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ABSTRACT Nowadays, the development of robots and smart tractors for the automation of sowing, har-
vesting, weeding etc. is transforming agriculture. Farmers are moving from an agriculture where everything
is applied uniformly to a much more targeted farming. This new kind of farming is commonly referred to as
precision agriculture. However for autonomous guidance of these agricultural machines and even sometimes
for weed detection an accurate detection of crop rows is required. In this paper we propose a new method
called CRowNet which uses a convolutional neural network (CNN) and the Hough transform to detect crop
rows in images taken by an unmanned aerial vehicle (UAV). The method consists of a model formed with
SegNet (S-SegNet) and a CNN based Hough transform (HoughCNet). The performance of the proposed
method was quantitatively compared to traditional approaches and it showed the best and most robust result.
A good crop row detection rate of 93.58%was obtainedwith an IoU score per crop row above 70%.Moreover
the model trained on a given crop field is able to detect rows in images of different types of crops.

INDEX TERMS Crop row detection, deep learning, weed detection, Hough transform, image processing.

I. INTRODUCTION
Currently, losses due to pests, diseases and weeds can reach
40% of global crop yields each year and this percentage is
expected to increase significantly in the coming years [1].
In order to reduce the amount of chemicals while continuing
to increase productivity, the concept of precision agriculture
was introduced [2], [3]. Precision agriculture can be defined
as the application of technology for the purpose of improving
crop performance and environmental quality [2]. The main
goal of precision agriculture is to implement the right man-
agement practice in order to allocate the right doses of inputs
such as fertilizers, herbicides, seed, fuel, etc. to the right place
and at the right time [4]. However all the aforementioned
processes require accurate guidance with respect to crop
rows. Some studies showed the interest of the automation
of crop row detection for robot navigation [5]–[7], and also
for the detection of weeds between rows [8], [9]. In the
literature different imaging-based methods have been used
for detecting crop rows. Typically, these methods fall into
a few categories according to their detection principle, such
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as Hough transform, linear regression, blob analysis, stereo
vision, and horizontal strips. However, these methods do not
take into account the advantages of a deep learning approach.

Recently, convolutional neural networks (CNNs) have
emerged as a powerful approach for computer vision tasks.
The first major success of CNNs [10] was achieved on
the ImageNet Large Scale Vision Recognition Challenge
2012 (ILSCVR12) with the AlexNet network [11]. AlexNet
showed that a large, deep convolutional neural network is
capable of achieving record-breaking results on a highly chal-
lenging dataset using purely supervised training. Nowadays,
deep learning is becoming a powerful approach in several
domains to solve many big data problems such as computer
vision, speech recognition, and natural language processing.
In agriculture, CNNs have been used for different problems
such as weed detection, plant classification, plant disease
detection but not for crop row detection [12]–[17].

In this paper we propose a newmethod that combines CNN
and the Hough transform to extract crop rows in images taken
by an unmanned aerial vehicle (UAV). The aim is to design a
robust method able to detect and highlight the crop rows.

The paper is divided into four parts. In section 2 we dis-
cuss related work. Section 3 presents the proposed method.
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In section 4 we present and discuss the experimental results
obtained. Section 5 concludes the paper.

