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ABSTRACT In real-world recommender systems, users’ interest and products’ characteristics tend to go
through a distinct series of changes over time. Thus, designing a recommender system that can simultane-
ously track the temporal dynamics of both drifts becomes a significant task. However, most of the existing
temporal recommender systems only focus on users’ dynamics, ignoring changes in products’ characteristics.
In this study, we propose a Multi-Trans matrix factorization (MTMF) model with improved time weight to
capture temporal dynamics. Firstly, we introduce a personalized time weight that combines the forgetting
curve and item similarity to reduce the impact of outdated information and retain the influence of users’
stable preferences. Then, we model user and item dynamics by learning the multiple transitions at the user-
factor and factor-item latent space between the ongoing time period and all past time periods. Accordingly,
we formulate a joint objective function and take a gradient-based alternating optimization algorithm to solve
this joint problem. Experimental results on historical datasets MovieLens show that the recommendation
accuracy ofMTMFwith improved timeweight is superior to the existing temporal recommendationmethods.

INDEX TERMS Recommender systems, collaborative filtering, time weight, dynamic preference.

I. INTRODUCTION
With the continuous expansion of the Internet, information is
rapidly growing at an explosive rate. Excessive information
appears in front of users, making it impossible for users to
distinguish and obtain effective information [1]–[3]. Recom-
mender systems are regarded as an essential measure to solve
this problem by analyzing the historical data and predicting
the user’s interest in the items [4]. Nevertheless, most of
the existing recommender systems do not consider temporal
dynamics, which can affect the accuracy of recommendation
[5], [6]. In real-world recommender systems, each user and
product tend to go through a distinct series of changes in
their characteristics [7]. For example, a user liked cartoons
when he was young, then science fiction films some years
later, and now he prefers romantic films. User preferences
are constantly changing over time. Meanwhile, the popularity
of movies is also continually changing [8]. In this situation,
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ignoring the changes in users’ preferences and items’ char-
acteristics impact the accuracy of recommendations. Thus,
simultaneously modeling both temporal dynamics of users’
interests and items’ characteristics is critical to successful
recommender systems.

There are many efforts made by a wide range of schol-
ars modeling users’ preference and items’ characteristics
dynamics. Koren [9] extended singular value decomposi-
tion (SVD) and incorporated time-variant biases to model
users’ activity and items’ popularity. Based on the assump-
tion that the user’s preferences are gradually changing over
time, Zhang et al. [10] proposed a Temporal Matrix Factor-
ization(TMF) model. TMF models the temporal correlation
of each user by a time-invariant transition matrix between
two consecutive periods. However, the users’ interests do
not always evolve gradually but can also change radically
between two consecutive periods. Rafailidis [11] assumed
the user’s preference in time period t is determined by the
user preferences of all preceding time periods. He tried to
model these multiple correlations at the user latent space
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by formulating a joint objective function. This model has
dramatically inspired our work. However, this model only
focuses on users’ interests evolving without considering the
shift in products’ characteristics.

Moreover, all of the above models assume that the rating
data is static. In the real-world recommender systems, the
contribution of the ratings will change over time. Ding and
Li [12] firstly applied the time weight to the rating matrix.
The lower the score, the more the user is not interested.
This method weakens the user’s past interests and highlights
the current interest. Sun and Long [13] applied the short-
term, long-term, and periodic effects to the time impact factor
matrix, using the singular value method to decompose and
predict unknown score items. Li et al. [14] proposed a com-
bined recommendation algorithm based on the similarity and
forgetting curve. So far, there are few studies to apply time
weight to the latent transition model [15].

Motivated by above problems, we propose to add time
weight into the matrix factorization model and take into
account items’ evolving characteristics. In this paper, we pro-
pose a Multi-Trans matrix factorization (MTMF) model with
improved time weight to capture temporal dynamics, which
could result in more accurate recommendations.

