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ABSTRACT The feasibility of monitoring driving psychological fatigue through unconstrained heartbeat
extraction by using pressure sensors array was investigated. The pressure signals were obtained by close
contact between subject’s back and backrest of car seat. Correlation coefficients of electrocardiogram signals
and pressure signals were used to select the optimal monitoring point due to the unavoidable adjustment
of sitting posture during long times of driving. Lifting wavelet transform was applied for de-noising. J-J
interval signals, which represent heartbeat signals, were extracted. The correlation dimension of heartbeat
signals, reflecting the complicated degree and the chaotic level of a nonlinear dynamic system, was used
as the indicator to determine the psychological fatigue. Its validity was verified by the consistency of
correlation dimension with R-R interval (represents cardiac cycle). Finally, questionnaires during driving
were administered. The effectiveness of this method to judge driver psychological fatigue was confirmed.
This finding indicates that driving psychological fatigue can be monitored through unconstrained heartbeat
signal extraction by using the pressure sensor array.

INDEX TERMS Pressure sensor array, correlation coefficients, heartbeat signals, unconstrained heartbeat
extraction, correlation dimension.

I. INTRODUCTION
Fatigue driving is one of the most important factors causing
traffic accidents [1]. According to its mechanism, this con-
dition can be divided into three categories, namely, cyclic
fatigue, physiological fatigue, and psychological fatigue.
Although all kinds of driving fatigue can influence the emer-
gency response ability, their mechanisms are different. Cyclic
fatigue is mainly caused by insufficient sleep that is mani-
fested as drowsiness in driving [2]. physiological fatigue is
caused by heavy load of the shoulder blades, lumbar spine,
andmuscle in long times of driving sitting posture. Unreason-
able body pressure distribution aggravates the sense of phys-
iological fatigue. When facing an emergency, the response
reduction caused by body stiffness. Psychological fatigue is
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caused by high intensity work in nerve center, as well as the
response reduces caused by distraction.

Driving fatigue is usually a combination of those three
types. Therefore, whether driving fatigue is caused by insuf-
ficient sleep, distraction or body stiffness is able to be
determined by categorizing cyclic, physiological and psy-
chological fatigue types. The corresponding fatigue control
strategies are capable to be proposed for further research. This
research is focus on discriminate psychological fatigue from
hybrid fatigue.

A. THE MECHANISM OF CYCLIC FATIGUE AND
MONITORING METHOD
In the state of cyclic fatigue, drivers often yawn, their per-
centage of eyelid closure over time is significant different
from non-fatigue. Driver state monitoring system employing
computer vision technologies have been developed and some
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of them are in practical use. Toyota Motors adopted cameras
to measure the distance between the upper and lower eyelids
of the driver to determine whether the driver is falling into
a sleepy state [3]. Percentage of eyelid closure over time is
relatively a reliable method to determine alertness level [4].
But strong light from the vehicles running on the opposite
lane may cause false determination because the method needs
an ideal light condition. Moreover, when the driver wears
sunglasses, the camera system may yield invalid results.

B. THE MECHANISM OF PHYSIOLOGICAL FATIGUE AND
MONITORING METHOD
During driving, the shoulder blades, lumbar spine, and mus-
cle take heavy load in sitting posture. The driver feels stiff-
ness and frequently adjusts the sitting posture to improve
physical comfort. Therefore, physiological driving fatigue
can be obtained by detecting the body pressure distribution
[5]. Driving posture can be pattern recognized using pressure
sensor arrays. Physiological fatigue can bemonitored by eval-
uating driving comfort and the frequency of driving posture
adjustment. Sammonds et al. [6] measured seat comfort for
up to a 2h driving and identified the correlation between the
amount of movement in a car seat and the comfort level.

When physiological fatigue occurs, the driver’s control
ability decreases, the change of speed, gear, throttle, and
other driving behaviors becomes fast, and the range of front
wheel angle decreases. Multisensor data fusion method [7] is
widely used to improve the accuracy of physiological fatigue
detection. Support vector machine algorithm was previously
employed to monitor multiple behaviors [8]. Several sensors
need proper layout for monitoring physiological fatigue. The
data fusion algorithm is complex and time consuming and
thus do not meet the needs of real-time monitoring.