II. RELATED WORK
The Hough transform [18] is one of the most commonly used
machine vision methods for identifying crop rows. It was
used to guide mobile robots in sugar beet and rapeseed fields
in [19]. With extensive field tests the authors showed that
the system was accurate and fast enough to control a weeder
and a mobile closed-loop robot with a standard deviation
of the position of 2.7 and 2.3 cm, respectively. The Hough
transform was used to detect curves and straight lines in [20].
Baker et al. [21] applied the Hough transform to extract
crop rows from images acquired by a robot using a specific
angle interval. They assumed that the position of the robot
in relation to the crop rows was greater than 45◦. Thus the
Hough transform was computed over an angle range from
45◦ to 135◦ with a step of 1◦. In [8], Excess Green Index
(ExG) [22] and Otsu thresholding [23] helped to remove
the background (soil, residues) before performing a double
Hough transform to identify the crop rows in perspective
images. Jones et al. [24] detected crop rows by modeling
agronomic images taken from a virtual camera placed in a
virtual field with and without perspective. However, despite
the effectiveness of the Hough transform, the method has
some shortcomings, such as the computation time required
and also its sensitivity in images with a high weed pressure.
Ji and Qi [25] proposed RHT (Random Hough Transform)
[26] to detect crop rows. The particularity of RHT is that the
Hough transform is applied to randomly selected vegetation
pixels. Compared to the Hough transform, about 45% of
processing time is saved. Bah et al. [27] used theHough trans-
form and Simple Linear Iterative Clustering (SLIC) to detect
crop rows. After Hough transform computation the biggest
challenge was to select the lines that best go through the
center of crop rows due to the inter-row weeds and the width
of crop rows. Gee et al. [8] proposed to exploit the parallelism
of crop rows and also the prior knowledge about inter-row
distance. Parallelism makes it possible to hypothesize that if
the crop rows are parallel in the image space, the votes of
these rows will be aligned around the angle corresponding
to the overall orientation. In addition, these votes are sepa-
rated by a distance equivalent to the inter-row space. Thus,
to extract themain lines of each crop row, Gee et al. identified
the first maximum and then with a step corresponding to the
theoretical interline distance they moved on either side of
this maximum to retrieve the other maximum. This method
has proven to be effective in detecting crop rows with a
constant inter-row distance and constant orientation. In real
agricultural fields, however, the imperfection of the soil and
the presence of tractor tracks, mean that the rows are not
always straight, parallel, and equidistant. In view of these
different challenges, we proposed in [27] to use a ‘‘pick and
delete’’ process. In the remainder of this paper we will refer
to this method as ‘‘CR-Hough-SLIC’’. It consists in using
superpixels generated by SLIC to detect only one line per

crop row in order to avoid the impact of weeds. However,
this method requires defining the number of superpixels and
skeletons of the vegetation as input. For an image with N crop
rows at least N + 1 Hough transforms will be calculated; the
first one corresponds to the Hough transform computed on all
the skeletons of the crop rows and the N others correspond to
the Hough transform calculated on the superpixels of each
line.

Some authors have preferred to use linear regression to
detect crop rows, assuming that each crop row is a cloud of
points that can be fitted by a line. Søgaard and Olsen [28]
located the crop rows in a barley field using a weighted linear
regression. In their experiments they showed that depending
on the level of growth it was possible to detect the crop rows
with an accuracy from±6 mm to±12 mm. Hague et al. [29]
determined the position and orientation of crop rows by
applying the non-linear version of the Kalman filter called
extended Kalman filter [30]. Montalvo et al. [31] proposed
to use linear regression to detect crop rows in a maize field
with a high weed pressure. The analysis of spots or blobs is a
fundamental technique in computer vision, based on the anal-
ysis of image regions that present a certain visual coherence.
Fontaine and Crowe [32] relied on the direction and center of
gravity of the different blobs to propose a crop row detection
method. Burgos-Artizzu et al. [6] using a combination of
the centre of gravity, the direction of blob regions and the
direction of movement of a tractor with a camera mounted on
it, proposedmethods to detect crop rows. Pena et al. [9] devel-
oped an object-by-object image analysis (OBIA) procedure
on a series of UAV images for the automatic discrimination
of crop rows and weeds in a corn field. They segmented
images into homogeneous superpixel objects. Thus, with a
large scale they highlighted the structures of the crop rows
and with the small scale they highlighted the objects within
the crop rows. The authors found that the process is strongly
influenced by the presence of weeds in close to or within crop
rows. In [33], [34] the authors located the crop rows with an
altimetric map of the field. But this method is generally used
in cases where the plant heights are sufficiently large.

In agriculture, CNNs were applied to classify patches of
water hyacinth, serrated tussocks and tropical soda apple
in [17]. Mortensen et al. [16] used CNNs for semantic seg-
mentation in the context of mixed crops on images of an oil
radish plot trial with barley, grass, weeds, stumps and soil.
Milioto et al. [35] achieved accurate weed classification in
real sugar beet fields with mobile agricultural robots. Dos
Santos Ferreira et al. [36] applied AlexNet for the detection
of weeds in soybean crops. Bah et al. [13], used CNN for
weed detection in different crop fields such as beet, spinach
and bean in UAV imagery. Kerkech et al. [15] identified
symptoms in grape leaves with CNN and color information.

