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ABSTRACT Diriving cycle prediction plays a key role in energy management strategy (EMS) for hybrid
electric vehicles (HEVs). This paper studies a driving cycle prediction method based on convolutional neural
network (CNN). Firstly, the k-shape clustering method is used to group the driving cycle data into six different
types. Moreover, this method is compared with the k-means algorithm which is often used for clustering
driving cycles. Secondly, CNN is adopted to predict the different types of the driving cycles based on the
results of k-Shape clustering. Some basic features are selected to construct the input of the networks with
no assistance of human experience. In the process of training neural networks, some high-level features
which can describe the information of a driving cycle more accurately are extracted, and the deep neural
networks are built, which are different from traditional experience-based driving cycle prediction methods.
And then, the better performance of the proposed method is illustrated by making a comparison with the
traditional machine learning method. Finally, an adaptive energy management strategy for plug-in hybrid
electric buses (PHEB) based on deep learning is given, and simulation results prove the effectiveness of the
proposed method.

INDEX TERMS Plug-in hybrid electric bus, driving cycle prediction, energy management strategy, deep

learning.

I. INTRODUCTION

Nowadays, plug-in hybrid electric buses (PHEB) are widely
used in public traffic field thanks to the ease of being charged
by the power grid and its better performance in fuel consump-
tion [1], [2]. There are different operating modes for a PHEB,
such as electric vehicle (EV) mode, charging-sustaining (CS)
mode, regenerative braking mode, and so on, which is helpful
to achieve better vehicle fuel economy [3]. Pattern of the
energy flow in these operating modes depends on the energy
management strategy (EMS) for PHEB [4]. However, EMS
is mainly determined by driving cycle types. Therefore, it is
very important to recognize the types of driving cycles online.
In general, there are two steps to complete this task. First of
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all, for huge volumes of driving cycle data, various clustering
algorithms are used to put data into homogeneous groups,
which can obtain the training set of the driving cycle data [5].
It is very difficult to achieve this purpose since any prior
knowledge of the groups is unknown. The most popular
clustering algorithm for driving cycle data is k-means [6].
However, this algorithm has to construct the features from
the driving cycle data, and then cluster these features for
corresponding driving cycles. All features of driving cycle
data are selected based on the knowledge of the vehicles or the
experts’ intuition [7], [8], therefore it is difficult to determine
these features. Moreover, the features will not reflect the
shape of driving cycle time series. For k-Shape clustering
method, it is not necessary to construct the features of driving
cycle. More importantly, k-Shape clustering algorithm can
preserve the shapes of driving cycle time series [9], [10].
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This is the motivation for selecting k-Shape method in this
paper. After the clustering process, different types of driving
cycles are obtained. In the next step, the type of the driving
cycle has to be predicted via statistical method.

In practice, it is hard to predict the driving cycle type since
too many random events can affect them [11]. Furthermore,
when the number of driving cycles is large, classification
becomes a difficult job [12], [13]. A natural idea to predict the
driving cycle type is based on the result of clustering method
about historical driving cycle data [14], [15]. However, it is
impossible to predict the driving cycle type based on the
raw driving cycle data. Therefore, some feature parameters
also have to be selected from driving cycle data to classify
the types of driving cycles [16], [13]. In [17], independent
measures to describe the dimensions of urban driving pat-
terns are given, and then the properties which mainly affect
emissions and fuel consumption are studied. 62 driving cycle
parameters are selected to represent different driving patterns
which are collected in real traffic. In [18], average speed
and stop time are used to classify the driving cycles. From
the researches mentioned above, it can be seen that using
less parameters will reduce the computational cost. However,
too few parameters cannot give much information of the
driving cycles. Therefore, choosing some parameters from
the parameter set to give good results of recognizing driving
cycles is a very challenging task.

However, the selection of these features depends heavily
on the domain knowledge and engineers’ experiences [5],
[19]. Therefore, it is hard to find out an optimal driving cycle
representation. Therefore, it is necessary to find a new method
to overcome these drawbacks [20], [21]. In convolutional
neural networks (CNN), raw data can be considered as input
data without further selection and construction. In this paper,
convolutional neural networks, which are the most popular
deep neural networks, are used to recognize the types of
driving cycles.