C. THE MECHANISM OF PSYCHOLOGICAL FATIGUE AND
MONITORING METHOD
Psychological fatigue is mainly caused by high-intensity
work in the nervous center. The main manifestation is that the
driving spirit is negligent, and the judgment ability of driving
emergencies is weakened.

Monitoring methods for psychological fatigue have been
widely researched. Subjective feelings are the most effec-
tive indicators to evaluate psychological fatigue, those
can be measured by subjective questionnaire, response
times and flash fusion frequency experiment [9]. Electroen-
cephalo(EEG) is believed a gold standard of measuring
psychological fatigue [10]. Wang [11] reported that heart
rate variability (HRV) is an effective indicator to judge
psychological fatigue. Wu and Wu [12] stated the sensi-
tivity and effectiveness of physiological signals, such as
electroencephalogram, electromyogram, electrocardiogram
(ECG), and breath, in monitoring psychological fatigue.
These psychological fatigue monitoring methods have refer-
ential importance to driving application.

Conventional monitoring methods for psychological
fatigue detection require attaching electrodes to the body of

FIGURE 1. ECG signals and BCG signals.

the subjects, resulting in restraint to the body and incompat-
ibility for actual driving. Pressure signals can be obtained
through the close contact between the subject’s back and
backrest of car seat in an unconstrained way by installing
the pressure sensor array on the backrest of the car seat. The
methods of extracting heartbeat signals by using the uncon-
strained way have achieved satisfactory results, providing
possibilty to monitor psychological fatigue by the pressure
sensor array.

D. UNCONSTRAINED HEARTBEAT EXTRACTION METHOD
BY USING PRESSURE SENSORS
The heart undergoes volumetric changes during each cardiac
cycle while pumping blood through the cardiovascular sys-
tem. These changes are then reflected in the periodical move-
ment of the chest and contain important features that reflect
the state of the heart. The composition of standard ECG
signals and ballistocardiograph (BCG) signals are shown in
Figure 1. Figure 1(a) displays the significant ECG features,
such as the P-wave, QRS complex, T-wave, and U-wave.
Figure 1(b) presents the wave components of the BCG signals
similar to those of ECG. R wave and J wave are the most
energetic components of ECG and BCG signals. R-R interval
and J-J interval represent cardiac cycle signal and heartbeat
signal, respectively.

Unconstrained heartbeat acquisition methods by using
radar [13], Wi-Fi radio [14], and audio [12] are effective.
The signals are transmitted and propagate in the monitoring
space. Returning signals carrying information about heartbeat
are then received. However, those methods restrict only one
person in the monitoring space and therefore not suitable for

22194 VOLUME 8, 2020



S. Hongchang et al.: Monitoring Driving Psychological Fatigue Through Unconstrained Heartbeat Signal Extraction

driving fatigue monitoring because the driver and passengers
are in an extremely close contact in a relatively small space.
Another type of proposed unconstrained heartbeat acquisition
method using acceleration [15] and pressure sensors is by
installing the sensors on the seat belt [16], steering wheel,
and driving seat [17]. Ear-hanging measurement method [18]
and wearable heart monitoring method [19] have also been
studied.

In their research on pressure sensor-based heartbeat extrac-
tion, Yu and his group conducted a continuous study and
extracted heartbeat signals from micromovement sensitive
mattress and used these signals for driving fatigue [20]
and sleeping health [21] monitoring. Posture is inevitably
adjusted during driving. Deployingmultiple acceleration sen-
sors for optimal monitoring point adjustment is impossi-
ble due to the high cost. Pressure sensors can be easily
fabricated into a large area flexible pressure sensor array.
Jiang et al. [22] studied the effects of driving posture on
heartbeat signal extraction by using a pressure sensor array.
The abovementioned unconstrained measurement methods
are easily affected by environment noise because road bump
and body movement of the driver are inevitable during driv-
ing. Therefore, if the heartbeat de-nosing is effective in high
noise environment during driving, then unconstrained heart-
beat extraction based on pressure sensor array is promising.