Our contributions in this paper are summarized as follows:
• We propose an improved time weight based on forget-
ting curve and item similarity and introduce it into the
matrix factorization model. Previous works only focus
on time decay, which highlights the importance of recent
data but underestimates the impact of users’ long-term
preferences. Data weight based on item similarity helps
to preserve the impact of user stability preferences on
ratings. Therefore, we combined two weight functions
by a specific scale factor.

• TMF assumes items’ features are stable and less corre-
lated. However, in the real world, items’ features will
change over time. Therefore, we extended the TMF
algorithm by introducing the item transition matrix to
capture items’ drift characteristics.

• Supposing that the user’s current preference and item
features transform from previous time periods, we split
rating data into k time periods and apply the MTMF
model to compute a k-1 transition metrics between the
going time period and all the past ones. Then, we for-
mulate a joint objective function with l1-norm regular-
ization to generate recommendations.

The rest of the paper is organized as follows: In Section II,
wewill give a definition of the problem. Section III introduces
the related work on time-based data weight and dynamic
collaborative filtering. Section IV illustrates our method of
structural parts in detail. Experimental results are shown in
section V, and section VI concludes the study.

II. PROBLEM STATEMENT
The user’s rating of the item is represented as a matrix of
m × n, where the rows Vj represent the set of items and the
columns Ui represent the set of users, as shown in Table.1.

TABLE 1. The user’s rating of the item.

Ri,j represents the score of user i for item j. For example,
the MovieLens dataset uses 1 to 5 points to indicate the user’s
preference for the item; if ri,j = 0 means the user i did not
score the item j.

We divided the whole time span of the data into k non-
overlapping periods. Let t be the current time period, which
contains the users’ most recent preferences.

Follow the Non-Negative Matrix Factorization(NMF) [16]
model, recommendations in the ongoing time period t are
generated by decomposing rating matrix Rt as follows:

Rt ≈ UtVt
Subject to Ut ≥ 0, Vt ≥ 0 (1)

where Ut ∈ Rm×d represents the factors of user and Vt ∈

Rd×n stands for the factors of items. The parameter d is the
number of latent factors. Especially, d � min(m, n). And,
UtVt represents the low-rank d approximation of matrix Rt .
In our research, we have to track the temporal dynamics of

users’ interests and products’ characteristics simultaneously.
Provided that we have k − 1 past time periods in total,
we calculated the time decay value and type similarity of
all previous time periods and assigned weights to the rating
matrix. Then, we model the multiple transitions of user pref-
erences and item shifts between all the t−k past time periods
and the ongoing time period t. The graphical representation
of this process is shown in Fig.1.

III. RELATED WORK
A. TIME-BASED DATA WEIGHT
In 1998, Crabtree and Soltysialk [17] believed that the user’s
recent rating is a reflection of the user’s current interests.
The past information has no value in generating recommen-
dations to users. In 2000, Koychev and Schwab [18] pro-
posed that past information also has some value for current
recommendations, but we need to pay more attention to
recent information. Therefore, they introduced a nonlinear
forgetting function as a time weight. In 2005, Ding and Li
[12] applied the time weight of the information to the user’s
rating, allowing the score to decay over time. This approach
undermines the user’s past interests and highlights current
interests. In 2012, Rendle [19] segmented the information
by time. The scores in different time periods represented
the user’s interest in each time period, which had different
effects on the recommendations. In 2017, Sun and Dong [13]
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FIGURE 1. The graphical representation of MTMF.

weighted the rating matrix based on the time weight of the
forgetting function and then used the singular valuemethod to
decompose and predict the unknown scoring items. In 2018,
Hyunwoo Hwangbo et al. [20] adopted a preference decay
function to reflect changes in preferences over time, and
finally recommended substitute and complementary products
by using product category information. In 2019, Li et al. [14]
combines user similarity and nonlinear forgetting functions
based on improved Pearson correlation coefficients.