There are three contributions in this paper. First, the k-
Shape clustering algorithm is used to group the driving cycles
into six different driving cycle types. This clustering method
is suitable for time series clustering, so it is not necessary
to select the features of driving cycles. Second, a method
is designed to map the raw driving cycle data onto some
feature matrices, which are used as the input data of CNN.
The third contribution is the proposed deep neural networks
which can learn more complex feature from the low-level
feature matrices. Compared with current machine learning
method, the proposed deep learning method provides better
classification accuracy and requires less human intervention.
To the best of our knowledge, it is the first time for a research
to use deep learning method to classify the different driving
cycle types. Simulation on a large number of real datasets in
this paper shows that deep learning method can be a powerful
tool for recognizing driving cycle types.

The remainder of this paper is organized as follows.
Section II details the k-Shape clustering algorithm and the
deep convolutional neural networks used in classifying the
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driving cycles. In section III, numerical experimental results
are given based on a large amount of real data to show
the better performance of deep learning compared with the
traditional machine learning method. Energy management
strategy for PHEB based on the classification results is given
in Section I'V. Some results and analysis are obtained via sim-
ulation to illustrate the effectiveness of the EMS in Section V.
The conclusions are summarized in Section VI.

II. K-SHAPE CLUSTERING ALGORITHM AND
CONVOLUTIONAL NEURAL NETWORKS

In this section, k-Shape clustering algorithm and convolu-
tional neural networks related to our research will be intro-
duced. k-Shape clustering algorithm is used to obtain the
different driving data types in our study, which are used as
training data in the classification model [22], [ 25]. The CNN
is used to predict the driving cycles of a bus. There are two
main purposes for the proposed classification method with
CNN. First, the input data of neural networks are constructed.
Second, more complex features are learned by deep networks.
Here the raw data only consider the driving cycle data, which
are the main factor in constructing the EMS. In the following
parts, the proposed methods will be discussed in detail.

A. K-SHAPE CLUSTERING ALGORITHM FOR DRIVING
CYCLES

The driving cycle segments with different window sizes are
time series about speed. So k-Shape clustering algorithm
lends itself readily to driving cycle data clustering. The
definition of clustering of driving cycles in this paper is
given as follows: given a dataset of n driving cycles D =
{Vi1, Vo, - -+, V,,}, the process of unsupervised partitioning of
D into C = {Uy, Ua, - - - , Uy}, in such a way that homoge-
nous driving cycles are grouped together based on a certain
measure, is called driving cycles data clustering. Here, D =
Ui Uiand Ui\ U = ¢, # .

K-Shape clustering algorithm is used to cluster the differ-
ent driving cycles into the same type of driving cycles, which
is a novel algorithm that can preserve the shapes of driving
cycle data. As a clustering algorithm, shape-based distance
should be given firstly as the following equation [24].

CCu(x,y)
/Ro(x, x)Ro(y, y)

where CCy(x,y) = Ry—m(x,y), 0 =1,2,--- ,2m — 1. The
above equation is computed by the following equation

SBD(x,y) = 1 — max( )

m—k
Xiky, k>0
ReGey) = | 5 2)
R_;(x,y), k<O

It is noteworthy that the values of SBD is between O to
2, and O indicates perfect similarity for driving cycle types.
As for the computation of SBD, it can be computed via the
Inverse Discrete Fourier Transform of the product of the indi-
vidual Discrete Fourier Transforms of the time series [25].
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In the following parts, the centroids for time series cluster-
ing based on SBD distance measure are given as the following
equation:

< max,, CCy(Xi, k) )2
~Ro(xi, x))Ro (i, A1)

The k-Shape clustering method depends on the SBD dis-
tance measure and the centroids of time series. The whole
algorithm is given as follows. The input is an n-by-m matrix
containing n time series of length m that are initially z-
normalized. The output is a k-by-m matrix containing k cen-
troids of length m [26].

Wi = arg max Z 3)

me o

Algorithm 1 k-Shape Clustering Algorithm

1: Initialize iter <— 0 and IDX’ <[]
2: While IDX ! = IDX’ and iter < 100 do
3: IDX' < IDX.
forj=1tokdo

X <]

fori=1tondo

if IDX(i) = j, then X' «[X/, X()]
G(j) < ShapeExtraction(X', G(j))

9: fori < 1tondo

PNk

10: min dist < 00.

11: forj < 1tokdo

12: [dist, x'] < SBD(C(j), X(i)).