E. DRIVING FATIGUE MONITORING BASED ON
BCG-RELATED SIGNALS
ECG and BCG signals are correlated that it considers BCG
signals as indicators instead of ECG signals [23]. Therefore,
ECG signals can be replaced by BCG signals as indica-
tors for determining driving psychological fatigue. Eilebrecht
et al. [24] revealed that heartbeat recording in car is feasi-
ble without attaching adhesive electrodes, thus making this
vital sign potentially available for driving fatigue monitoring.
Heartbeat signals for driving fatigue monitoring are easily
affected by environment noise because of the inevitable vibra-
tion and body movement of the driver. Thus, extracting the
heartbeat signals with abundant information is impossible as
shown in Figure 1(a). However, the J peak is the positive
maximum of heartbeat signals. Therefore, the extraction of
only J-J interval is feasible and provides a promising way for
fatigue driving determination.

Many studies showed that driving fatigue can be detected
by observing the changes of HRV extracted by the R-R inter-
val. HRV describes the variations between consecutive heart-
beats. The regulation mechanisms of HRV originated from
sympathetic and parasympathetic nervous systems. Thus,
HRV can be used as a quantitative marker of autonomic
nervous system [25]. HRV analysis methods can be divided
into time-domain, frequency-domain, and nonlinear methods
as follows.

Time-domain parameters are the simplest ones calculated
directly from the raw R-R interval time series. The simplest
time domain measures are the mean and standard deviation
of the R-R intervals. In addition, reference [6] mentioned

the standard deviation of the differences between consecutive
R-R intervals (SDSD), the number of consecutive R-R inter-
vals differing more than 50 ms (NN50), and the percentage
value of NN50 intervals (pNN50). Although time-domain
algorithms are simple, these algorithms are not suitable for
driving fatigue monitoring due to the simplicity and inaccu-
racy in high noise background.

Frequency-domain parameters include the powers of
extremely low frequency, low frequency (LF), high frequency
(HF) bands in absolute and relative values, the normalized
power of LF and HF bands, and LF to HF ratio. Zhao
et al. [26] reported that the lower and upper bands of HRV
power are significantly different before and after driving
fatigue. Michail et al. [27] showed that the power spectral
analysis of the drivers’ heart rate can evaluate driving fatigue.
Frequency domain filtering can be used to reduce noise, and
the accuracy is higher than that of using time domain. How-
ever, the frequency domain analysis of HRV is not sufficiently
stable to reflect the driving fatigue status of different groups
of people [28].

HRV is a typical nonlinear discrete time series and
the ‘‘fractal’’ series of R-R intervals manifesting nonlinear
dynamics. Under fatigue, the fractal feature of the R-R inter-
vals is converted to a regular and linear pattern [29]. There-
fore, driving fatigue can be monitored by extracting an index
quantity of the change of fractal structure. Michail et al. [27]
reported that the variations of fractal dimension can provide
important information for the assessment of the driving sit-
uation. Xie et al. [30] presented the nonlinear dynamics and
chaotic activity of HRV by computing the correlation dimen-
sion of the R-R interval. Li et al. [31] introduced sample
entropy to distinguish fatigue, drunk, and normal driving and
proved its validity.

Basing on the above mentioned research and the existing
problem, this study focuses on solving the following prob-
lems.

1) The traditional unconstrained heartbeat monitoring
method strictly restricts the body movement during monitor-
ing. The placement of sensors should be adjusted accordingly
due to the varying sitting postures. Therefore, the methods
using acceleration and pressure sensors are not universally
applicable. In this study, the sensor array was placed between
the driver and the seat back, and the optimal monitoring point
can be adjusted based on the correlation coefficient. The cor-
responding relationship between sitting posture and optimal
monitoring points can be obtained by further studying the sit-
ting posture recognition based on pressure distribution. This
result confirms the applicability of the real-time adjustment
method for practical use.