B. DYNAMIC COLLABORATIVE FILTERING
Koren [9] extends singular value decomposition(SVD) and
introduces time-variant biases for user/item to model users’
activity and items’ popularity throughout the entire time
period. However, the model does not summarize the under-
lying pattern for the changes of biases in different win-
dows. By introducing a set of additional time features to
traditional factor-based collaborative filtering algorithms,
Xiong et al. [21] proposed a Bayesian probabilistic tensor
factorization (BPTF) model to deal with the global evolu-
tion of latent features. With the analogous consideration,
Zhang et al. [10] proposed two dynamic collaborative fil-
tering models: Temporal Matrix Factorization(TMF) and
Bayesian Temporal Matrix Factorization (BTMF). TMF
models the temporal dependence for each user i through a
D×D transition matrix between two continuous time periods.
BTMF extends the TMF method to a fully Bayesian treat-
ment by introducing priors for the hyperparameters which
capture the conditional of users, items, and a single type of
interaction. Based on the same assumption that the user’s
current preference is determined by his preference at the pre-
vious time period, Temporal Collective Matrix Factorization
(TCMF) [22] was proposed by Rafailidis in 2017. In order
to capture users’ preference dynamics, TCMF extracts the
users’ temporal pattern through a joint decomposition model

and minimizing the joint objective function to generate the
recommendation. In 2018, Rafailidis [11] proposed theMulti-
Latent Transition (MLT) model, which tries to model these
multiple correlations at the user latent space.

IV. PROPOSED MODEL
This section is divided into four parts:(I) We will propose
an improved time weight to model the rating score shift rate
in Section A;(II) In Section B, we introduce item Transition
Matrix to capture items’ shift;(III) Accordingly, we formulate
a joint objective function in Section C;(IV) Finally, we detail
the optimization method of the model we proposed.

A. IMPROVED TIME WEIGHT
The forgetting curve describes how humans forget informa-
tion over time [23]. In the study of the application of the
forgetting curve, the nonlinear exponential function and the
information half-life are usually used to describe the forget-
ting function [24]. The information half-life refers to the time
elapsed from the moment of occurrence of the information
to the half of being forgotten and defines the attenuation
factor ω = ln (0.5)

/
T0. The amount of retention of the final

message at the current t − k interval is:

Wt−k = e−ω∗[t−(t−k)] = e−ω∗k (2)

The range of values is (0, 1), and the value decreases as
the time interval k increases, indicating that the longer the
scoring time, the smaller contribution of the score to the
current recommendation.

However, the timeweight with a forgetting curvewill cause
the system to underestimate the impact of the user’s long-term
preference on user preferences. Some of the user’s prefer-
ences are stable and do not fluctuate over time. For example,
the user ‘‘Tom’’ expresses a preference for a suspense movie
in all k time periods, which means the suspense feature
does not decay or is forgotten. If this feature is attenuated
over time, the contribution of the long-term preference to
the current recommendation is reduced. Therefore, we will
introduce a time weight based on the similarity of the item
type:

It−k =

∑|Lti |
a=1

∑∣∣∣Lt−ki

∣∣∣
b=1 s(a, b)

num(L ti )× num(L
t−k
i )

(3)

where num(L t−ki ) represents the number of items that the user
i has expressed his preferences in the time period t − k , with
i = 1, 2, . . . n, and k = 0, 1, 2 . . . k-1. s(a, b) denotes the type
similarity of two items. The value of It−k corresponds to the
speed of change of a user’s interest in the recommendation
system, which is a positive proportional correlation.

Finally, we apply a weight reduction factor that combines
time decay and type similarity:

St−k = α ∗Wt−k + (1− α) ∗ It−k (4)

The improved time weight St−k takes into account that the
contribution of the score value will decrease over time and
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simultaneously add type similarity that does not decay over
time. By choosing an appropriate scale factor α value, we can
combine the advantages of the two weighting methods.