Overall, traditional deep learning algorithms have proven
to be effective for classification and semantic segmentation,
but very few have been designed to study the spatial relation-
ship of pixels on the rows and columns of an image. The most
fully developed methods for long and continuous strip pattern
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segmentation with CNN are applied to traffic lane and road
detection in order to improve autonomous driving. In [37] a
method called SCNN (Spatial CNN) was proposed to detect
long structures or large objects with strong spatial relation-
ships including traffic lanes, poles and alsowalls. In [38], [39]
the authors used recurrent neural networks (RNN) to transmit
information along each row or column, so that in the RNN
layer each pixel position could only receive information from
the same row or column. In [40] a network called StripNet
was proposed to segment long and continuous strip patterns
in different image modalities. In [41] the authors combined
lane detection with vanishing point prediction to enhance
the learning of context information, and proposed a network
called Vpgnet. CNN with a Markov random field (MRF)
was used for road detection in [42]. In general, the methods
applied for road lane detection are designed to detect up to
4 lanes, whereas in the case of UAV images acquired in an
agricultural field, the number of rows in an image can bemore
than 10 depending on the spatial resolution of the camera,
the flight altitude and also the distance between crop rows.
Moreover, the crop rows are close to each other and can be
confused by inter row weeds or the dense vegetation. There-
fore, the state of the art methods based on CNN may fail,
because they were not designed for this particular problem.

We generally have two types of information in agricultural
images acquired by UAV, the background (soil, rocks, etc.)
and the vegetation (crop, weeds). Our work is motivated by
the fact that while existing studies have focused on using
semantic segmentation with CNNs such as SegNet and FCN
for crop, weeds and background segmentation, none, to the
best of our knowledge, have applied it to detecting and high-
lighting crop rows.

III. METHOD
We propose an approach that uses a fully convolutional net-
work for crop row detection. It is based on two different
architectures, the S-SegNet and the HoughCNet. The overall
structure of the method is presented in Fig. 1. As input the
method takes an RGB image, and using the S-SegNet, strips
corresponding to the crop rows are extracted. The S-SegNet
provides strips with smooth contours and reduces the impact
of sowing errors by attaching the discontinuous rows. How-
ever, it is less robust against the strong presence of weeds
in the inter-row space. S-SegNet is therefore accompanied by
theHoughCNet whose purpose is to adjust the strips impacted
by weeds. HoughCNet uses the Hough transform and CNN
to extract the pixels that form the longest lines in the image.
Small lines caused by the presence of inter-row weeds are
eliminated. To ensure that noise has not been added by the
HoughCNet, an intersection is applied between its output and
that of the S-Segnet. At the end of this intersection it is gen-
erally observed that there are some discontinuities or that the
strips obtained are not smooth. Thus, the S-SegNet is applied
again to adjust these strips. Depending on weed pressure, this
operation is applied once or several times. Therefore we used
a loop based on the IoU (intersection over union) score. The

loop is stopped when the IoU between the S-SegNet and the
adjusted output (HoughCNet + Intersection + S-SegNet) is
high (IoU > ε).

A. S-SEGNET
In the state of the art presented above, we saw that recently
various studies have been proposed to segment vegetation
(crops and weeds) and soil with or without deep learn-
ing algorithms. However, all these studies seek to segment
the plants individually to obtain a result that best fits the
contours of these plants. Subsequently, this segmentation is
used for other applications, such as extracting crop rows to
guide robots or detecting weeds between rows. In the present
study, the combination of vegetation segmentation and crop
row detection is proposed in a single step. The purpose of
S-SegNet is to detect strips (crop rows) with an RGB image
as input and SegNet.

SegNet [43] is a deep fully convolutional neural network
for semantic segmentation. Basically it was designed for
scene understanding applications. It is therefore designed to
be both efficient in terms of memory and computation time
when inferring. In addition, the number of parameters to be
driven is also very small and can be trained from end-to-end
with a stochastic gradient descent. One advantage of using
a deep fully convolutional neural network is that images of
arbitrary size can be input to the network and a segmentation
map of the same size can be obtained.

The SegNet architecture is composed of encoders,
decoders and a pixel classification layer. Its particularity is
that each encoder has its corresponding decoder. Encoders
are generally convolution layers such as those present in the
VGG16 network [44]. The decoder consists in semantically
projecting the discriminating features learned by the encoder
at a lower resolution to a higher resolution. Decoding is noth-
ing more than oversampling. SegNet derives its originality
from the way the decoder is applied to switch from a lower
to a higher resolution. After that a downsampling operation
is performed (max-pooling) at the output of an encoder, and
the indices corresponding to the pooling are stored. In other
words, the max locations of the encoder feature maps (pool-
ing indices) are stored to perform non-linear upsampling in
the decoder network. This technique reduces the number of
parameters since it does not need to learn to upsample.