2) The signal-to-noise ratio of the BCG signals is extremely
low due to the road bump and body movement during
driving, thus making the extraction of pressure signals dif-
ficult. Therefore, few studies were conducted on fatigue driv-
ing monitoring using pressure sensors. The present study
extracted heartbeat signals from BCG signals. The variability
of J-J intervals, a nonlinear discrete time series, was also
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FIGURE 2. Experimental setup for the measurement of heartbeat signal
during driving.

analyzed. This process provides possibility to monitor fatigue
based on heartbeat signals during driving.

II. EXPERIMENT DESIGN
A. EXPERIMENT EQUIPMENT
1) PRESSURE SENSOR ARRAY FOR HEARTBEAT EXTRACTION
Pressure sensor arrays, which are manufactured by the Tokai
Rubber Industries, Ltd. in Komaki, Japan, were used to
extract heartbeat signal because of its excellent low frequency
response characteristics. The resistance strain type pressure
sensor array was set on the surface of the car seat and between
the driver and backrest (Figure 2). The 16 × 16 pressure
sensor array is arranged by 256 pressure sensors, and the
available measuring area is 450 mm × 450 mm. The sensors
were numbered from 1 to 256 as shown in Figure 3 [32].

The equipment is powered by a Universal Serial Bus(USB)
with low power consumption and is suitable for installation
on automobiles. Real-time image of pressure distribution was
acquired by its own software. Pressure data were obtained by
COM debug assistant software.

2) EQUIPMENT FOR ECG SIGNAL MONITORING
The ECG signals were monitored to verify the accuracy of
extracted heartbeat signals and search the optimal monitor-
ing point from 256 sensors on the pressure sensor array.
In addition, the R-R interval of the ECG signals was used to
verify the J-J interval extracted from the pressure sensor array.
A circuit board for ECG signal monitoring developed by our
research group is also shown in Figure 2. The diameter of
the electrode patch is 3cm. Three electrodes of ECG sensors
were attached to the R(the edge of right subclavian chest
wall), L(the edge of left subclavian chest wall), and F(bottom
rib of the left chest wall) positions in the subject’s body as
shown in Figure 4. The accuracy of heart rate monitoring was
verified in our previous research [32].

B. EXPERIMENTAL ARRANGEMENT
The experiment was conducted on an actual automobile,
and the pressure signals and ECG signals were monitored.
A highway with insignificant traffic was selected to ensure
driving safety. Ten healthy male and ten healthy female

FIGURE 3. Distribution of pressure sensor array.

FIGURE 4. Schematic diagram of ECG sensors attached on the volunteer’s
body [22].

subjects were involved under controlled conditions to ensure
the consistency of subjects’ physical condition. The ages of
the subjects ranged from 20 years to 25 years, the mean and
standard deviation of the subjects’ weight and height were
63.15±6.61kg and 167.88±5.75cm, the weight and height
distribution of subjects were shown in Figure 5. All the
subjects were asked to have a good rest in the previous night
and forbidden to consume tobacco, wine, tea, coffee, and
any other food and drugs that might affect heart rate from
the previous day. A 2h long time driving experiment was
designed from 9:00 am to 11:00 am, which is usually the most
energetic time of the day, to record the state from non-fatigue
to fatigue.

Fatigue driving judgment by heartbeat signal is made every
10 minutes. Therefore, heartbeat signals extracted from pres-
sure sensor arrays and ECG signals were chosen in driving
state without acceleration, turning or large ground turbulence,
aiming at minimize the impact of ground truth on the heart-
beat signal.

Fatigue level was judged by the driving fatigue ques-
tionnaire. The investigator conducted an oral questionnaire
every 10 min and recorded the questionnaire while the sub-
jects were driving. In the questionnaire sheet, four groups
of words were selected to describe the subjective feel-
ings. The words representing psychological fatigue were
‘‘Uncomfortable/Comfortable,’’ ‘‘Distracted/ Concentrated,’’
‘‘Anxious/Quite,’’ and ‘‘Bleary/Clear.’’ As mentioned above,
driving fatigue is commonly hybrid fatigue, in order to
verify the accuracy of psychological fatigue judgment under
hybrid fatigue, two groups of words were selected to describe
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FIGURE 5. Weight and height distribution of subjects.

objective narrative, The words ‘‘Body stiff/Body flexible’’
and ‘‘Sleepy/Energetic’’ represent physiological fatigue and
cyclic fatigue respectively. These words can be divided into
seven grades defined as ‘‘special fatigue, general fatigue,
slightly fatigue, no impact, slightly sober, generally sober,
and special sober.’’ The evaluation was based on a 7-point
scale from −3 to +3.