B. INTRODUCING ITEM TRANSITION MATRIX
In the Temporal Probabilistic Matrix Factorization(TMF)
model, Chengyi Zhang assumes that there is a temporal
dependence between the latent user-factor vectors Uit and
Ui,t−1. So he introduces a transition hypermatrix BεRN×d×d

to model this dependency.

Uit = BiUi,t−1 (5)

Bi is used to capture the time-invariant aspect of the user
i’s interest from the previous time period to the next. For

example, take the d = 2 latent space. Bi =
[
1 0
0 1

]
represents

a stable user preference that does not change over time.

Bi =
[
1.1 0
0 1

]
represents a gradual shift to the first factor.

TMF uses transition hypermatrix Bi to model user temporal
dynamics.

However, TMF does not model this dependency for the
item since Chengyi Zhang assumes that the item’s features are
stable and less correlated. In a real-world recommendation
system, features of the item, such as popularity and quality,
are strongly correlated with time.

So, Extending the idea of TMF, We propose a new item
transition hypermatrix CεRM×d×d to capture the evolution
of item as follows:

Vjt = CjVj,t−1 (6)

With both transition matrix Bi and Cj, we can predict the
rating of user i on item j at the next time period by the rule
R∗i,j = UitVjt = (Ui,t−1Bi)(C jVj,t−1). This formula means
that we learn the user-factor matrix Ui,t−1 and item-factor
matrix Vj,t−1 at the time period t − 1, and transition matrix
Bi and Cj model the transition from the previous time period
t − 1 to the current period t. The graphical representation of
MTMF with item Transition Matrix showed in Fig.2

C. OBJECTIVE FUNCTION
When the transition matrix is not introduced, the scoring
matrix Rt is decomposed into user-factor and item-factor vec-
tors, which describe the user’s interests and item’s features by
non-negative matrix factorization(NMF) model as follows:

Rt ≈ UtVt (7)

To simplify the expression, we set k = 3. The data set is
divided into three time periods, which are Rt , Rt−1 and Rt−2.
Firstly, we apply the time weight in a personalized manner as
follows:

∀j = 1, . . . . . . n

(Rt−1)∗,j ← St−1,j · (Rt−1)∗,j (8)

(Rt−2)∗,j ← St−2,j · (Rt−2)∗,j (9)

FIGURE 2. The graphical representation of MTMF with item transition
matrix.

where (Rt−1)∗,j denotes the jth column of the rating matrix
Rt−1, and (Rt−2)∗,j denotes the jth column of the ratingmatrix
Rt−2. Based on the minimization problem of NMF in Eq.(7),
the NMFs of matrices Rt ,Rt−1 and Rt−2 correspond to the
following three minimization problems:

min
Ut ,Vt

‖ Rt − UtVt ‖2F (10)

min
Ut−1,Vt−1

‖ Rt−1 − Ut−1Vt−1 ‖2F (11)

min
Ut−2,Vt−2

‖ Rt−2 − Ut−2Vt−2 ‖2F (12)

subject to Ut ,Vt , Ut−1, Vt−1, Ut−2,

Vt−2 ≥ 0,

where ‖·‖F denotes the Frobenius norm. Since users’ inter-
ests vary over time, we assume that there is a temporal depen-
dence between users’ current interests and users’ previous
interests. We model this dependency by a transition Bt . Using
the user’s preference transitions matrices Bt−1 and Bt−2,
Eq.(10) can be rewritten as follows:

min
Ut−1,Vt−1,Bt−1

‖ Rt − Ut−1Bt−1Vt−1 ‖2F (13)

min
Ut−2,Bt−2,Vt−2

‖ Rt − Ut−2Bt−2Vt−2 ‖2F (14)