The SegNet network is composed of 13 layers of convo-
lutions (encoders) which correspond to the first 13 layers
of the VGG16 (Fig. 2). Each convolution layer is followed
by a batch normalization and a non-linear activation func-
tion ReLu (Rectified Linear Unit). Batch normalization is
used to accelerate deep network training by reducing internal
covariate shift [45]. Max-pooling with a 2 × 2 filter and a
stride 2 (no recovery) is applied to the ReLu output. This
operation downsamples the input feature map by a factor of 2.
Max-pooling makes it possible to reinforce the invariance
to translation on small spatial shifts of the input image.
However, even if the use of max-pooling is beneficial for
translation robustness it causes a loss of spatial resolution
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FIGURE 1. Flowchart for crop row detection with CNN (CRowNet).

FIGURE 2. Encoder-decoder architecture of SegNet.

which may be less beneficial in applications where boundary
delineation is essential. Storing the positions of max values
during max-pooling is a good way to deal with this problem.
The decoder upsamples the encoder from the stored indices
and keeps the number of channels. Therefore, an encoder with
3 channels (RGB) will have 3 channels after encoding; this is
the case for the first encoder. The results of oversampling are
very sparse, thus a convolution layer followed by a batch nor-
malization is added to produce a map with a denser feature.
Finally, the output of the last decoder becomes the input of the
Softmax for classification. The K-class softmax classifier is
used to predict the class for each pixel, where K corresponds
to the number of classes.

B. CNN BASED HOUGH TRANSFORM (HOUGHCNET)
Instead of using superpixels or inter-row distance information
to identify the major votes that represent the crop rows,

we propose a method that combines the Hough transfrom
and CNN. First multiple lines are detected with the Hough
transform, then a deep neural network is applied to detect
the main lines which correspond to crop rows. The complete
process is presented in Fig. 3.

1) HOUGH TRANSFORM
The Hough transform is a pattern recognition technique
developed in 1962 by Paul Hough [18], and patented by
IBM. This technique, developedmore than half a century ago,
continues to prove its effectiveness in the field of artificial
vision to such an extent that it is considered a standard tool
for particular shape detection. It is based on a mechanism
of accumulation (vote) from the image space (pixels) to a
multidimensional parameter space, called the Hough space.
This space simplifies the complex problem of global shape
detection. It is useful for the detection of contours that can be
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FIGURE 3. Flowchart of the HoughCNet process. As input we have a segmented image and in the output we obtain crop rows
after Hough transform and CNN combination.

FIGURE 4. Example of inverse Hough transform result. (a) Binary image in white and its skeleton in red. (b) Hough transform
performed in the skeleton. (c) Lines detected with the Hough transform where each line has a value corresponding to its vote in the
Hough space (L).

described by few parameters, such as lines, circles, ellipses,
etc. In Hough space a line can be represented by the param-
eters of its cartesian equation (a,b) or polar equation (ρ, θ ).
Polar parameters are generally preferred, since they can be
bounded in very precise intervals, unlike cartesian coordi-
nates (a,b) which can take values from ] − ∞,+∞[. The
longer a line is in the image space, the more important its
vote is in the Hough space. Besides, the Hough transform has
a high capacity for joining discontinuous lines.

In principle, a crop row is a succession of several very
close lines. Thus, the more plants there are in a crop row,
the more time it takes to calculate the Hough transform.
To solve the problem of computation time we propose to
use the skeletons of the rows. In computer vision, reducing
the amount of information to be processed to the minimum
necessary has become very important, since it reduces the
computation time, contour distortion and some local noise
while retaining significant topological and geometric prop-
erties. For example the thin-line representation of crop rows
is closer to the human conception of these patterns in an
agricultural field. Skeletonization is a process that represents
a pattern by a collection of thin (or nearly thin) arcs and
curves [46]. Depending on the skeletonization method the
result can be referred to as skeleton or thinning. Skeleton is
used when the result is obtained regardless of the original
pattern whereas thinning is a line-like representation of the
original pattern. The results of the two methods can be quite
similar in appearance, which is why the general term used is
skeleton. In this work, a thinning method was used in order to
find the one-pixel mid-lines of crop rows. Iterative thinning
is the most widely used method. It is based on removing or
keeping successive layers of pixels on the boundary of the
pattern until only a skeleton remains [46], [47]. Using only a

few pixels, it gives the same information on the geometry of
the field: direction of the crop rows, distance between rows
and periodicity of the crop rows [27]. Instead of using super-
pixels or inter-row distance information to identify the major
votes which represent the crop rows, we propose a method
which combines the Hough transform and CNN. We first
computed the normalized Hough transform Hnorm(ρ, θ) in
order to give the same weight to all the crop rows, especially
the short ones close to the borders [8]. Then all the lines
are detected (L). The image L containing the lines of the N
peaks of Hnorm(ρ, θ) is obtained through (1). Fig. 4 presents
an example of this procedure.