III. HEARTBEAT EXTRACTION FROM PRESSURE SENSOR
ARRAY
There are two steps to extract heartbeat signal. The first step
is to select the optimal monitoring point by using correlation
coefficient analysis method, the influence of sitting posture
on the selection of the optimal monitoring point is also dis-
cussed. The second step is the pressure signal denoising from
the optimal monitoring point.

A. SELECTION OF OPTIMAL MONITORING POINT IN
PRESSURE SENSOR ARRAY BASED ON CORRELATION
ANALYSIS
The optimal monitoring point from 256 sets of pressure sen-
sors should be chosen by the correlation coefficient between
the ECG signals and pressure signals due to the various sitting
postures and statures of subjects. The correlation coefficient
is a statistical index used to reflect the degree of close corre-
lation between variables as follows:

|ρxy| =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2 ·
n∑
i=1

(yi − y)2
(1)

where |ρxy| is the correlation coefficient, xi and yi are the
two sets of data to evaluate the degree of concordance. x
and y are the mean value of xi and yi, respectively. |ρxy| =1
indicates a strong correlation between the two signals, and
|ρxy| =0 when the two signals are independent.
During the 2h driving experiment, the correlation coeffi-

cient is calculated every 10 minutes for each subjects. There-
fore, the optimal monitoring point for extracting heartbeat
of each subject with driving time is able to be selected.
The pressure distributes of subject 1 at the first 10 min
of the driving experiment is shown in Figure 6 [33]. The

FIGURE 6. Color contour distribution of pressure between the subject’s
back and backrest.

FIGURE 7. Correlation coefficient analysis of heartbeat and ECG signals.

areas with high pressure were distributed in the regions
marked No. 1 and No. 2. The 181 sensor in pressure sen-
sor array achieved the highest pressure value. According to
Figure 6, the high pressure of regions No. 1 and No. 2 is
caused by the close contact of the subject’s back and back-
rest. The position of the heart of the subject in the regions
marked No. 3.

The correlation coefficient between the ECG signals and
heartbeat at the first 10 min was displaced by color contour
and is shown in Figure 7. Noncorrelation existed outside
of regions No. 1 and No. 2, wherein the value of corre-
lation coefficient is small. The pressure signals in region
No. 2 was large according to Figure 6. However, the cor-
relation between the pressure signals and heartbeat signals
was not significant in region No. 2, which is relatively dis-
tant from the heart according to Figure 6. The 181 sen-
sor in the pressure sensor array also obtained the highest
correlation coefficient. Therefore, the optimal monitoring
point of subject 1 at the first 10 min was located in the
181 sensor of region No. 1 with the maximum correlation
coefficient.
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FIGURE 8. Postural angle model.

TABLE 1. Range of comfort and typical driving posture for the postural
angle.

FIGURE 9. Sitting posture and pressure distribution of subject 1.

B. CORRELATION BETWEEN HEARTBEAT SIGNAL AND
ECG IN VARIED SITTING POSTURES
Apostural anglemodel is shown in Figure 8. Cervical flexion,
elbow angle, hip angle, and knee angle were selected as
dependent variables to evaluate the driving posture [34].

According to the questionnaire, the first four comfort
ranges of the postural angle were chosen as driving postures
1–4 and are summarized in Table 1 based on the question-
naire.

In order to discuss the applicability of the unconstrained
monitoring method for heartbeat signals measurement under
an unsuitable sitting posture, the body tends to the left at 10◦

and the body tends to the right at 10◦ in the driving posture
1 (postural angle A1:145–155, A2: 115–120, A3: 102–106,
A4: 124–130) were chosen as driving postures 5 and 6. Take
subject 1 as an example, the pressure distribution in driving
posture 1 is shown in Figure 9.

FIGURE 10. Correlation coefficient analysis in varied driving postures.