Similarly, items’ characteristics are also continually chang-
ing. Thus, we define an item transition matrix Ct which
denotes the evolution of item features between the item latent
matrices Vt and Vt−1. Using the users’ preference transitions
matrices Bt−1 and Bt−2, Eq.(13),(14) can be rewritten as the
following minimization problems:

min
Ut−1,Vt−1

‖ Rt − Ut−1Bt−1Ct−1Vt−1 ‖2F (15)

min
Ut−2,Vt−2,

‖ Rt − Ut−2Bt−2Ct−2Vt−2 ‖2F (16)

To consider both the user preference dynamics and item
characteristics changing, we combine Eq. (7), (15) and (16),
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which results in the following joint objective function:

min
Ut ,Bt−1,Bt−2,Ct−1,Ct−2

L =‖ Rt − UtVt ‖2F

+ ‖ Rt − Ut−1Bt−1Ct−1Vt−1 ‖2F
+ ‖ Rt − Ut−2Bt−2Ct−2Vt−2 ‖2F

+ λ(‖
(
Bt−1−I ‖2F +‖ Bt−2 − I ‖

2
F

+ ‖ Ct−1 − I ‖2F + ‖ Ct−2 − I ‖
2
F

)
+ β(‖ Ut−1 ‖1 + ‖ Vt−1 ‖1
+ ‖ Ut−2 ‖1 + ‖ Vt−2 ‖1 + ‖ Ut ‖1
+ ‖ Vt ‖1)

Subject to Ut , Vt , Ut−1, Vt−1, Ut−2, Vt−2 ≥ 0

(17)

where I ∈ Rd×d is the identity matrix, and ‖ ·‖1 stands
for the l1-norm. In Eq. (17), the first three terms denote
the low-rank d approximation errors based on Eq. (15)
and Eq.(16). The fourth term is the temporal regularization
between the user/item transitions and identity matrices. The
λ parameter controls how much we want to make the model
biased to the past interest/ characteristics. The fifth term
is l1-norm regularization, which forces the factor matrices
Ut ,Vt ,Ut−1,V t−1,Ut−2,Vt−2 to be sparse. The parameter
β controls the impact of the l1-norm regularization. To sum-
marize, we formulate a joint objective function to calculte the
k-1 transitions of users’ interests and items’ characteristics.

D. MODEL LEARNING
Our goal is to minimize the joint objective function L in
Eq.(17), but it is a non-convex function with respect to six
variables/matrices. Learning from [11], [25], we applied an
alternating optimization algorithm based on the strategy of
multiplicative update rules, where we update a variable while
keeping the rest of the variables fixed.
First, considering the Karush-Kuhn-Tucker(KTT) [26]

conditions, we have:

Ut ≥ 0, Vt ≥ 0, Bt−1 ≥ 0,

Bt−2 ≥ 0, Ct−1 ≥ 0, Ct−2 ≥ 0 (18){
∇UtL ≥ 0, ∇VtL ≥ 0, ∇Bt−1L ≥ 0
∇Bt−2L ≥ 0, ∇Ct−1L ≥ 0, ∇Ct−2L ≥ 0

(19)
Ut �∇UtL = 0, Vt �∇VtL = 0,
Bt−1 �∇Bt−1L = 0
Bt−2 �∇Bt−2L = 0, Ct−1 �∇Ct−1L = 0,
Ct−2 �∇Ct−2L = 0

(20)

where � denotes the element-wise product.
According to the objective function in Eq. (17), the gradi-

ents for each parameter are derived respectively:

∇UtL = UtVtVT
t − (RtVT

t − β) (21)

∇VtL = UT
t UtVt − (UT

t Rt − β) (22)

∇Bt−1L = UT
t−1Ut−1Bt−1Ct−1Vt−1VT

t−1C
T
t−1

−UT
t−1RtV

T
t−1C

T
t−1 + λ(Bt−1 − I ) (23)

∇Bt−2L = UT
t−2Ut−2Bt−2Ct−2Vt−2VT

t−2C
T
t−2

−UT
t−2RtV

T
t−2C

T
t−2 + λ(Bt−2 − I ) (24)