13: if dist < min dist then min dist < dist
14: IDX(i) < j

15: Assign iter + 1 to iter.

In the above algorithm, X and k are the input driving cycle
data. X and C are the output. There are two steps in every
iteration of the algorithm. One is assignment step, which
updates the cluster member by comparing each driving cycle
segment with all computed centroids and by assigning each
driving cycle segment to the cluster of the closest centroids.
The other is the refinement step, where the cluster centroids
are updated to reflect the changes in cluster membership in
the previous step. The terminal condition of this algorithm is
either no change in cluster membership or the given number
of iterations is reached. In addition, the computational com-
plexity of the k-Shape clustering algorithm depends on the
number of given driving cycle data.

In order to determine how many types of driving cycles
should be clustered, cluster validation is introduced. As for
cluster validation, unfortunately, there is no best Cluster
Validity Index (CVI) for the k-Shape clustering algorithm.
In this study, a proper CVI is used to compare the clustering
result of k-Shape clustering algorithm with k-means cluster-
ing algorithm [27].

B. CONVOLUTIONAL NEURAL NETWORKS FOR
PREDICTION

Deep neural networks have better performance in many fields
such as computer vision and human behavior [28], [29].
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Driving cycle data are basically time series, and this is the
main reason why deep learning method is used for the learn-
ing of driving cycle feature representation. For convolutional
neural networks model, there are two new types of layers
which are different from traditional neural networks. One is
convolutional layers. The other is pooling layers. There are
four hyperparameters in convolutional neural networks which
have to be determined: number of filters K, their spatial extent
F, the stride S and the amount of zero padding P. In pooling
layers, pooling function, the size of filter and the stride should
be given in advance.

However, driving cycle data are simply a sequence of two
dimensional coordinates (z, v). Experiences show that if these
driving cycle data are simply treated as input data of both
traditional machine learning method and deep learning algo-
rithms, the results are usually unsatisfactory [30]. Therefore,
the raw driving cycle data should be transferred into some
matrix-type data which are viewed as inputs of deep neural
networks.

In order to gather information from driving cycle data more
accurately and easily, the whole driving cycle will be divided
into several short segments considering the bus stop. And the
length of each segment is denoted as L. Furthermore, five
features are obtained from driving cycle data: (1) maximum
velocity, (2) average velocity, (3) minimum acceleration,
(4) maximum acceleration, and (5) maximum deceleration.
These features are also used by traditional machine learning
method such as support vector machine (SVM). In order
to capture the short period information and long period
information of driving cycles, each driving cycle segment is
divided into shorter period L’. Here L’ = 4s considering
the normal speed of the vehicle. For the accuracy of the
statistical method, the shorter period L’ overlaps between
the adjacent driving cycle segments with a shift of % Then
the 5 x 2L—I7 feature matrix is the input of the deep neural
network. In this matrix, 5 rows represent the five features
above axis, and 2L—L, columns are for time axis. In addition,
only five simple features are selected in this paper since we
hope more complex features can be learned by deep neural
networks automatically.

C. BASELINE MACHINE LEARNING METHOD

For comparisons with the proposed clustering method and
deep learning methods, baseline methods should be given.
In this paper, k-means clustering method is compared with
k-Shape method, and SVM and k nearest neighbor (kNN)
method are adopted for the baseline of classification problem
since they have been viewed as powerful machine learning
methods. In this paper, we train SVM and kNN on a set of
5 driving cycle features which are given above.

. NUMERICAL EXPERIMENTS FOR PROPOSED
APPROACH

In previous researches, k-means method is a frequently used
method to cluster the driving cycle data. So the k-Shape
clustering method is compared with k-means method.
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FIGURE 1. S-Dbw of k-means and k-Shape method.

The research objects for these two methods are driving
cycle segment data whose length is 128s as is mentioned in
Section II. The feature parameters in k-means method are
as follows: maximum velocity, average velocity, minimum
velocity, maximum acceleration, and maximum deceleration
for every driving cycle segment. As for k-Shape clustering
method, there is no need to select any features from the
sequences of velocity of the vehicle. The S_Dbw is adopted
as CVI in order to explain the performance of the clustering
method, and the expression of S_Dbw can be found in [31],
which is a proper CVI used in different clustering methods.
The index S_Dbw can be normalized into the range [0, 1]. The
smaller value of S_Dbw, the better performance the clustering
method gives. Fig. 1 gives the different values of S_Dbw
under different numbers about k-means and k-Shape method
respectively.