The analysis leads to obtain the optimal measure point
considering the varied driving postures, the correlation coef-
ficient between the ECG and heartbeat signals are illustrated
in Figure 10. From driving postures 1–4 in the y-coordinate,
the change in the maximum pressure point caused by the
driver’s posture corresponds to the maximum correlation
coefficient. Thus, the heartbeat signals in the four driver
postures can be extracted from the pressure signal. In driving
postured 5 and 6, the correlation coefficients in all measuring
points were below 0.4, thereby indicating that heartbeat signal
can be hardly extracted in the two driving positions.

According to the subjective questionnaire, the pressure
sensors array is capable of producing reliable driver fatigue
information in most cases. For exceptional cases, when the
correlation coefficient is small, the monitoring system able
to remind the driver to maintain a comfortable sitting posture.
It is not only to ensures the heartbeat signal acquisition, like-
wise to ensure comfortable sitting posture and delay driving
fatigue.

C. HEARTBEAT EXTRACTION BY LIFTING WAVELET
TRANSFORM
Given that road bump and body movement in driving is
inevitable, weak heartbeat signals in a large noise background
are acquired during driving. The noise of pressure signals
are random signals with low frequency. Thus, the de-nosing
method in the frequency domain is inappropriate to evaluate
the change of J-J interval. Therefore, the time-frequency
domain analysis method based on lifting wavelet was studied.

The lifting scheme has three steps: ‘‘Split’’, ‘‘Predict’’, and
‘‘Update’’. Following the three steps is the reconstruction
of the lifting wavelet by reverse lifting. ‘‘Split’’ is to split
the original signal into two disjoint data sets, namely, even
sample set and odd sample set. ‘‘Predict’’ is to build an
operator to predict one sample set by using the other by
evaluating the correlation and closeness of the two disjoint
sample sets. ‘‘Predict’’ has two functions. One is to separate
high frequency components, and the other is to compress
the data. ‘‘Update’’ is to correct the sample set generated by
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FIGURE 11. Press signals measured during driving experiment.

‘‘Split’’ to make its characteristics consistent with the original
signal.

1) SPLIT (S)
‘‘Split’’ splits the sample into two disjoint sets: the even
sample (xe(n)) and the odd sample (xo(n)).

x(n) = Split(xe(n),xo(n)) (2)

2) PREDICT (P)
Provided that the even sample set and odd sample set are
correlated, we can build a prediction operator P that is inde-
pendent of the samples to predict the odd sample set xo(n) by
the even sample set xe(n).

d(n) = xo(n)− P(xe(n)) (3)

If the differenceis sufficiently small, then the prediction
is accurate and invertible. xo(n) can be recovered from d(n)
and xe(n). This lifting operation has two functions. One is to
separate the high frequency components of the sample x(n),
and the other is to compress the data.

3) UPDATE (U)
Given that the sample set xe(n) generated by ‘‘Split’’
may deviate from the original data, ‘‘Update’’ is required.
As shown in Eq. (3), ‘‘Update’’ is to modify xe(n) with d(n)
to make the modified sample to have only low frequency
components of x(n).

ce(n) = xe(n)+ U (d(n)) (4)

where ce(n) represents the modified even sample set.
Reconstruction of the lifting wavelet by reverse lifting

consists of

Reverse‘‘Update′′ : xe(n) = ce(n)-U (d(n)) (5)

Reverse‘‘Predict′′ : xo(n) = d(n)+ P(xe(n)) (6)

‘‘Merge′′ : x(n) = Merge(xe(n),xo(n)). (7)

Here, ‘‘Merge’’ means reconstructing x(n) by xo(n) and
xe(n).

According to correlation coefficient analysis, the signals
of No. 181 sensor marked by Figure 6 in region No. 1 were
chosen as the optimal measure point. Figure 7 shows the press
signals measured by No. 181 sensor in the first 10 min during

FIGURE 12. Heartbeat extraction from press signals by wavelet noise
reduction.

