, X j),
where X i and X j are from the same class. In image
preprocessing, we select arbitrary two samples from the
same class as training sample pairs.

2) Feature Learning: the proposed Double-Net is trained
with sample pairs from the same class as input to fea-
ture learning. The two samples are input to two blocks

of Double-Net respectively, for rotation-invariant fea-
ture learning. Their rotation-invariant features are com-
bined into a new feature. Such input of sample pairs
can also be viewed as a training augmentation that
the number of training is increased to be much larger
than the number of available training samples. And it
also has another advantage of changing the distribution
of within-class feature. In the classification part of
the network, except for using the cross entropy loss,
we also use the metric learning regularization term on
learning the rotation-invariant features to enforce the
Double-Net models to be more discriminative.

3) Feature Extraction: The proposed Double-Net takes
only one sample as input to extract rotation-invariant
feature.

A. FEATURE LEARNING BY DOUBLE-NET
The total architecture of the proposed Double-Net is shown
in the Figure 1. As shown in Figure 1, the Double-Net model
contains two parts: the upper half is feature learning model
for training, and the lower half is feature extraction model for
testing.

The proposed Double-Net is divided into two identical
blocks. Sample pairs from the same class are fed to these
block such that two blocks of Double-Net receive two dif-
ferent samples from the same class. As shown in Figure 1,
each block contains multiple CNNs to handle a sample with
different rotations to extract rotation-invariant features. The
architecture of the CNN in each channel of the block is shown
in Figure 2. To facilitate training and, particularly, to avoid too
large number of model parameters, the parameters (weights
and biases) of layers C1, C2, C3, FC4 of CNN in each
channel of the block, denoted by {W1, W2, W3, W4} and
{B1, B2, B3, B4}, are shared. The summation of gradient in
all channels is used to update the sharing weights.

We define L rotation angles θ = {θ1, θ2, . . . , θL}, and
apply rotation transformation in the input image, so that we
have L samples wither different rotation transformation: X =
{Xθ1 ,Xθ2 , . . . ,XθL }. As Double-Net has two blocks, we have
(Xi, Xj) = ({Xiθ1 , Xiθ2 , . . . , XiθL}, {Xjθ1 , Xjθ2 , . . . ,XjθL}),
which will be fed into the two blocks to train the Double-Net.

We define O4(Xiθ1 ) as outputs of FC4 layer when the
sample Xiθ1 is trained by the Double-Net. Thus the new
rotation-variant feature gr is computed by

gr = max{O4(Xiθ ),O4(Xjθ )}, (7)

where O4(Xiθ ) is defined as a feature set {O4(Xiθ1 ),
O4(Xiθ2 ), . . . ,O4(XiθL )} and O4(Xjθ ) is defined as a set
{O4(Xjθ1 ), O4(Xjθ2 ), . . . ,O4(XjθL )}.
Motivated by the MIL algorithm, we want to construct

the new feature gr with MIL. Instead of the maximum oper-
ation in (7), many other operators can be used. As many
previous work have proved that the maximum operator is
the most effective, we adopt the maximum operator in this
paper. This (7) satisfies the axioms of closure, associativity,
invertibility and identity when the sample pair (O4(XiθL ),
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FIGURE 1. Process overview of feature learning and feature extraction.

O4(XjθL )) as input data, for the detailed proof please refer
to [17].

In image classification tasks, generalization of recognition
algorithms is eternal pursuit of researcher. The TI-Pooling
solves a problem of view invariance, its group consists of
a series of transformations of one sample. Different from
TI-Pooling [12], wewant that this new features gr can possess
rotation invariance and algorithm model can possess better
generalization of recognition algorithms. Consideringwithin-
class variance in the new rotation-invariant feature we design,
(O4(XiθL ),O4(XjθL )) from the same class, and new features gr
can obtain the better generalization.

Thus the Xi and Xj in sample pair (Xi, Xj) can be combined
arbitrarily, which result in number of training data set become
larger. In order to prevent overfitting, we introduce the L2
regularization term in object function:

RL2 =
λ1

n
(‖W‖22), (8)

whereW = {W1,W2,W3,W4}, and λ1 is tradeoff parameters
that control the relative importance of the regularization term
in object function.

By constructing a new invariant feature gr , within-class
diversity is considered by simple pair matching strat-
egy and multiple instance learning (MIL), the gener-
alization performance of algorithm model is improved.
But beyond that, we also add metric learning regular-
ization term on new invariant feature gr to enforce the
within-class feature distribution of algorithm model to be
closer. The metric learning regularization term is defined
as:

JC =
λ2

2

N∑
i=1

‖gr − cyi‖
2
2

=
λ2

2

N∑
i=1

‖max{O4(Xiθ ),O4(Xjθ )} − cyi‖
2
2, (9)
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FIGURE 2. The architecture of CNN in the channels of the proposed
Double-Net, in which ’a’ is rotated image sample.

