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ABSTRACT Despite ample research on the association between indoor air pollution and allergic dis-
ease prevalence, public health and environmental policies still lack predictive evidence for developing
a preventive guideline for patients or vulnerable populations mostly due to limitation of real-time big
data and model predictability. Recent popularity of IoT and machine learning techniques could provide
enabling technologies for collecting real-time big data and analyzing them for more accurate prediction of
allergic disease risks for evidence-based intervention, but the effort is still in its infancy. This pilot study
explored and evaluated the feasibility of a deep learning algorithm for predicting asthma risk. It is based
on peak expiratory flow rates (PEFR) of 14 pediatric asthma patients visiting the Korea University Medical
Center and indoor particulate matter PM10 and PM2.5 concentration data collected at their residence every
10 minutes using a PMmonitoring device with a low-cost sensor between September 1, 2017 and August 31,
2018.We interpolated the PEFR results collected twice a day for each patient throughout the day so that it can
be matched to the PM and other weather data. The PEFR results were classified into three categories such as
‘Green’ (normal), ‘Yellow’ (mild to moderate exacerbation) and ‘Red’ (severe exacerbation) with reference
to their best peak flow value. Long Short-TermMemory (LSTM)model was trained using the first 10 months
of the linked data and predicted asthma risk categories for the next 2 months during the study period. LSTM
model is found to predict the asthma risk categories better than multinomial logistic (MNL) regression as
it incorporates the cumulative effects of PM concentrations over time. Upon successful modifications of
the algorithm based on a larger sample, this approach could potentially play a groundbreaking role for the
scientific data-driven medical decision making.

INDEX TERMS Asthma, indoor particulate matter, deep learning, peak expiratory flow rates, real-time
monitoring.

I. INTRODUCTION
Asthma is known for affecting quality of life of people of all
ages throughout the world by restricting social, emotional,
and physical aspects of life [1]. Asthma is characterized by
hypersensitivity of airways, which is reversible, but requires a
constant management of the symptoms that include long term
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and short-termmedication, mostly inhalers. Chronic Obstruc-
tion Pulmonary Disease (COPD), for which asthma is one of
the risk factors, is characterized by non-reversible airways
obstruction. Asthma and COPD are two leading causes of
chronic disease burden as measured by DALY (disability-
adjusted life years) globally [2], [3]. COPD is the fourth
largest cause of mortality in the world at present, and it is
forecasted that it will be third leading cause of deaths in
westernized countries by 2020 [4]. Both asthma and COPD
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are chronic respiratory conditions that require regular medi-
cation and management of patients as their severity may vary
with weather and environmental conditions, effectiveness of
medication, and other individual factors. Sudden exacerba-
tion because of any reason requires critical medical care and
may lead to hospitalization. Asthma andCOPD exacerbations
are cause of approximately 2 million visits to hospital emer-
gency departments (EDs) per year in the United States [5]
and hospital admission rates for asthma patients are 43.8 per
100,000 people in OECD countries on average. Asthma man-
agement is much worse than in some countries such as South
Korea where hospital admission rates for asthma patients
are 98.5 per 100,000 people [6]. Short-term increase in air
pollutant concentration has been linked to excess daily emer-
gency room visits and hospital admissions due to asthma and
COPD [7], [8].

Environmental health forecasting, one of the least devel-
oped branches of forecasting, is a useful tool for measur-
ing environmental risks and provisioning health services by
integrating various personal and environmental factors that
affect the health status of individuals and populations such
as weather and air quality, which are particularly important
in forecasting asthma [9], [10]. Given that children tend to
spend more time indoors, indoor air quality modeling is
particularly important for predicting pediatric asthma [11].
With successful development and implementation of accurate
predictive modeling, this provides an advanced notice for the
patients to take proper medication or treatment to prevent
from falling sick as well as help them to plan their mobility.
Ability to forecast risk based on indoor monitoring and per-
sonal data is so powerful that it provides people with real-time
risk assessment of their asthma exacerbation based on the
dynamic patterns of indoor air pollutants and their general
health condition.