Let9i be an image of the same size as the input image and
(Xi,Yi) the couple of coordinates of all the pixels of 9i (2)
belonging to the line represented in Hnorm(ρ, θ) by the peak
Pi of value αi.

L = argmax(91, 92, 93, . . . , 9N ) (1)

9i(x, y) = αi, (x, y) ∈ (Xi,Yi) (2)

Once L is obtained, it is used as input of a convolutional
neural network to detect crop rows.

2) HOUGHCNET NETWORK
TheCNN architecture proposed is composed of 5 convolution
layers with dilation. Each convolution layer is composed
of 32 filters. Batch normalization and ReLu were applied
after each convolution layer. Some authors have shown that
dilated convolution is particularly suited to dense prediction
due to its ability to expand the receptive field without losing
resolution or increasing the number of parameters [48], [49].
The receptive field grows exponentially while the number
of parameters grows linearly. A dilated convolution layer is
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FIGURE 5. Examples of three dilated filters. (a) Filter f1 used in 1-dilated
convolution; each element in f1 has a receptive field of 3 × 3. (b) Filter f2
produced from F1 by 2-dilated convolution; the receptive field for each
element is 7 × 7. (c) This filter f3 is obtained from f2 by a 4-dilated
convolution; the elements in f3 have a receptive field of 15 × 15. The
dilated convolution layers made by the filters have the same number of
parameters.

defined as a layer where the convolution is performed with
dilated filters (Fig. 5).

The architecture is shown in Fig. 6. Generally in L each
crop row is represented by more than one line, given that we
would like to identify those that best go through the center.
Thus the first two layers use 4 as dilation values, highlighting
the lines that are in the center and conversely reducing the
influence of the lines far from the center of the crop rows.
These layers are followed by a sub-sampling that keeps the
maximum value in a 2 × 2 neighborhood (max pooling) and
an oversampling that returns the image to its original size.
Then the process is repeated with 2 other convolution layers
with 2 as dilation value. The last convolution layer (1 × 1
× 2) is applied, where 2 is the number of classes. Finally,
the softmax performs pixel classification (Fig. 6).

IV. RESULTS AND DISCUSSION
The images used come from a public dataset provided by
[50]. These images were acquired in a beet field by the Parrot
RedEdge-M multispectral sensor 10m from the ground. This
public dataset contains 5 subsets of images numbered from
000 to 004. Each subset corresponds to part of the field. For
the training, only images in the 003 subset were used and the
evaluation was performed on the 000-002 image subsets. The
images in subset 004 were not used because of the blurring
that was present in some parts of the images. In order to
test the robustness of the proposed method, it was applied to
images acquired in another fieldwith a different flight altitude
and spatial resolution. These new images were acquired in a
corn field with Sony camera 100m above the ground with
a spatial resolution of 2.5cm. The camera is embedded on
Sensefly’s fixed-wing UAV eBee.

A. TRAINING
Manual image annotation is very time consuming because
it requires not only the ability to draw a continuous line
per crop row, but also to repeat the same process for each
image. To simplify the annotation process, we proceeded in
a semi-supervised manner. The orthomosaic image 003 was
divided into patches of 250 × 250 pixels. This size was cho-
sen to obtain images showing crop rowswith different layouts
(discontinuity, non-regular contours, inter-row weeds, etc.)
and also to facilitate the CNN learning. Then we applied
CR-Hough-SLIC [27] to detect crop rows in all the image
patches. Patches where all crop rows were correctly detected
were selected to build the training dataset. The number of
learning samples collected was 134. With data augmentation
we increased the size of the dataset seven times (Rotation 0◦,
45◦, 90◦ and 135◦ and 3 contrast changes). Fig. 8 presents
the dataset used for the training. SegNet was trained with all
the training data, while the HoughCNet network was trained
only with the original images and data augmented by rotation
since samples with contrast change have the same orientation
as the original ones.