FIGURE 3. The feature space contrastive illustration, the Figure A denote
original CNN feature space and Figure B denote the proposed Double-Net
feature space, where red dot and blue dot denote the different feature.

where coefficient weight λ2 is similar to λ1 to control the rel-
ative importance of the regularization term in object function,
total number of sample pair is N and cyi is defined as the yi
class center of deep features.

By using this regularization term, deep invariant feature gr
is forced to approach the its class center of deep features. How
to extract center of deep feature will not be introduced in this
paper, for detailed inference please refer to [21]. By applying
this constraint item, the proposed Double-Net feature space
is changed, which is shown in Figure 3.
In the end, theDouble-Net algorithmmodel object function

that we propose, which consists of three terms:

J = min(JS + λ1JC + λ2RL2) (10)

where JS is a cross entropy loss term, which is defined as:

JS = −
1
N

i=1∑
N

〈yi, log(gri)〉

= −
1
N

i=1∑
N

k=1∑
M

yxi [k] · log(gri[k]). (11)

B. FEATURE EXTRACTION BY DOUBLE-NET
In the feature extraction process, the feature extraction net-
work of Double-Net is different from the feature learning
network of Double-Net. At first, we take one single sam-
ple as input for feature extraction with Double-Net, and it

is just like feature extraction with traditional CNNs. Then,
as shown in lower half of Figure 1, the testing sample is
fed to a CNN consisting three convolutional layers and a
fully connected layer. The weight of this feature extraction
CNNs channels is transferred from the Double-Net, feature
extraction of Double-Net only change input data flow. For
example, if Double-Net have N channels, which means that
sample pair in feature learning of Double-Net will be rotated
N angles randomly or one sample in sample pair will produce
N
2 rotated sample, and one rotated sample will be fed to
one channel. So one testing sample will be rotated N angles
randomly to fed the channels in feature extraction of Double-
Net, they will reuse weight of channels after training. Thus,
the deep rotation invariant feature is different from the (11),
it is computed by:

gr = max{O4(Xiθ )}, (12)

where O4(Xiθ ) is defined as a set {O4(Xiθ1 ), O4(Xiθ2 ), . . . ,
O4(Xiθ2L )}, and the L also denote the number of channels in
each Block.

IV. OBJECT DETECTION WITH DOUBLE-NET
As shown in Figure 4, the object detection system that we
propose has two stages: region proposal and image classifica-
tion. In the region proposal stage, its main feature is to search
the possible regions of target in images. In theory, one image
can contain unlimited region proposals. To avoid too large
number of region proposals, we adopt the selective search
strategy to solve this problem. The image classification stage
takes the inputs from previous stage, and it aims to find the
object with high probability from region proposed.

In this section, we will introduce how to extract
rotation-invariant for object detection system by Double-Net
in details.

A. REGION PROPOSALS
Region proposal is an important stage in object detection task.
Earlier image segmentation algorithm is based on sliding-
window search, and it will scan each image at all positions
with different scales. With the development of computer
vision technology, more and more efficient region proposal
algorithms are applied in object detection. Due to our main
goal is to validate the Double-Net model and new rotation-
invariant feature rather than develop an new object pro-
posal algorithm, we adopt existing region proposal algorithm
named selective search [23] to produce the object hypotheses.
In addition, compared with the other region proposal algo-
rithm, selective search can generate a comparable number of
proposals that have a higher overlap with the objects.

In application, selective search algorithm could produce
more than 20 thousand region proposals from one image,
which makes the speed of object detection slow. To solve
this problem, we make a rule to limit the number of
region proposals: we only use segmented image that length-
width radio equal approximately 1 as possible region of
object.
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FIGURE 4. Process overview of proposed object detection system.

B. IMAGE CLASSIFICATION
Using the trained Double-Net model, we can extract our
new rotation-invariant features from each region proposal. As
each size of region proposal is not completely compatible
to the input size of the trained Double-Net model, we need
transform region proposals to the fixed size of 32×32 pixels.
In other hand, we consider image contexts around the original
region of object proposal in our algorithm.

In application, as candidate bounding boxes generated by
region proposals and ground truth bounding box is not com-
pletely overlapping, we use IoU (Intersection-over-Union)
metric to determine whether the classification is correct,
the IoU metric is computed by

ao =
Bop

⋂
Bgt

Bop
⋃
Bgt

, (13)

where Bgt denotes the ground truth bounding box and Bop
denotes the object proposal bounding box.

To train the object detection system with Double-Net,
the training dataset is divided into two parts: positive sam-
ples and negative samples. The positive samples contain
all ground truth bounding boxes and their labels, and the
negative samples are obtained by a hard-negative mining
technique from region proposals with ao < 0.2. To validate
our performance of rotation-invariant feature and train multi-
class object detection system with Double-Net, the region
proposals with ao ≥ 0.5 are defined as correct classification
results.