Despite ample research that demonstrates a link between
indoor air pollution and asthma exacerbation [12]–[14],
the efforts to forecast personalized risk based on real-time
indoor air quality monitoring data are still at their infancy.
Most existing studies have used one-time data based on
questionnaire survey or monthly/quarterly measurements of
indoor air pollutants, rather than hourly or real-time mon-
itoring [15], [16]. Such approach may be useful to iden-
tify a static correlation between indoor air pollution and
asthma morbidity but cannot be utilized for practical pre-
vention and intervention such as early warning or alert sys-
tems tailored to vulnerable households and individuals which
requires constant monitoring and analysis of real-time indoor
air conditions. The recent advancement of IoT and big data
technologies facilitate real-time monitoring of indoor air
quality and AI-based forecasting.

Deep learning has been recently used for various health
applications, such as translational bioinformatics, medical
imaging, pervasive sensing, medical informatics, and public
health [17], [18]. However, the level of predictability offered
by a deep learning model depends on the availability of big
data analytics framework [19] and real-time risk monitoring

data via environmental and personal sensors using IoT tech-
nology [20]. Compared to other health applications, deep
learning has been relatively less applied to asthma or other
respiratory illness mostly due to the difficulty in obtain-
ing real-time measurements of pulmonary function variables
in non-clinical setting [21]. Most of the existing machine
learning algorithms developed to predict asthmatic risks used
historic patient records in clinical setting [22] or weekly or
daily monitoring data [23]. Upon successful development
and implementation of IoT-based mobile pulmonary sensors
monitoring and measuring real-time pulmonary function in
their daily lives, widespread applications of deep learning
algorithms are expected to predict personal risk of developing
asthma or COPD by linking with concurrent air pollution and
environmental monitoring data collected from their real-time
locations. We explore, for the first time, if a deep learning
technique can be applied to the real-time records of indoor
particulate matter (PM) concentrations to predict asthma risk
reflected in peak expiratory flow rates (PEFR). This pilot
study could demonstrate a potential role of deep learning
approaches as a tool for data-driven medical decision making
for asthma care and management.

The paper is structured as following. The next section
describes the data and analytic method that was used in this
study. Then, the results section reports the findings of the
study. The paper concludes with the discussion of implica-
tion, limitation and suggestions for future research.

II. MATERIALS AND METHODS
A. PEAK EXPIRATORY FLOW RATE (PEFR) DATA
AND PATIENT CLUSTERING
Many organizations such as the National Asthma Education
and Prevention Program, and American Thoracic Society
recommend the use of pulmonary function test (PFT) to
primary care physicians to diagnose and manage respiratory
problems [24], but few studies have collected long-term daily
records of PFT results mostly due to difficulty in home-based
self-tests. PEFR is popularly used to estimate the degree of
airway obstruction in patients with asthma because it is rela-
tively easy to measure using an inexpensive small portable
device, even by patients themselves at their homes [25].
Recently, a few research groups have used the weekly PEFR
records to predict asthma deterioration in children using
machine learning models [26], but there is no attempt to
collect the daily PEFR records over a long period of time and
associate their temporal variations with real-time changes in
exposure to indoor environmental risk factors.

As a pilot study to explore the feasibility, we obtained the
self-collected PEFR results for a total of 16 pediatric asthma
patients, measured twice a day between September 2017 and
August 2018, which was approved by the institutional
review board at Korea University Guro Hospital (IRB
No.2016GR0336). With two cases dropped due to the incom-
pleteness of the records, a set of twice-a-day PEFR records
as well as the questionnaire survey responses (e.g. disease
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and prescription history, demographic variables, etc.) were
gleaned and stored for 14 children aged between 6-14. They
were then clustered into the two groups via K-means cluster-
ing based on the maximum, minimum, mean and standard
deviation of the PEFR results of each patient [27]. Also,
in order to match PEFR values one-to-one with the indoor air
monitoring data, the observed PEFR values recorded twice
per day were interpolated to 10-minute intervals for each
cluster using 24-hour variation formula of PEFR established
byHetzel [28] and Charleston-Villalobos et al. [29]. Since the
normal range of PEFR values varies by patients, the interpo-
lated PEFR values were classified into three categories such
as ‘Green’ (when a reading is higher than 80% of the best
peak flow; normal), ‘Yellow’ (when a reading is between
50% and 80% of the best peak flow; mild to moderate exac-
erbation), and ‘Red’ (when a reading is lower than 50% of
the best peak flow; severe exacerbation), as referenced by
Talabere [30].