FIGURE 13. ECG signals measured simultaneously for verifying the J-J
interval.

driving experiment. Figure 11 presents the signals filtered by
the lifting wavelet, and Figure 12 is the ECG signals acquired
simultaneously. In Figure 11, the heartbeat was submerged in
the noise, and no periodic signals can be seen. In Figure 12,
the heartbeat signals can be extracted regardless of the detail
components of the BCG signals. Four second heartbeat sig-
nals were intercepted from Figure 12 and indicated by dotted
lines in Figure 13. The solid line indicates the ECG signals
acquired simultaneously. The frequency of cardiac cycles
expressed by the two curves is similar. Therefore, heartbeat
can be unconstrainedly extracted during driving from high
noise background.

IV. DRIVING FATIGUE DETERMINATION BASED ON
CORRELATION DIMENSION OF J-J INTERVAL
A. CORRELATION DIMENSION
The term chaos is used to describe the erratic time-dependent
changes in certain physical processes, such as HRV. The
chaotic systems are ‘‘fractal’’ (i.e., having fractional dimen-
sions that exceed their integer topological dimensions) and
‘‘low dimensional’’ (i.e., only having a few independent
variables). Correlation dimension D2 is used to estimate the
dimension and describe the complicated degree of chaos.
Thus, high dimension means several variables are needed to
describe the dynamic characteristics of the system and the
complex the system is. Given that the J-J interval and R-R
interval have the same frequency characteristics, the correla-
tion dimension of the J-J interval can be used to evaluate the
psychological fatigue.

A common technique to probe the system is to measure a
single scalar function of the system state and reconstruct the
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dynamics in an m-dimensional space by using the time delay
coordinate, called phase space reconstruction. Given a time
series

x(t) = {x1, x2, . . . xN }, (8)

where x(t) represents the time series of J-J interval signals,
and N is the size of the data set. Then, x1, x2, x3, . . .xN can be
embedded into a reconstruction matrix by using delay time
coordinates.

X = {Xi|Xi = [xi, xi+τ , . . . , xi+(m−1)τ ]}T , i = 1, 2, . . . ,M ,

(9)

where m represents the embedding dimension, and τ is the
delay time. M = N − (m−1)τ is the number of embedded
points in the m-dimensional space.
Considering this m-dimensional dynamical system that

exhibits a chaotic attractor, a probability measure r can be
defined on the attractor as follows. Let x ∈ Rn be a point on
the attractor, and B be an n-dimensional hypercube centered
at x. The probability measure contained in B, r(B), is then
defined to be the fraction of time a typical trajectory spends
in the cube.

The correlation dimension introduced by Grassberger and
Procaccia is widely used in many fields for the characteri-
zation of strange attractors. The correlation integral for the
embedded time series is as follows: [30]

C(m,N , r, t) =
2

M (M − 1)

∑
1≤i≤j≤M

2(r −
∥∥xi − xj∥∥) (10)

where C(m, N , r , t) represents the correlation integral; t is
the index lag; ||. . . || denotes the sup-norm, and 2 represents
a Heaviside step function. The summation (6) and the Heavi-
side function count the distance ||xi-xj|| with an interdistance
smaller than r .
If the limit of C(m, N , r, t) as N → ∞ exists for each r ,

then the fraction of all state vector points that are within r of
each other is denoted by C(m, r, t) = lim N →∞C(m, N , r ,
t), and the correlation dimension is defined as

D2(m, t) = limr→0[logC(m, r, t)/logr] (11)

Given that N remains finite for data sets, then, we cannot
let r proceed to 0. Instead, we look for a linear region of slope
D2(m, t) in the plot of log C(m, N , r , t) vs. log r .

The estimated correlation dimension of the reconstructed
attractor typically increases with m and reaches a plateau
(on which the dimension estimate is relatively constant) for
a range of large enough m values. The plateaued dimension
value is then assumed to be an estimate of D2 for the attractor
in the original full phase space [35].

B. PSYCHOLOGICAL FATIGUE MONITORING BASED ON
HEARTBEAT CORRELATION DIMENSION
The 120 min heartbeat and ECG signals were acquired and
divided into 12 segments. The curve D2 in Figure 14 is the
heartbeat correlation dimension in No. 181 measuring points.

FIGURE 14. D2 and SD curve to evaluate driving psychological fatigue.