V. EXPERIMENTS
As our paper mainly presents a method of extracting rotation-
invariant feature rather than an object detection system,
the first experiment is to validate capacity of rotation-
invariant feature on Mnist-rot-12K dataset. In order to show
the application of proposed new rotation-invariant in VHR
optical remote sensing images object detection, the second
experiment is validated on the NWPU VHR-10 dataset. To
quantitatively evaluate the proposed Double-Net method,
we compare our method with two state-of-the-art convolution
neural networks about rotation-invariant or transformation-
invariant feature extraction in this section.

A. EXPERIMENT ON MNIST-ROT-12K DATASET
Mnist-rot-12k dataset is commonly used to evaluate the per-
formance of rotation-invariant feature extraction. This dataset

FIGURE 5. Some sample in the Mnist-rot-12k data set.

is based on the original MNIST dataset [24], [25], which
is designed to test artificially-introduced variations. It con-
tains some images from original MNIST dataset rotated by
a random angle from 0 to 360 degree (full circle). And this
dataset has 12,000 training images and 50,000 testing sample.
Figure 5 shows some samples from two different categories.

In order to evaluate the rotation-invariant performance of
the proposed Double-Net method, we select 10 to 20 train-
ing samples for each class to validate performance in small
amount of training samples. To validate performance in a
large amount of training samples, we use 10,000 training
samples.

1) SMALL TRAINING DATASET
First, in order to evaluate the influence of parameter λ1 and
λ2 in the object function defined by (10), λ1 is set from
{0.025, 0.005, 0.0005} and λ2 is set from {0.0005, 0.00005}.
In this experiment, 10 training samples per class are randomly
selected from Mnist-rot-12k training dataset, while the rest
is used for testing. The number of channels is set as 4. To
train network model, we set the learning rate to 1 × 10−4.
In addition, we train every experiment for 2,000 epochs, and
use its highest accuracy as the final result. The experimental
results of the proposed Double-Net with varied λ1 and λ2
are shown in Fig.6. It is observed that the best accuracy is
obtained when λ1 = 0.025 and λ2 = 0.0005.

In addition, since testing accuracy is affected by the num-
ber of channels, we test the experiments with different num-
ber of channels. The experimental results with varied number
of channels is shown in Figure 7, in which the number of
channels is varied from 2 to 8. Other parameters are set as the
same as that in previous experiment. As can be seen from the
Figure 7, the classification accuracy increase continuously
when more channels are selected and achieves its best value
when the number of channels is set as 8.
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TABLE 1. Small data set image classification accuracy contrast table the bold numbers denote the highest values in each column.

FIGURE 6. Image classification results by the proposed Double-Net with
varied λ1 and λ2. The best result is highlighted with its accuracy over its
corresponding bar.

FIGURE 7. Image classification results of the proposed Double-Net with
different the number of channels.

In order to further verify the performance of proposed
method in small data set, different number of training sam-
ples per class are considered by varying it from 10 to 20.
Two state-of-the-art CNN methods, namely RICNN [11] and
Ti-Pooling [12], are selected for comparison. The experimen-
tal results with different number of training samples are listed
in Table 1. As can be seen from the Table 1, the proposed
Double-Net outperforms the RICNN [11] and Ti-Pooling
[12] in all small training dataset experiment, indicating that
the proposed Double-Net method has higher generalization
ability and robustness.

2) BIG TRAINING DATA SET
Since training input sample of Double-Net method is sample
pair matching, which will generate the more than 10 times
number of the original training data set, and how to avoid
overfitting in training big data set is necessary to be consid-
ered in proposed Double-Net method. Therefore this exper-
iment has two purposes: on the one hand it is to validate
performance of the proposed Double-Net in the big training
data set; on the other hand, it can help figure out how the
number of sample pairs affects experiment accuracy.

TABLE 2. Image classification accuracy in Big dataset.

FIGURE 8. Image classification results of the proposed Double-Net by
adopting different number of training sample pairs.

In this experiment, the training dataset has 10,000 samples
for training, and per class have 10,000 training samples. In
addition, the training dataset is obtained by sample matching
randomly, the number of sample pairs is 160,000. And the
number of channels of each block in the Double-Net is set
to 4 in this experiment. We train this Double-Net method on
GPU for 4,000 epochs repeatedly, and get the highest result.

The comparative results with TI-Pooling and RICNN are
shown in Table 2. It shows that our proposed Double-Net
method consistently outperforms TI-Pooling and RICNN,
generally 0.3% higher in classification accuracy.