The ground truth shows that classes are imbalanced: the
majority of pixels are in the background and this can affect
the learning process. Classes with more trained elements may
become more sensitive to identification in relation to classes
with fewer trained elements. This class imbalance problem
is solved by reweighting the loss by inverse class frequency.
Thus the weighting of each class corresponds to the inverse
of its frequency in the images. This process has the advantage
of increasing the weight of under-represented classes and
thus influencing the loss function by assigning a relatively
higher weight to the minor classes (Table 1). The difference
in weights between S-SegNet and HoughCNet is explained
by the fact that the number of samples used is not the same
and also because the annotated images used to train S-SegNet
are a dilated version of those used for HoughCNet.

TABLE 1. The weights applied for each class and each network.

A stochastic gradient descent momentum (SGDM) solver
is applied to train the networks. The learning rate is set to
0.001 and the momentum value is 0.9. We used a weighted
cross-entropy loss, to handle the imbalanced number of pixels
of each class, due to the dominance of the soil. For S-SegNet
the number of epochs and mini-batch size are set to 1000 and
4 respectively. As regards HoughCNet the number of epochs
and mini-batch size are set to 200 and 20 respectively. The
Hough transform H (θ, ρ) is computed on the S with a θ
resolution equal to 0.1◦, letting θ take values in the range
] − 90◦; 89◦] and a ρ resolution equal to 1. S is obtained by
using the Matlab thin function with n = Inf ; with this option
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FIGURE 6. Architecture of the HoughCNet network.

FIGURE 7. Example of crop row detection in a weed-infested image. At the first loop the IoU is 0.6416. After the third
loop IoU = 0.8525 and the detected crop rows are more adjusted.

the contour pixels are removed according to the local configu-
ration until the image no longer changes. The CRowNet stop
criterion ε was set to 0.85. This value of ε was considered
as a good trade-off between good detection and iteration
number.

B. TEST
Assessment was carried out on 154 images (480× 360 pixels)
from datasets number 000, 001 and 002 of the public dataset
[50]. In order to take into account crop row irregularities
and to avoid the impact of weed pressure in the test data,
the ground truth was built manually with the Matlab labeling
tool (Image labeler). The labeling consisted in creating a
mask around each row. The weed infestation rate (WIR) in
these images varies from low to high. The WIR is the propor-
tion of vegetation pixels considered as weeds in an image.
According to the WIR classification, we have 45 images

without weeds (WIR < 5%), 21 images with a low rate of
infestation ([5% - 15%[), 50 images with a moderate infes-
tation rate ([15% - 35%[) and 38 heavily infested (WIR >

35%). These infestation rates were computed from the ground
truth of the images available in the public dataset. In total
there were 1325 crop rows to detect (NCR).

As for the other images to be used at the input of the
network to test its robustness, 80 samples of a maize field
were selected; the sample size was 300 × 300 pixels. The
total number of crop rows was NCR = 1081. This field was
chosen because vegetation densities and the spatial resolution
are different from the images on which the model was trained.
In Fig. 9a it can be seen that the image is affected by plant
shadows and the crop rows are difficult to locate even with
the naked eye. We therefore performed contrast change by
replacing the green channel by the background segmentation
result obtained with ExG followed by Otsu thresholding.

VOLUME 8, 2020 5195



M. D. Bah et al.: CRowNet: Deep Network for Crop Row Detection in UAV Images

FIGURE 8. Example of the training dataset. (a) The original image X . (b) Line detection based on the Hough transform L. (c) Ground
truth. In the second row we have image X after contrast change. (d) Contrast adjustment, the 1 % of pixels are saturated at low and
high intensities for each channel of X . (e) The green channel of the RGB image is replaced by the result of background segmentation
performed with ExG and Otsu thresholding (BW). (f) Blue and red channels are set to 0 and the green channel corresponds to BW.

FIGURE 9. Examples of crop row detection on images acquired in the maize field. (a) Original image. (b) Overlay of crop rows
detected with S-SegNet (in blue) and the original image after contrast change. (c) Overlay of crop rows detected with CRowNet (in
blue) and the original image after contrast change.