B. INDOOR PM MONITORING DATA
We installed a continuous measurement device with low-cost
monitoring sensors at each patient’s residence during the
same period when the PEFR data were collected, which
measured particulate matters (PM10 and PM2.5), as well
as temperature and relative humidity every 10 minutes. All
data were stored at the device as well as transferred to the
cloud storage through Wi-Fi networking. We compared the
PM levels from our device with those of a reference monitor
(DUSTTRAK II AEROSOL MONITOR 8530, TSI Incorpo-
rated, Minnesota, USA) in the lab settings to ensure accuracy
and validity of our data. The mean ratio of our measurements
to the reference values ranged from 0.742 to 0.758, which
indicated very similar exposure patterns. The indoor PM data
were finally matched with the PEFR data for every patient
and every time instant so that the correlated data can be used
to detect any potential association or meaningful basis for
prediction.

C. DEEP LEARNING ALGORITHM AND PREDICTION
The matched data was analyzed to obtain guidance for pre-
dictive modeling. To investigate if there is any correlation
between cumulative PM concentrations and PEFR risk cate-
gories (green, yellow and red), the mean values of PM10 and
PM 2.5 concentrations were calculated for the four different
prior periods of 1 hour, 12 hours, 24 hours and 72 hours,
for each cluster. The statistical association between PM con-
centrations and PEFR classifications over time was used to
predict the probability of each risk category. The temperature
and humidity are incorporated as covariates in both predic-
tive models. We first ran the multinomial logistic (MNL)
regression to predict the PEFR risk category for a specific
time period for each cluster using only the concurrent PM
measurements. We then ran the Long Short-Term Mem-
ory (LSTM) deep learning network [31], [32] to predict the
same targets and compare the results with those from the
conventional regression approach (MNL).

LSTM is a variant of recurrent neural network (RNN) that
is designed to overcome the error back-flow (vanishing gra-
dient) problems, through the use of memory cells and several
gates, with each of these components being associated with
a particular aspect of learning [31]. The memory cell decides
what information to memorize about the past that would be
required much later in the future. The gates comprise an
update gate indicating when to update the memory cell with a
new state, a forget gate to indicate when a memory cell state
needs to be forgotten and an output gate to decide how to com-
bine update and forget gate information with the memory cell
state to compute output activation for the current time step.
An appropriate combination of these gates with activations
from the previous time-steps helps the network retain infor-
mation from the distant past and thus longer time-dependent
aspects of a sequence can be learnt much more efficiently in a
reasonable amount of time [31]. LSTM has been widely used
in various sequence-based problems such as natural language
processing, but recently used in health applications [32], [33].

While theMNLmodel does not reflect the state of previous
time periods, the LSTM model enables incorporating values
from previous time periods. The sensitivity analysis was con-
ducted by comparing the mean concentrations of PM10 and
PM2.5 for three PEFR risk categories across the four prior
periods (t-6, t-72, t-144, t-432; t=10 minutes) to explore at
what cumulative period the PM impact appears noticeable.
Based on the results from a series of sensitivity analyses
(shown in Table 2), we decided to use the PM measurements
collected during the 1-hour (t-6) period before each PEFR
record. The Python scikit-learn package was used to imple-
mentMNL regression, while the TensorFlowwas used for the
LSTM modeling. For LSTM, 67% of the matched data were
used as a training dataset formodel training and the remaining
33% of the matched dataset were used as test dataset. The
LSTM structure we employed is illustrated in Figure 1.

