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ABSTRACT Three-way decision (3WD) provides a new perspective for solving practical decision-making
problems, which is in line with human’s cognitive pattern. A covering information system (CIS) is an
information system (IS) that consists of multiple coverings in the universe. A CIS with decision attributes
which is seen as a covering decision information system (CDIS). This paper proposes three-way group
decisions in a CDIS, as well as gives its application on the problem of position competition. First of all,
the neighbourhood of every point in a CDIS is defined, and corresponding similarity class of this point
is also obtained. Then, because of the uncertainty of risks, loss functions are acquired through group
decision-making by means of interval numbers. Next, a method of three-way group decisions in a CDIS
is presented. Eventually, the position competition is presented as an example to support our proposed
decision-making method.

INDEX TERMS Three-way, covering decision information system, group decision-making, interval number,
loss function, position competition.

I. INTRODUCTION
Three-way decision (3WD), proposed by Yao [44], is an
extended of decision rough sets. Based on loss functions,
DTRSmodel uses Bayesian decision theory to systematically
calculate thresholds. Intuitively, this model, divides the uni-
verse into many equivalence classes by using equivalence
relation, then describes the uncertainty of the system by
introducing upper and lower approximations. On the basis of
the idea of DTRSs, the thresholds α and β are obtained by
means of loss functions and these equivalence classes. They
can separate the universe into three domains-disjoint namely
3WD, it endues a good semantic interpretation of rough
sets: the rule generated by the positive region indicates the
acceptance of something; the rule generated by the negative
region indicates the rejection of something; the rule generated
by the boundary region indicates deferment decision which
means that something cannot be accepted or rejected from
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judgment. Recently, 3WD has attracted the attention of many
scholars. The research results of 3WD can be reflected from
the aspects of conditional probability, loss function and so on.

In terms of the research of conditional probability, DTRSs
takes conditional probability as an evaluation function and
associates the evaluation function with various measure-
ment functions. Conditional probability has been stud-
ied by many scholars. For example, Yao and Zhou [50]
presented a DTRS model with naive Bayesian decision
theory, which can be used to assess conditional probabil-
ity in 3WD; Mandal and Ranadive [29] discussed 3WDs
with multi-granulation interval-valued fuzzy probabilistic
rough sets; Grecoa et al. [5] investigated the cost of mis-
classification and put forward three-way probability models;
Liu et al. [18] used logistic regression to estimate the condi-
tional probability of DTRS and combined logistic regression
to propose a new discriminant analysis method.

On the study of loss function, Liu et al. [16] taken
into account of uncertain decision environments and raised
three-way thresholds when the loss function adopted
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uncertainty measures; Yang and Yao [49] gave a multi-agent
decision model by using 3WD’s idea; Yu et al. [48] consid-
ered various loss functionson based on DTRS model, and
proposed a cost evaluation method of clustering pattern and a
clustering validity index; Herbert and Yao [6] combined the
loss function of DTRS with the game theory of classification
measurement, so as to optimize the size of each decision
domain; Agbodah [1] studied the loss function evaluated
based on multiple experts of 3WDs with DTRSs; Liang and
Liu [11]–[13], [20] took into account uncertainty of loss
functions, then they drew randomness, interval, fuzziness,
and triangular fuzzy number into DTRSs, and developed
uncertainty 3WD models, so then widened range of loss
value; Liu et al. [14], [17], [23] put forward different DTRSs
on uncertain environments;

However, there are also many scholars researching 3WD
from other perspectives. In view of decision makers have
different risk preferences, Li and Zhou [26] presented opti-
mistic, pessimistic and neutral decision models, further-
more studied decision rules of different risk preference.
Zhan et al. [52], [55] investigated 3WDs in different mod-
els with multi-attribute decision-making; Jia and Liu [27]
brought forward a new decision-making model based on
3WD; Min et al. [30] researched cost sensitive 3WD and
three-way recommendation problem; Li et al. [10], [22]
researched the multi-granulation DTRSmethod in distributed
fc-decision ISs, and further discussed 3WDmethod of a fuzzy
condition decision IS and its application in credit card eval-
uation. Liu [8] advanced a multiple attribute group decision
making approach.Wang et al. [56] gave a 3WDmethod based
onGaussian kernel in a hybrid ISwith images and applied this
method in medical diagnosis.