1) QUALITATIVE ASSESSMENT
Based on the visual result, a qualitative analysis was per-
formed. In Fig. 9 and 10, it can be seen that S-SegNet is
able to locate and represent crop rows with strips even for
discontinuous rows, and that crop rows with a low rate of
weed infestation in the neighborhood are well detected. Rows
which are discontinuous and have weeds in their immediate
proximity are detected but with some disturbances. With
CRowNet, detection was improved and the impact of weeds
was reduced. The other remark that can be made is that the
detected strips are mainly located in the center of the crop
rows and do not cover all the pixels of the ground truth.
This point is normal since models are trained to detect the

central alignment. Moreover, Fig. 9 shows that even if all
the vegetation has the same value, the method succeeds in
detecting all the crop rows.

2) QUANTITATIVE ASSESSMENT
Four metrics were computed for performance evaluation: the
recall (Recall), the precision (Precision), the F1 score and
the intersection over the union (IoU). Recall reflects the
ability to reveal the needed information (3), Precision (4)
indicates the correctness of the detected results, and the F1
score indicates the balance between Precision and Recall (5).
It is the harmonic mean of precision and recall. These indices
were computed for each crop row. In addition, to assess how
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FIGURE 10. Crop row detection using S-SegNet and CRowNet. (a) Original RGB image. (b) and (c) are the results of S-SegNet and
CRowNet respectively. The white color represents the ground truth pixels that are well detected (true positive), in magenta the pixels
that are on the predicted row and that do not belong to the ground truth (false positive), and in green the missed pixels (false
negative).

accurate the method is in each image and row we computed
the intersection over union metric (IoU). IoU, also called the
Jaccard similarity coefficient (6) takes into account both the
false alarms and the missed values for each class. The IoU
is calculated as a ratio of the area of overlap to the area of
the union between ground truth (GT) and the prediction. The
recall, precision and F1 score were calculated for each crop
row to measure the effectiveness of each individual detection.
In addition, the IoU was computed for each image, thus mak-
ing it possible to assess the impact of overdetection in each
image. The number of crop rows in a field can sometimes
be considered as an indicator of good plant growth and good
yield. Consequently, a curve of good detection rate (GDR) of
crop rows according to the segmentation quality (τ ) required
for the IoU score is plotted (7).

Recall =
TP

TP+ FN
(3)

Precision =
TP

TP+ FP
(4)

F1 =
2× Recall × Precision
Precision+ Recall

(5)

IoU =
GT ∩ P
GT ∪ P

(6)

GDR =
Card(IoU ≥ τ )

NCR
(7)

True positives (TPs) are pixels that are correctly detected as
belonging to a crop row while false positives (FPs) are pixels
misclassified as belonging to crop row. Finally, false nega-
tives (FNs) are pixels belonging to a crop row but detected as
background, and true negatives (TNs) are background pixels
detected as pixels of a crop row. As a reminderNCR represents
the number of crop rows to be detected in the field.

Table 2 shows that the results of S-SegNet and CRowNet
are close. CRowNet generally outperforms when S-SegNet
provides discontinuous crop rows. With CRowNet each row
is detected on average with a Recall of 70.72% and a Preci-
sion of 90.10%. The qualitative assessment carried out is well
reflected in the quantitative assessment. Results are explained
by the position of rows detected according to the ground truth.

TABLE 2. Quantitative results of crop row detection in the beet field. The
mean is computed for each row.

To efficiently evaluate the results, we thinned all the rows
and each row was represented by its skeleton. Assuming that
the thinning operation returns skeletons which represent the
center line of each row, we dilated the skeletons to obtain the
same crop row width as that measured in the field. Based
on a ground measurement in the beet field, the size of a
crop plant varies from 15 to 20 pixels. In the maize field the
crop row width is about 12 pixels. We therefore dilated the
skeleton of detected rows with a square structuring element
of 15 × 15 pixels on beet images and 11 × 11 pixels on
maize images. Fig. 11a and 11b present the results of the
thinning and those of dilation. CRowNet was compared to
different semantic segmentation methods including SegNet
with imbalanced classes, FCN [51], FCN-W and FCN-W-16.
FCN-W and FCN-W-16 are respectively FCN-8s and FCN-
16s with balanced classes.

Besides semantic segmentation methods, we compared
CRowNet with two other methods proposed in the literature.
The most commonly used methods for detecting crop rows
in aerial images use the Hough transform and geometric
field information (inter-row distance, global orientation, etc.).
Depending on the authors, the Hough transform is applied
to all vegetation pixels [8], [24], or to the centroids of
plants [25], but the fundamental principle remains the same.
First the Hough transform is computed, then the peak of the
majority vote is identified. From the position of this peak and
the estimated inter-row distance, other peaks are identified.
Thismethod assumes that in images without perspective, crop
rows are parallel with a constant inter-row distance; in the
rest of this article, this approach will be called CR-Hough.
We compared CRowNet with CR-Hough and CR-Hough-
SLIC. To compute these two methods, a background seg-
mentation was performed with ExG and Otsu thresholding.