FIGURE 1. Data construction and analysis framework for machine
learning.

A cost function was created and used for each machine
learning algorithm [34]. The precision score, which is defined
as the number of true positives divided by the total number of
elements that actually belong to the positive class (also called
as positive predictive value) [35], was calculated for each
PEFR risk category in each cluster and the results obtained
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from MNL and LSTM were compared. For the experiment,
we used the rectifier activation function (ReLU) as the acti-
vation function for the hidden layer [36]. We used this acti-
vation function for the output layer to maximize accuracy,
which is measured by precision and recall values. In order
to optimize the machine learning model, we used the Adam
algorithm [37], which has been widely used for machine
learning processes because it automatically solves the optimal
value by adjusting the learning rate. Both MNL and LSTM
models were evaluated by the k-fold cross-validation method
by setting k as 10 [38]. This method provides robust eval-
uation results on model performance regarding data used for
experiments. In other words, it repeats the process of creating
a training model using the training dataset with k-1 sets and
then validates the model on the remaining dataset until it
determines the final model with the largest precision score.

III. RESULTS
A. PATIENT CHARACTERISTICS BY CLUSTER
Table 1 given below summarizes the characteristics
of 14 asthmatic children in our sample and compares how
they differ between cluster 1 (N=10) and cluster 2 (N=4).
Although it is difficult to reach conclusions with any statisti-
cal significance due to small sample size, it appears that the
subjects in cluster 2 are relatively older (more in late puberty)
and have more severe symptoms than those in cluster 1,
as indicated by a lower mean level of FEV1/FVC and a higher
FeNO level. The subjects in cluster 2 also have a higher
family history of any allergic disease (atopy, allergic rhinitis
or asthma) from both mother and father.

TABLE 1. Characteristics of subjects by cluster.

On an average level, cluster 2 has a lower mean PEFR than
cluster 1 (218.2 vs. 263.2), but Figure 2 indicates a significant
fluctuation of average PEFR values over the study period.
Overall, the fluctuation of average PEFR looks relatively
smaller in cluster 2 than in cluster 1, which partially indicates
homogeneity among patients in cluster 2. What seems clear
is that there is a substantial difference in temporal patterns
of average PEFR values between the two clusters, which
validates our cluster-based approach when applying deep
learning prediction. The cluster characteristics are found to

FIGURE 2. Temporal patterns of PEFR by cluster.

match better with their PEFR risk categories, implying that
cluster 2 includes patients with higher vulnerability; 2.9% of
the cluster 2 data belong to ‘‘red’’ category whereas no record
belongs to the highest risk category in cluster 1.

B. EXPLORATORY ANALYSIS RESULTS
Table 2 given below demonstrates a potential association
between PM concentrations and PEFR risk categories, along
with their cumulative impact, for each cluster. For both clus-
ters, the mean concentrations of PM10 and PM2.5 are the
smallest for the ‘‘green’’ category in all cumulative periods.
The largest mean PM concentration is associated with the
‘‘red’’ category for cluster 2 but with the ‘‘yellow’’ category
for cluster 1 (no ‘‘red’’ category for cluster 1). There is a
pattern that the PM impact decays over time for both the
‘‘yellow’’ and the ‘‘red’’ categories. The highest mean PM
concentrations is at past hour (t-6) for both clusters. This
finding supports the rationale for using air pollution data from
the past hour in LSTM estimation.

TABLE 2. Mean concentrations of PM10 and PM 2.5 by cluster for each
risk category of PEFR during past time periods (1, 12, 24 and 72 hours).

C. PREDICTION RESULTS
Figure 3 shows a loss function of the model for both training
and test datasets during the machine tuning processes. The
experimental process was iterated 200 times and the parame-
ters were adjusted for both training and validation datasets at
each iteration, along with the loss value of each model. Once
the training process was complete, various neural network
structures were formed to generate the models through a
stepwise process until the final model was determined as that
with the largest precision score.