∇Ct−1L = BTt−1U
T
t−1Ut−1Bt−1Ct−1Vt−1VT

t−1

−BTt−1U
T
t−1RtV

T
t−1 + λ(Ct−1 − I ) (25)

∇Ct−2L = BTt−2U
T
t−2Ut−2Bt−2Ct−2Vt−2VT

t−2

−BTt−2U
T
t−2RtV

T
t−2 + λ(Ct−2 − I ) (26)

Based on the gradients in Eqs. (18) -(23), by substituting
the corresponding gradients in Eq. (20), the following updat-
ing rules are derived:

Ut ← Ut �
RtVT

t − β

UtVtVT
t

(27)

Vt ← Vt �
UT
t Rt − β

UT
t UtVt

(28)

Bt−1 ← Bt−1 �
λ(Bt−1 − I )− UT

t−1RtV
T
t−1C

T
t−1

UT
t−1Ut−1Bt−1Ct−1Vt−1VT

t−1C
T
t−1

(29)

Bt−2 ← Bt−2 �
λ(Bt−2 − I )− UT

t−2RtV
T
t−2C

T
t−2

UT
t−2Ut−2Bt−2Ct−2Vt−2VT

t−2C
T
t−2

(30)

Ct−1 ← Ct−1 �
λ(Ct−1 − I )− BTt−1U

T
t−1RtV

T
t−1

BTt−1U
T
t−1Ut−1Bt−1Ct−1Vt−1VT

t−1

(31)

Ct−2 ← Ct−2 �
λ(Ct−2 − I )− BTt−2U

T
t−2RtV

T
t−2

BTt−2U
T
t−2Ut−2Bt−2Ct−2Vt−2VT

t−2

(32)

So far, we have analyzed the case where there are two
past time periods and an ongoing time period. Accordingly,
we will give the joint objective function when p = k-1 as
follows:

min
Ut ,Vt ,Bt−1,Bt−2,Ct−1,Ct−2

L

= ‖ Rt − UtVt ‖
2
F

+

k−1∑
p=1

‖ Rt − Ut−pBt−pCt−pVt−p ‖
2
F

+ λ

k−1∑
p=1

(‖Bt−p − I ‖2F +‖Ct−p − I ‖
2
F )

+β

k−1∑
p=1

(‖Ut−p ‖1 +‖Vt−p ‖1) (33)

The respective updating rule for transition matrices Bt−p
and Ct−p is as follows:

Bt−p← Bt−p �
λ(Bt−p − I )− UT

t−pRtV
T
t−pC

T
t−p

UT
t−pUt−pBt−pCt−pVt−pVT

t−pC
T
t−p

(34)

Ct−p← Ct−p �
λ(Ct−p − I )− BTt−pU

T
t−pRtV

T
t−p

BTt−pU
T
t−pUt−p

Bt−pCt−pVt−pVT
t−p

(35)
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FIGURE 3. The impact of the scale factor α on MAE and RMSE.

Algorithm 1 presents our proposed Multi-trans Matrix
Factorization (MTMF) method. In the second line, we ini-
tialize the factor matrices Utand Vt by random matrices,
withVt ≥ 0,Ut ≥ 0. In line 3, the k-1 latent transition
matrices are initialized by the rule Bt−p ← I ,Ct−p ← I ,
with p = 1, 2, . . . .k − 1. Then, we compute Vt−p and
Ut−p by applying NMF on Rt−p. Our iterative optimization
algorithm first update variables Ut and Vt based on Eq.(34)
and Eq.(35). Similarly, the k-p transition matrices Bt−p and
Ct−p are updated on the updating rule in Eq.(34) and (35).
At the end of each iteration, we will Compute L based on the
updated Ut ,Vt ,Bt−p,Ct−p(Eq.(33)). After the optimization
algorithm converges, we will compute the factorized matrix
R̂t , which contains the final recommendations.