Due to the input of the proposed Double-Net is sample
pairs, so how many samples are generated can obtain the best
testing accuracy, and avoid overfitting because the number of
training sample pair is too large. A set of experiment is set up,
their training sample pairs are generated into 5 different sets
of number by 10000 images. The result is shown in Figure 8,
and the numbers of training sample pairs of 5 experiments
are {70000, 80000, 90000, 100000, 110000}. From the result
comparison chart, the number of training sample pairs is
not important to classification results, which only cause that
results fluctuation is very small.

B. EXPERIMENT ON NWPU VHR-10 DATA SET
NWPU VHR-10 is a challenging ten-class VHR optical
remote sensing image object detection dataset [29], [30],
which is used for multi-class object detection. It includes
the following classes: airplane, storage tank, tennis court,
basketball court, harbor, bridge, ship, ground track field
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TABLE 3. Performance comparisons of two state-of-the-art methods in terms of AP values. The bold numbers denote the highest values in each row.

FIGURE 9. Some sample in the NWPU VHR-10 data set.

and vehicle. Images in this dataset are obtained from Google
Earth with the spatial resolution ranging from 0.5m to 2m and
Vaihingen data with a spatial resolution of 0.08m. NWPU
VHR-10 dataset is divided into two image sets: a positive
dataset and a negative dataset. The positive dataset contains
757 airplane objects, 302 ship objects, 390 baseball diamonds
objects, 655 storage tank objects, 524 tennis courts objects,
159 basketball court objects, 124 bridge objects, 244 har-
bor objects, 163 ground track field objects, and 477 vehicle
objects. The negative dataset includes 150 samples and does
not contain any objects that need to detect. Some sample of
NWPU VHR-10 is shown in Figure 9,

1) EVALUATION METRICS
To evaluate the performance, we adopt precision recall
curve (PRC) to evaluate the performance of feature extraction
CNNs for object detection in VHR optical remote sensing
images.

To evaluate the result, we adopt average precision (AP)
to evaluate the performance of feature extraction CNNs for
object detection in VHR optical remote sensing images. The
AP computes the average value of precision over the inter-
val from 0 to 1. The higher AP value represents the better
performance, and vice versa.

Precision =
TP

TP+ FP
(14)

TABLE 4. The parameters involved in the proposed Double-Net used in
the experiments.

where tp denotes the number of true positives and fn denotes
the number of false negatives.

2) IMPLEMENTATION DETAILS
In this experiment, we use 30% of the NWPU VHR-10
dataset for training and 70% for testing. Table 3 shows
the quantitative comparison results of two different CNNs
method, which is measured by AP. Due to this different
rotation-invariant feature extractionmethod need set the num-
ber of rotating image, so the RICNN and Ti-Pooling is set
as 8 rotation channels, and the proposed Double-Net is set
as 4 channels for every block. The parameter setting of our
proposed Double-Net model is list in Table 4. To train net-
work model for image classification in the proposed object
detection task, the learning rate is set to 0.00001. In addition,
λ1 and λ2 is set as 0.0025 and 0.00005, respectively, and the
batch size is set as 64. We train the model for 3,000 epochs
to obtain the best accuracy.

3) EXPERIMENTAL RESULT AND ANALYSIS
Figure 10 shows an example of object detection with the
proposed Double-Net. Table 3 further shows the comparison
results of two state-of-the-art method [11], [12]. As can be
seen from the Table 3, the proposed method outperform all
comparison method for mean average precision, compared
with TI-Pooling [12] and RICNN [11], the proposed method
obtained 1.92%, 0.87% performance gains.

In summary, compared with other state-of-the-art methods,
the proposed Double-Net method achieves superior perfor-
mance in rotation-invariant feature extraction of VHR optical
remote sensing images:

1) Since the simple pairs consist of samples from same
class and they are combined arbitrarily, the pro-
posed Double-Net can reduce within-class variance in
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FIGURE 10. Object detection result by the proposed Double-Net. The true
positives are indicated by green rectangles.

feature space, which has similar function as bagging
algorithm in ensemble learning.

2) Metric learning is used in the proposed Double-Net,
leading to a more discriminative feature space.

VI. CONCLUSION
In this paper, a novel Double-Net method is constructed to
extract invariant for image classification for VHR optical
remote sensing image object detection. For this Double-Net
method, we have proposed a novel and effective approach
to learn Double-Net model by optimizing a new object
function, which use the multiple instance learning (MIL) to
construct the new rotation-invariant feature and enforce they
gather toward the center of class. In quantitative comparison
experiments on Mnist-rot-12k dataset and NWPU VHR-10
dataset, compared with state-of-the-art methods, the pro-
posed Double-Net achieves good performance, especially in
small training dataset.

However, as far as we know, metric learning in CNNs will
cause the slow converging speed, there are rarely any excep-
tions, even for the proposed Double-Net. Therefore, in our
future work, we will focus on how to speed up convergence
for the proposed Double-Net. Meanwhile, MIL will become
our new research direction.
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