Figure 4 compares the predictive precision scores for PEFR
categories by clusters and predictive methods (MNL and
LSTM). It is evident that LSTMperformance is far superior to
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FIGURE 3. Loss function for training and testing data sets.

FIGURE 4. Predictive precision scores by cluster: MNL vs. LSTM.

MNL in predicting PEFR category, with 25-27% increase of
precision for cluster 1 and 57-84% increase of precision for
cluster 2 compared to MNL. Overall, MNL predicts better
for cluster 1 than cluster 2 for every risk category, whereas
LSTM predicts better for cluster 2 compared to cluster 1.
Besides, the predictive performance of LSTM is found to be
significantly better when used on clusters than when used on
all samples together. This finding implies that the short-term
PM accumulation could help improve the prediction of PEFR
risk categories, particularly for cluster 2 whose samples are
relatively older children with severe asthmatic symptoms.
It also confirms etiology of asthma that the intensity of
exasperation is normally higher in cases with family history.
A deep learning approach such as LSTM is found to be
more appropriate than standard statistical models to predict
the PEFR risk categories when the cumulative effects of PM
10 and PM 2.5 concentrations are considered simultaneously.

IV. DISCUSSION
Despite ample research on the association between indoor
air pollution and allergic disease prevalence or exacerbation,
public health and environmental policies still lack evidence
for developing a preventive guideline for patients or vulnera-
ble populations mostly due to limited availability of real-time
big data and accurate predictive models. The recent pop-
ularity of IoT and deep learning techniques could respec-
tively provide enabling technologies for collecting real-time

big data and accurately predicting allergic disease risks for
evidence-based intervention, but the effort is still in its
infancy.

In this study of the year-long PEFR data of 14 pediatric
asthma patients matched with the real-time PM 10 and PM
2.5 concentrations, we observed better prediction of asthma
risk categories when the short-term accumulations of the PM
records were analyzed by a deep learning model. We also
found that predictive performance may differ depending on
patient characteristics and duration of accumulation.Machine
learning techniques have been recently used in distinguishing
asthma phenotypes [39] or predicting asthma exacerbations
based on telemonitored symptoms [40], but there has been no
attempt to predict asthma risk based on real-time monitoring
of indoor air pollutants via a deep learning framework. This
study is the first of its kind to show the potential of a deep
learning approach as a tool for learning patterns between
indoor air quality and asthma risk and predicting future
risk of asthma exacerbations based on individual patient
characteristics.

Although the sample size is not too large, we collected PM
and PEFR data at every 10 minutes, which translated into
352,152 training samples for cluster 1 and 140,860 training
samples for cluster 2. Considering that only seven input
parameters were involved in this study (7), the sample size
used in constructing the neural network would be sufficient.
The work reported here is only a feasibility study and requires
further model development with considerably more samples
and other covariates including outdoor air pollutants and
individual patient characteristics.

Themajor limitation of this study, of course, is with regards
to the interpolation and clustering of PEFR records in order to
match with real-time PM monitoring data. A more thorough
sensitivity analysis of those processes would enhance the
robustness and feasibility of our effort to overcome the lim-
ited measurements of PEFR data. A long-term, comprehen-
sive IoT-based PEFR or PFTmonitored datawould eventually
remove such a limitation. Real-time indoor air monitoring
and big data prediction via deep learning would produce
valuable information that provides an advanced notice for
the patients to take proper medication to prevent from falling
sick as well as help them to improve their indoor environ-
ments. Such forecasting is also valuable to public health in
terms of not only reduced disease burden from asthma but
also a more efficient use of limited resources for treating
asthma patients [10]. Upon successful refinement of deep
learning algorithms based on a larger sample for whom actual
real-time data on personal exposure to PM and pulmonary
function are available via IoT-based mobile sensors, this
approach could potentially play a groundbreaking role for the
scientific data-driven medical decision making and preven-
tion activities.
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