In the above figure, it is obvious that the cluster perfor-
mance of k-Shape method is better than the results of k-means
method under different number of subgroups. In general,
the overall trend of S_Dbw for k-means and k-Shape is
down before the number of subgroups is 6. And then the
value of S_Dbw changes around a fixed value. In addition,
the best choice is to divide all the driving cycle segment
data into six groups considering both the value of S_Dbw
and the computational burden. Therefore, six different driving
cycle segment types are considered in this paper. Because the
driving cycle segments of every type are selected at random,
the difference is not so obvious judged by people. Therefore,
the distributions of average velocity and average acceleration
for these six driving cycle types are given in Fig. 2, which
show the differences among the six types.

From the results of clustering, the six types of driving cycle
segments can be described as six road conditions in Table 1
considering the road and traffic information.

In what follows, SVM and kNN method are also used to
recognize the different types of the driving cycles, which
are trained based on training data sets. These two methods
are widely used in previous research. Therefore, results of
these two methods are compared with CNN method, which
is shown in the following part. In order to assess the perfor-
mance of our prediction models, K-fold cross-validation is
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FIGURE 2. The distribution of different types of segments.

TABLE 1. Description for six different types of driving cycle segments.

Road type Traffic condition
High velocity; Smooth
traffic
Flat road Middle velocity; Little
traffic jam

Low velocity; Traffic jam
Middle velocity; Smooth

traffic
Distance-varying Middle velocity; Traffic
ramp jam

Low velocity; Traffic jam

used. For kth part, the other k-1 parts are used to train the
model, and calculate the prediction accuracy of the model
when predicting the kth part. And the prediction error is given
as follows.

N
Ve = 1 3 o 00 @)
i=1
where d(-, -) is distance. As for kNN method, k is an impor-
tant parameter which determines the results of the classi-
fication. The following fig. 3 shows the accuracy of the
classification with different k.
From the above figure, it can be seen that the accuracy of
kNN model is below 87%. As for SVM method, the result is
given in Fig. 4, which is below 86%.
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FIGURE 4. The results of SVM for different gamma and C.

There are two parameters which will affect the results of
SVM method. One is kernel bandwidth: gamma, and the other
is regularization parameter: C. In the above two pictures, they
give the different values of accuracy according to different
values of parameters. It is worth noting that the result of Fig 4.
(a) is given when the value of C is optimal, and the result of
Fig. 4 (b) is given when the value of gamma is optimal.

In k-Shape clustering algorithm, each driving cycle data
are divided into six segments with the same window size,
which is easier to deal with in the process of clustering and
classification. Then a large number of driving cycle data
segments are obtained, which is used as training data of the
algorithm. It is expected that the driving cycles are clustered
into six different types.
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FIGURE 5. The accuracy under different numbers of neurons and layers.

In order to obtain better performance of the classification,
the driving cycle data sampling rate cannot be set below a
certain value since a low sampling rate may result in much
effective information. In our experiment, the sampling rate
is 1Hz. The dataset is constructed from 300 driving cycles.
Here, L = 128s, L’ = 4s. In all the tests, 80% examples are
selected as train data, and 20% examples are test data.

The CNN architecture for driving cycles is built with
Keras in Python. The network has 6 layers. The first layer
is input layer, and then two convolutional-pooling layers are
connected. The remaining three are fully-connected layers.
The last layer is the Softmax function, which outputs the type
of driving cycles. All the above hyperparameters is selected
by cross validation. For CNNs, stochastic gradient descent
optimizer is used. Its learning rate is 0.08, and decay is
le-6. When constructing the CNN, two aspects should be
considered. One is the number of the neurons in each layer.
The other is the number of the layers. In the following Fig.5,
the tendency of the accuracy for driving cycle prediction is
given as these two numbers become larger.

From the above two pictures, it can be concluded that
increasing the number of layers provides better accuracy of
prediction than increasing the number of neurons in each
layer. In this paper, the accuracies of the driving cycle pre-
diction are above 95% by using CNN method.

It is interesting to investigate what kinds of features are
learned by the deep networks. In each hidden layer, the output
of this layer can be considered as new features of driving
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cycles, which is learned by deep networks. These new fea-
tures are more complicated than the raw feature, but the
meanings of these new features are very hard to explain.