In practical applications, Liu et al. summarized the appli-
cation of 3WD in [2], [3], [15], [25], [41], [47], [54].

An IS, was introduced by Pawlak, which is the concern
of rough sets. A multitude of applications [4], [7], [28],
[34]–[36], [42] of rough sets are involved in ISs.

From what have been discussed above, the determi-
nation of loss functions of 3WD are closely related to
decision-makers. Most of the existing researches use single
decision-maker to evaluate loss functions. Faced with com-
plex decision-making environment, such as limited domain
knowledge, tight deadlines, limited budgets and so on, it may
be difficult for a single decision maker to make reasonable
decisions [20], [43], [49]. Group decision-making can solve
these problems and provide an effective evaluation method
for loss functions [11]. It can pool the wisdom of experts
in different fields to effectively deal with the problem of
risk decision-making. Until now, three-way group decisions
based on CDISs hasn’t been investigated. This paper devoted
to research three-way group decisions based on a CDIS and
its’ application on the problem of position competition. The
main contributions of our work are displayed as follows by
comparing with the existing studies.

(a) On the basis of the definition of similarity relation,
similarity classes are obtained to constructed a CDIS.

(b) Because that risks are uncertain, loss functions are
expressed as interval numbers through group decision-making.

(c) In light of the idea of DTRSs, three-way group decision
in a CDIS is given and an example of position competition is
applied to support our proposed decision-making method.

And the related work of our investigation are displayed in
FIGURE 1.

This article is organised as follows. Section 2 retro-
spects the essential notions of binary relations, rough sets,
CDISs and interval-valued numbers. Section 3 reviews DTRS
and give a certain ranking method to generated 3WD.
Section 4 presents a 3WD method in CDISs. Section 5 gives
an application of position competition to explain the flex-
ibility of our presented method. Section 6 discusses and
concludes This paper.

II. PRELIMINARIES
Some essential notions of binary relations, rough sets, CDISs
and interval-valued numbers are retrospected in this section.

In this paper,U is a finite set, 2U indicates the collection of
all subsets ofU , and |X | represents the cardinality ofX ∈ 2U .
Put

U = {u1, u2, · · · , un}

A. BINARY RELATIONS AND ROUGH SETS
If R ⊆ U2 (i.e., U × U ), then R is addressed as a binary
relation on U . Suppose (u, v) ∈ R. Then we write it as uRv.

Given R ⊆ U2. Suppose that R meets the following
conditions:

(1) Reflexivity: ∀ u ∈ U , uRu;
(2) Symmetry: ∀ u, v ∈ U , uRv⇒ vRu;
(3) Transitivity: ∀ u, v,w ∈ U , uRv and vRw⇒ uRw.
Then we call R is an equivalence relation on U .
If R satisfies reflexivity and transitivity, then R is addressed

as a similarity relation on U .
Assume that R is an equivalence relation on U . ∀ u ∈ U ,

the equivalence class including u is expressed as

[u]R = {v ∈ U : uRv}.

The collection of all equivalence classes of R can induce a
quotient set, denote

U/R = {[u]R : u ∈ U}.

Definition 1 [31]: Suppose that R is an equivalence rela-
tion on U. Then the ordered pair (U ,R) is said to be a Pawlak
approximation space. The lower and upper approximations of
X ∈ 2U are represented as

R∗(X ) = {u ∈ U : [u]R ⊆ X},

R∗(X ) = {u ∈ U : [u]R ∩ X 6= ∅}.
∀ X ∈ 2U , the positive, boundary and negative regions of

X are defined, respectively, as

POS(X ) = R∗(X ),

BND(X ) = R∗(X )− R∗(X ),

NEG(X ) = U − R∗(X ).
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FIGURE 1. Flow chart of decision process.

Obviously,

BND(X ) = {u ∈ U : [u]R ∩ X 6= ∅ ∧ [u]R * X},

NEG(X ) = {u ∈ U : [u]R ∩ X 6= ∅}.

B. CDISs
In an IIS, for any attribute can determine a similarity relation
and each this relation can induce a quotient set. The collection
of all quotient sets can be seen as coverings. Thus, an IIS is
able to be induced a CDIS.
Definition 2 [31]: Suppose that U is a finite set of objects.