V. EXPERIMENT
A. DATASETS AND EVALUATION METRICS
In our experiment, we evaluated our method and compared it
on the MovieLens-1M. Ratings in this dataset are collected

Algorithm 1 Learning Algorithm for MNMF
Input: Rt , . . . . . .Rt−1, . . . . . .R1, {α, λ, d, β} maxIter
Output: R̂t
1. δ′← maxInt, δ← δ′

2
2. Initialize Ut and Vt
3. Bt−p← I ,Ct−p← I ,∀p = 1, 2, . . . .k − 1
4. Compute Vt−p and Ut−p by applying NMF on Rt−p

while abs( δ′ − δ) ≥ ε
∨

iter < maxIter do
5. Update Ut (Eq. (27))
6. Update Vt (Eq. (28))
7. Update Bt−p∀p = 1, 2, . . . .k − 1(Eq.(34))
8 Update Ct−p∀p = 1, 2, . . . .k − 1(Eq.(35))
9. Compute L based on the updated

Ut ,Vt ,Bt−p,Ct−p(Eq. (33))
10. δ′← δ

11. δ← L
12. iter← iter+ 1
13. End while
14. R̂t = UtVt

by the University of Minnesota. MovieLens-1M contains
1,000,209 ratings of 3,952 movies by 6,040 MovieLens’
users in 2000.Each rating information consists of user ID,
movie ID, rating, and score timestamp over 36 months. The
value of movie rating ranges from 1 to 5. Especially, each
movie’s information in movie.dat consists of the movie ID,
movie name, release time, and the type of movie. There are
18 movie types, such as ‘‘Romantic,’’ ‘‘Tragedy,’’ ‘‘Science
Fiction’’ and so on. Moreover, a movie can belong to two
or more types at the same time. We use the genre of the
movie to calculate the type similarity s(a, b) of the rated
movie. If two films belong to the same genre s(a, b) = 1,
otherwise s(a, b) = 0.
In our experiment, we slice this dataset into six time peri-

ods. Thus, we have six different time slices, where each slice
corresponds to six months. We used the first five months as a
training set and the sixth month as a test set. Similarly, in the
second time slice, the first eleven months are used as input
to the model, and the twelfth month is used as the test set.
We have a total of 36months. Therefore, we have six different
test sets at 6, 12, 18, 24, 30, and 36 months.

We evaluate the performance in terms of the Mean Abso-
lute Error(MAE) and Root-Mean-square Error (RMSE) met-
ric compared with other baselines temporal recommendation
models. MAE is defined as follows:

MAE =

∑
i,j

∣∣rij − r̂ij∣∣
N

(36)

where rij denotes the actual rating user i gave to item j, r̂ij
denotes the predicted rating, and N denotes the total number
of predictions. A higher value of MAE expresses a high
accuracy of the prediction model.

RMSE =

√√√√ 1
N

∑
i,j

(rij − r̂ij)
2 (37)

RMSE is the root mean square of the error between the
predicted and actual values. Compared with MAE, RMSE
increase the punishment of significant error.
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FIGURE 4. The impact of the number of latent dimensions d on MAE and RMSE.

B. COMPARED METHODS
In order to evaluate the prediction accuracy of our proposed
model, we compare it with the other four temporal recom-
mendation algorithms as follows:
• TimeSVD++: a method of extending singular value
decomposition (SVD) and introducing time-dependent
user and item bias to simulate user activity and items
popularity

• Temporal Matrix Factorization(TMF): assumes user
preferences evolve gradually and models the temporal
dependence of user i through a D× D transition matrix
between two consecutive time periods.

• Bayesian Temporal Matrix Factorization(BTMF):
extends the TMF method to a fully Bayesian treatment
by introducing priors for the hyper-parameters which
capture the conditional of users, items, and a single type
of interactions.