From the above analysis, the performance of CNN is bet-
ter than other classification methods. So it is therefore a
potentially desirable method of classification to improve the
accuracy of driving cycle prediction.

In application scenarios which require real-time prediction,
the proposed deep learning approach has a significant advan-
tage over the traditional methods such as SVM, which relies
on some complex handcrafted features. Because only lower
level data are needed, given a pre-trained network, the deep
learning approach can be used in real-time prediction where
lower level data are available online as the bus moves. In con-
trast, some complex features which are used in traditional
prediction method can only be available after the whole trip
ends. This restricts traditional methods to be used for online
prediction purpose, whereas the deep learning approaches are
far more flexible. It is possible to build an online system based
on the proposed deep learning approach, e.g. to predict the
driving cycle identity based on the data collected at lower
level during runtime.

IV. ENERGY MANAGEMENT STRATEGY FOR PHEB
In this section, the energy management strategy of PHEB will
be given through the proposed deep learning method. Since
the energy management strategy of plug-in hybrid electric bus
based on traditional machine learning method is given in [2],
the deep learning based method is our focus in this paper. The
powertrain structure of the PHEB considered in this study
is single-shaft parallel hybrid configuration which is given
in Fig.6. PHEBs with this configuration are widely used in
public transport in China due to their simple structures and
good controllability [16]. By some proper control strategy,
the PHEB will work under different modes to achieve optimal
performance of the vehicle. The operating point set of the
electric motor (EM) and engine can work in its own best
efficiency areas by the adjustment of automated manual trans-
mission (AMT) [13]. The clutch is always used to change the
work modes of the powertrain mentioned above. The EM is
able to work as a motor or a generator according to different
work modes. And the electric quantity of Lithium titanate
battery can be charged very quickly. The basic parameters of
the PHEB are listed in Table 2.

In order to minimize the vehicle energy consumption,
a model should be estimated via Matlab Simulink. In general,
two basic approaches are used to construct the mechatronic
systems of the PHEV. One is the theoretical model, which
contains the functional description between the physical data
and its parameters. However, these models are very hard to
obtain. Therefore, the other approach is adopted, which is
called quasi-static models. These models focus on giving
a simple representation which can be easily expressed but
remains physically interpretable as much as possible. The
model of components of the vehicle is given as follows.

3260
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FIGURE 6. The configuration of the PHEB powertrain.

TABLE 2. Basic parameters of the PHEB.

Components parameters

Vehicle mass 14,000kg

YC6G230N, CNG, 6.45L, normal

Fngine power:170Kw
max torque:750Nm, normal/peak
Motor/Generator power: 94/12 1kW
Battery capacity:60Ah
AMT 6-speed, gear ratio:

6.39/3.97/2.4/1.48/1/0.73

Final Drive Ratio:5.571

The torque of wheel is given as following equation.
Tyw =01 - iamr - if(Te + Tw) +Tp (5)

The variables in equation (5) are explained as follows: 57 is
transmission efficiency. iapmr and i represent gear ratio of the
AMT and the differential gear ratio, respectively. T, and T},
are the engine torque and the EM torque, respectively. T} is
the braking torque acting on the wheel. Another expression
of Ty, is given by the equation below.

dv,
]-r
dt
(6)
where m is the vehicle mass. g is the gravity acceleration,

and C, is the rolling resistance coefficient which is given as
follows.

1
T,, = [mgC, cos6 + ECD/odAVa2 + mgsinf + m

C=C+Q)V, @)

where C; and C; are different rolling resistance coefficients.
6 is the road slope angle. Cp, pg, and A represent air drag
coefficient, air density, and frontal area of the bus, respec-
tively. V, is vehicle speed and § is correction coefficient of
rotating mass. 1 is the wheel radius.

In the PHEB, compressed natural gas (CNG) is used by
engine, and the equation for CNG consumption rate per unit
time Qy is given as follows.

P.b

=— 8
367.1pgg ®)

o
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where b is the compressed natural gas consumption rate
which is a function of the current engine torque and rotational
speed. is the engine power calculated through P, = T, w,. pg
is the density of CNG.

Because the EM in the PHEB can be used to drive the
bus or recover the kinetic energy to the battery which is called
regenerative brake, the EM power can be written as:

Tnwm
, motor
Pey = § NEM 9
TmomneEm, generator

where nry is the EM efficiency, which is a function of the
torque and the rotational speed of the EM.