VOLUME 8, 2020 5197



M. D. Bah et al.: CRowNet: Deep Network for Crop Row Detection in UAV Images

FIGURE 11. (a) and (b) are respectively the results of CRowNet after skeletization and dilation of the skeletons. The white color
corresponds to the true positives (TPs), magenta corresponds to the false positives (FPs), and green to the false negatives (FNs).
(c) Number of detected crop rows according to the segmentation quality. CR-Hough is the result obtained with the Hough transform
and field information [8], [24]. CR-Hough-SLIC is the result obtained with the combination of the Hough transform and SLIC [27].

TABLE 3. Results of crop row detection methods after performing a dilation. FCN-W and FCN-W-16 are respectively FCN-8s and FCN-16s with balanced
classes.

FIGURE 12. Well detected crop rows depending on the quality of the segmentation. (a) and (b) present
results obtained with data taken in the beet and in maize fields.

On beet images for CR-Hough, the theoretical value used
is 45◦ for the global orientation, the inter-row distance esti-
mated is 50 pixels and the row width is 20. On maize images,
the estimated global orientation, inter-row distance and row
width are respectively 29◦, 22 and 12. The number of super-
pixels applied to compute CR-Hough-SLIC in beet andmaize
images are respectively 0.1% and 0.5% of the pixels present
in the image.

The result of the comparison is shown in Table 3. It can be
seen that CRowNet provides the best results. It outperforms
all the other methods in the beet field and the results obtained

with the different versions of FCN provide the lowest results.
The F1 score and the Precision of CRowNet and CR-Hough
are close but the difference is greater when looking at the IoU
per image. The result of the IoU for CR-Hough shows that
CR-Hough overdetectsmore than the other twomethods (CR-
Hough-SLIC and CRowNet). This overdetection is greater on
images with a high weed infestation rate. Table 4 shows how
the weed pressure influences the results. CRowNet is more
robust and we remark that the higher the WIR, the higher the
performance gap between CRowNet and these two methods.
It is also noted in Table 3 that CRowNet trained in the beet
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TABLE 4. Mean IoU results according to the weed infestation rate on
images acquired in the beet field.

field gives results comparable to those of CR-Hough and
CR-Hough-SLIC in the maize field.

Fig. 11c and 12 show the performance of the methods
according to the IoU obtained in each crop row. We note that
due to the irregularity of the crop rows shape, it is difficult
to obtain a 100% overlay between the ground truth and the
prediction. In addition, it can be seen in Fig. 12a that for a
value of τ = 0.70, the number of rows that are well detected
with CRowNet is 93.58%. In the maize field, the quality of
the segmentation is close and this is highlighted in Fig. 12b
and Table 3. It can also be seen that the CR-Hough-SLIC
method outperforms the CRowNet for high values of IoU
threshold. However, compared to CR-Hough and CR-Hough-
SLIC, CRowNet does not need theoretical field information
and has no adjustable parameters.

V. CONCLUSION
In this article, we have proposed a new automatic method for
detecting crop rows. This method called CRowNet combines
CNN and the Hough transform and consists of a model
formed with S-SegNet and a CNN based on the Hough
transform (HoughCNet). The model was evaluated in two
different fields: a beet field on which part of the images was
used to train the models and a maize field with a differ-
ent spatial resolution to test the robustness of the generated
model. The results obtained show that it is possible to detect
crop rows with a convolutional neural network even with a
high weed pressure. In addition to semantic segmentation
methods, CRowNet was also compared with methods without
training and that are based on the Hough transform (CR-
Hough and CR-Hough-SLIC). The IoU scores obtained with
CRowNet outperformed the ones achieved with other meth-
ods in both fields. In the images acquired in the beet field,
93.58% of crop rows were detected with an IoU score above
70%. CRowNet also demonstrated its robustness in a maize
field with a strong presence of shadows after contrast change.
In addition, in contrast to methods found in the literature,
CRowNet does not require field information or calibration
of superpixels. As future work, we plan to replace CRowNet
with only one CNN model.
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