• Multi-Latent Transition (MLT): assumes the user’s pref-
erence in time period t is determined by the user prefer-
ences of all preceding time periods and tries to model
these multiple correlations at the user latent space by
formulating a joint objective function.

C. PARAMETER ANALYSIS
There are two critical parameters in our proposed MTMF
model with improved time weight: the scale factor α between
type similarity and time decay and the number of latent
dimensions d.

1) ADJUSTMENT WORK OF α
In Fig.3, we present the impact of the scale factor α
on MAE and RMSE. α is a factor used to balance the
user’s score time decay and the type similarity. In this set
of experiments, we vary α from 0 to 1 with an interval
of 0.1. As we can see from Fig.4, the values of MAE
and RMSE are the minimum when α = 0.2, which indi-
cates that the user’s recent preference has a considerable
impact.

2) ADJUSTMENT WORK OF D
In the choice of latent dimensions d, we tested it from 20 to
100 with an interval of 20. In Fig.5, we present the effect
of d on MAE and RMSE. When d ≥ 60, there is a slight
improvement of MAE and RMSE. Thus, we fix d = 60.

3) PERFORMANCE EVALUATION
We compare the model we propose with some tempo-
ral recommendation methods: TimeSVD++, TMF, BTMF,
and MLT. Moreover, we compare with the MTMF without
time weight to evaluate the impact of the improved time
weight on recommendation accuracy. We report the results
of experiments in Fig.5. Clearly, all the examined models
track the temporal dynamics over the time span. Also, with
the expansion of the training set, the augmented training
sets improve the MAE and RMSE metric throughout the
data time periods. In all comparison methods, the baseline
methods of TimeSVD ++ and TMF perform poorly over
the entire time range. They do not capture user dynam-
ics very well. By introducing priors for hyperparameters
of TMF, BTMF significantly improves recommendation
accuracy.

Meanwhile, MLT achieves higher accuracy than other
matrix factorization models. This happens because MLT
exploits the bimodal user-item interactions and captures the
users’ preference dynamics over the data sets’ evolution.
However, TCMF does not consider the items’ drift charac-
teristics, which limits the performance of MLT.

As we can see, the Multi-Trans matrix factoriza-
tion (MTMF) model with improved time weight excels
parallel models in the evaluation of MAE and RMSE. The
improved time weight takes into account both the time decay
of the user’s preferences and the effect of the user’s stable
preferences on the rating. Without improved time weight, the
accuracy of the MTMF model is slightly reduced.

What should bementioned is the time consumed byMTMF
with improved time weight is highest among all the compared
models. This computational efficiency gap may be caused

2414 VOLUME 8, 2020



J. Zhang, X. Lu: Multi-Trans Matrix Factorization Model With Improved Time Weight

FIGURE 5. Performance throughout the data time span.

by the multi-trans between users and items latent factors
matrices. This issue is worthy of further investigation.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a multi-trans matrix factorization
(MTMF) model with improved time weight to capture items’
changing and users’ shifting preferences to make a better
recommendation. The improved time weight, which com-
bines the forgetting curve and similarity of the rating item,
is introduced into the matrix factorization model. To track the
temporal dynamics of both drifts simultaneously, we extend
the TMF algorithm by introducing the item transition matrix.
Accordingly, we formulate a joint objective function to com-
pute the temporal correlation of each user and item between
the current period and all the previous periods. By applying
on the datasets MovieLens, this model achieves high recom-
mendation accuracy over several competitive recommender
algorithms.

There are still several avenues for future work. One excit-
ing direction is the exploitation of explicit and implicit feed-
backs by the users [27]. Implicit feedback of users can pro-
vide auxiliary data that helps to reflect the user’s prefer-
ence for the product. In addition, referring to [28] and [29],
it remains challenging to reduce the calculation and stor-
age efficiency of MTMF while improving recommendation
accuracy.
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