If the thermal-temperature effects and transients are
neglected, the physical model of the battery is considered as
a static equivalent circuit. According to Kirchhoff’s voltage
law, the equivalent circuit equation is written as:

U(1) = Upe(t) — Rint (D)1 (1) (10)

where U, (1), Rin;(¢), U(¢), and I(¢) are the open-circuit volt-
age, internal resistance, terminal voltage, and internal current
of the battery, respectively. The battery SOC is calculated
through the following equations.

o)
SOC(t) = —— 11
‘(r> o0 (11)
Q) = 1(0) (12)

_ Unet) = V/U(1) = 4R:(DPen (1)

1(1) 13)

2R, (1)
where Q(#) and Qg represent the quantity and the capacity of
the battery, respectively. R, (¢) is the resistance of the battery
which is described as follows.

Rais(t),
R.(t) =
® {Rchg(t)s

where Rgis(t) and Repe(t) are internal resistances when the
battery is providing energy or is being charged, respectively.

Several families of energy management strategies have
been researched in literature. In order to obtain the global
optimal solution of the EMS problem, dynamic programming
(DP) is used through the known driving cycle [32]. But
this method is not available online since the information of
driving cycle is not known in advance. Therefore, DP method
is considered as a benchmark or a complementary method
for other EMS. In real time application, rule-based method
is widely used in HEV/PHEV, which is constructed by a
set of rules without any optimization method [33]. How-
ever, the rules are based on intuition and remain unchanged.
So under some driving cycle, it achieves a solution far
from the global optimal solution. Another practical applica-
tion EMS is Equivalent Consumption Minimization Strategy
(ECMS) [34]. In this paper, our ECMS approach is based on
ECMS.

It is noted that ECMS is an online control strategy for
optimal energy management, which reduces a global opti-
mization problem to an instantaneous minimization problem.

discharging (14)
charging
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ECMS can be expressed by the following formulation.

iy
min gy (u(t)) = / Mgyl (u(t)) + = Ppa(u(e)dr (15)
u(t) 10 H;
where it () is the fuel mass flow of the internal-combustion
engine. Ppy(+) is the electrical battery power, and Hj is the
fuel’s lower heating value. s is the equivalence factor which
depends on future driving cycles. In theory, by selecting
proper value of s, the solution will reach the global optimal
solution, which is solved by DP. Therefore, finding the proper
value of s is a hard task in practical applications since the
value of s is affected by various random events. In this paper,
the value of s is determined according to the six types of
driving cycles. That is to say, an adaptive control is obtained.

As mentioned above, the bus route is classified into six
different driving cycle types through k-Shape clustering algo-
rithm. According to different types of driving cycles, different
sub-strategies are given. That is to say, the EMS of buses
should be given according to these six types. Next, the con-
volutional neural networks are built by the different driving
cycle data and the types of driving cycle, which are regarded
as training data of the networks. This convolutional neural
network is used to predict the types of the new driving cycles.

In the following part, the energy management strategy for
PHEB is proposed as follows. After the bus leaves the stop
and reaches a steady speed, the device on buses obtains the
driving cycle data as the test data during a time period of 128s.
Then these raw driving cycle data will be transferred into
input of the deep neural networks via the above method.
The output of the deep neural networks is for the types of
the driving cycles, which are considered as the prediction
of future driving cycle type until the bus arrives at the next
stop. Once the type of the driving cycle is given, the energy
control strategy on this type is given. This process will be
repeated until the bus arrives at the end stop. Here, EMS of
the bus is presented according to the driving cycle type. That
is to say, the EMS is switched among different sub-strategies
based on various driving cycles. The flow chart of the EMS is
shown as the following Fig. 7. Here, equivalent consumption
minimization strategy is adopted as sub-strategies. This EMS
of PHEB is called adaptive ECMS (AECMS). The whole
process of the EMS is given as the following figure.

In general, there are two parts to complete the whole
control process: the offline part and online part. In the offline
part, historical driving cycle data are collected by buses.
These time series about the velocity is clustered by k-Shape
clustering method. Then, different types of driving cycles are
obtained, which are used as input data of convolutional neural
networks. Finally, the CNN is built by input data, and the
different types of EMS are constructed according to different
types of driving cycles. In the online part, the current driving
cycle data are acquired by the running bus which sends the
data to computing center by wireless communication. The
computing center analyzes the data by CNN, and the new
driving cycle type is predicted. Then the computing center
sends this message to the bus, and the appropriate EMS is
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FIGURE 7. Flow chart of the proposed EMS.