Considering the unavoidable adjustment of driver’s sitting
posture in the experiment, the correlation dimension was
calculated by the heartbeat signal acquired in the optimized
measure point by using the correlation coefficient calculation.
The modified correlation dimension curve, for compensate
the change of the optimal monitoring point, was subsequently
drawn and is expressed by D2′. The R-R interval of ECG
signals was used to simultaneously calculate the correlation
dimension and verify the accuracy of driving fatigue judg-
ment by heartbeat, and the curve is expressed byD2’’. In addi-
tion, SD curve represent the level of psychological fatigue,
providing the average score of the 20 subjects according to
four group of words in driving fatigue questionnaire. SD’
curve represent the level of hybrid fatigue by six group of
words. Their confidence intervals are plotted in Figure 14.
The analysis of D2, D2′, D2’’, SD and SD’ curve is summa-
rized as follows:

1)In the period between 0 and the 40th minute, the changes
in D2, D2′, and D2’’ were flat. In addition, the large value of
correlation dimension exhibited the complexity of heartbeat
signal, indicating a result of non-fatigue. The level of psycho-
logical and hybrid SD curve were basic agree and flat, and the
mean valuewas close to−3, which is defined as special sober.
These results have good consistency in proving non-fatigue
driving. The confidence interval is the range of the estimate
in this study and was observed to be maintaining a narrow
range. According to investigation, all the subjects answered
general sober or slightly sober within this period. The most
extreme confidence interval is (−3, −3) in the first and third
10 min. Accordingly, all the subjects felt special sober. The
results show that subjects’ subjective feelings of non-fatigue
are consistent at the beginning of the driving test.

2)In the period between 40th and the 90th minute,level of
psychological fatigue curve is flat, however, level of hybrid
fatigue curve showing an upward trend. The changes in D2,
D2′, and D2’’ were flat and unaffected by physiological
fatigue and cyclic fatigue.

3)In the period between the 90th and the 110th minutes,
D2′ and D2’’ rapidly decreased, indicating that the chaotic
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level was decreasing. The downward trend of D2 curve was
opposite to that of D2′ and D2’’, showing an upward trend.
After long time of driving, some subjects began to adjust
their sitting posture because of body stiffness, resulting in
inaccurate data of D2. D2′ is modified correlation dimen-
sion curve, it is calculated by the heartbeat signal obtained
under the optimalmonitoring point selected by the correlation
coefficient analysis. Therefore, the level of D2′ and D2’’
were curve efficiently corresponded. Although the level of
psychological and hybrid SD curve is consistent with the
results of correlation dimension, the confidence interval was
in a wide range possibly due to the subjective feelings in
fatigue-resistance state.

4)After the 110thminute from the beginning of the test, D2′

and D2’’ reached their lowest value, and the curve became
smooth, indicating a general fatigue state. Level of psycho-
logical fatigue curve and hybrid fatigue curve overlap well,
indicating all the three type of fatigue appear. The level of
fatigue evaluation index was increased to the highest. The
confidence interval range became narrow again because all
the subjects answered fatigue in this period.

V. CONCLUSIONS
This study proposed a monitoring method for driving fatigue
through unconstrained heartbeat extraction by using a pres-
sure sensor array. With the correlation coefficient of ECG
signals and pressure signals as the indicator, the influence of
driving posture adjustment on the optimal monitoring point
selection was investigated.

BCG signals are weak signals on the large noise back-
ground during driving. Therefore, retaining all of the com-
ponents after de-nosing is difficult. In this research, heartbeat
signals and the maximum components J-J interval were used
as data source for fatigue monitoring. This condition reduces
the difficulty of de-noising. In addition, LWT was employed
to extract the heartbeat signals.

Correlation dimension was used as an indicator of driver
psychological fatigue extracted from heartbeat signals. The
heartbeat correlation dimension D2′ obtained by the modi-
fied monitoring point is proven effective compared with the
correlation dimension of the R-R interval of ECG and the SD
subjective evaluation in real driving experiment.

This research is able to recognize psychological fatigue
from hybrid fatigue using unconstrained pressure sensor
array.
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