FIGURE 8. A typical bus route map.

adopted by the bus. After 128s later, the bus sends new driving
cycle data to the computing center and the process is repeated
until the bus reaches the end stop.

Another difficulty is that the analysis of the big data and
the computation of the CNN can not be completed with on
board unit as mentioned above. Fortunately, the recent pene-
tration of the mobile wireless internet and cloud computing
technology make our approach possible for their application
in buses. Simply speaking, a two-way communication system
between the buses and the computing center is established.
The bus sends the driving cycle data to the computing center.
The data are analyzed and the driving cycle is recognized by
CNN. Then, the optimal ECMS is sent back to the bus.
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TABLE 3. The fuel economy of ECMS and AECMS.

Parameter ECMS AECMS
Fuel consumption (m>/100km) 16.87 13.80
Electric consumption(kWh/100km) 44.56 42.79

Cost (RMB) 120.48 104.89

Improvement (%) - 14.86

V. SIMULATIONAND ANALYSIS OF EMS
As for the simulation, some points must be explained first.
Although the accuracy of CNN is high, the prediction accu-
racy for driving cycle type in our method may be not ideal.
That is because the future driving cycle type prediction is
based on the current driving cycle type result obtained by
CNN. However, the future driving will be affected by many
random conditions, so the predicted result may not be consis-
tent with the real situation. Especially, when some emergent
accidents occur. But from the statistical view, the perfor-
mance of our prediction method is available on average. In
following part, some results about the simulation are given.
The driving cycles for simulation in this paper are selected
from the B13 bus route in ChangZhou city. This route starts
from Jinghaixingcheng (Point A in Fig. 8) to railway station
bus centre (Point B in Fig. 8), which includes 24 stops in total.
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The driving cycle data is collected by road experiment sys-
tem which is composed of sensor, data collector and portable
computer (PC). The top left part of Fig. 9 is the sensor includ-
ing the network difference global positioning system (GPS),
inertial measurement unit and fuel consumption sensor. The
signal is collected by CAN data collector Kvaser II, and sent
back to the PC as is presented at the top right of Fig.9. The
flowchart of the whole process of collecting data is given in
the top half of the Fig.9. The lower half of Fig. 9 shows the
experiment platform in the bus. And the associated hardware
is represented in this figure.

All the experiments run on a cluster of 8 servers with
identical configuration: Dual Intel Xeon E5-2650 processor
with the clocks speed at 2.2GHz and 128GB RAM.

The driving cycle for simulation is shown in Fig. 10. In
addition, ECMS strategy is widely used in real world applica-
tion, therefore ECMS strategy is considered as a benchmark
for comparison with the proposed method in this paper, which
has been used by our team before [35].

The simulation numerical results in Table 3 show the fuel
consumption of ECMS and the proposed AECMS method.
The results show that the energy consumption generated
by the proposed AECMS strategy is significantly lower
than that of ECMS strategy; and that the proposed strategy
could reduce the energy consumption by giving different
parameters in AECMS according to the types of driving
cycles which is predicted by constructing the deep neural
network.

VI. CONCLUSION

The main purpose of this paper is to develop deep learning
method for improving the accuracy of prediction for different
driving cycle types, which could be the first attempt using
deep learning to predict the types of driving cycles.

In order to acquire the training data in CNN, k-Shape
is used to cluster the driving cycle data. CVI shows that
six types of driving cycles are the best choice for k-Shape
clustering method. Meanwhile, the result also shows that the
performance of k-Shape method is better than that of k-means
method.

In the stage of prediction, the input data of deep neural
networks is constructed from the raw driving cycle data.
Second, this method is developed and its performance on
learning a good presentation of driving cycle types is studied.
Simulation results show that the proposed method provides
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higher prediction accuracy than traditional machine learning
method. Finally, the results are applied to energy management
strategy for PHEB, and better performance of fuel consump-
tion is also obtained. Therefore, deep learning should be a
powerful tool for learning driving cycle type features from
raw driving cycle data. In addition, deep learning method
has great potential to improve the accuracy of prediction of
driving cycle types.
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