Assume that A expresses a finite set of attributes. Then the
ordered pair (U ,A) is referred to as an information system
(IS), if every attribute a ∈ A is able to decide a function a :
U → Va, where Va = {a(u) : u ∈ U}.
Definition 3 [7]: Suppose that (U ,A) is an IS. Then (U ,A)

is said to be an incomplete information system (IIS), if there
exist u ∈ U and a ∈ A such that a(u) is unknown.
Usually, the unknown value is denoted as ∗.
For any subset P ⊆ A, the similarity relation SIM (P) is

defined as SIM (P) = {(u, v) ∈ U × U : ∀ a ∈ P, a(u) =
∗ora(v) = ∗ora(u) = a(v)}.

Specially, ∀ a ∈ A, SIM ({a}) = {(u, v) ∈ U × U : a(u) =
∗ora(v) = ∗ora(u) = a(v)}.
Definition 4 [51]: Given C ⊆ 2U . If for any C ∈ C , C 6=
∅ and

⋃
C∈C

C = U, then C is referred to as a covering on U.

In our article, we write as C(U ) to stand for the collection
of all coverings of U .

Definition 5 [38]: Let C be a covering on U. Then for
each u ∈ U, define

Cu = ∩{C ∈ C : u ∈ C}.
Proposition 6 [38]: Suppose that C is a covering on U.

Then it satisfies the following properties.
(1) ∀ u ∈ U, u ∈ Cu;
(2) ∀ u, v,w ∈ U, u ∈ Cv, v ∈ Cw imply u ∈ Cw.
Definition 7 [38]: Given 1 ⊆ C(U ). Then (U ,1) is

framed as a covering information system (CIS).
Based on an IIS, one can induce a CIS.
Suppose that (U ,A) is an IIS. Given A = {a1, a2, · · · , as}.

Set

Ci = U/SIM ({ai}) (i = 1, 2, · · · , s),

1 = {C1,C2, · · · ,Cs}.

Then (U ,1) is alluded to as a CIS induced by (U ,A).
Definition 8 [39]: Let 1 ⊆ C(U ). Assume that d is a

decision attribute which decides a function d : U → Vd
where Vd = {d(x) : x ∈ U}. Then (U ,1, {d}) is called a
covering decision information system (CDIS).
Let (U ,1, {d}) be a CDIS. Then, the equivalence relation

ind({d}) can be defined as

ind({d}) = {(ui, uj) : d(ui) = d(uj)}.

Denote

[ui]ind({d}) = {uj : (ui, uj) ∈ ind({d})},

U/ind({d}) = {[ui]ind({d}) : ui ∈ U}.
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In general, [ui]ind({d}) and U/ind({d}) are simply denoted
by [ui]d and U/{d}, respectively.
In our article, put

1 = {C1,C2, · · · ,Cs}.

Definition 9 [9]: Let (U ,1, {d}) be a CDIS. For each
u ∈ U,

1u =

s⋂
i=1

(Ci)u.

Then 1u is referred to as the neighbourhood of the point u
relative to 1.

Obviously, if 1 = {C }, then 1u = Cu.
Given 1 = {C1,C2, · · · ,Cs}. Define

uR1v ⇔ v ∈ 1u,

i.e., uR1v⇔ ∀ i, v ∈ (Ci)u.
By Proposition 6, R1 is a similarity relation.
Definition 10 [9]: Let (U ,1, {d}) be a CDIS. For any

u ∈ U, denote

[u]R1 = {v ∈ U : uR1v}.

Then [u]R1 is called the similarity class of u in (U ,1, {d}).
Clearly,

1u = [u]R1 .

The lower and upper approximations of X ∈ 2U relative
to 1 are defined, respectively, as

1(X ) = {u ∈ U : 1u ⊆ X},

1(X ) = {u ∈ U : 1u ∩ X 6= ∅}.

C. INTERVAL-VALUED NUMBERS
In this section, we utilize interval-valued numbers to acquire
the loss functions. So we recall some basis concepts and
properties of interval-valued numbers.

Let

[R] = {m = [m−,m+] : m−,m+ ∈ R, m− ≤ m+}.

∀ m ∈ R, denote m = [m,m].
Definition 11 [24]: ∀ m, n ∈ [R] and k ≥ 0, define

(1) m = n⇐⇒ m− = n−,m+ = n+;
(2) m ≤ n ⇐⇒ m− ≤ n−,m+ ≤ n+; m < n ⇐⇒ m ≤

n, m 6= n;
(3) m+ n = [m− + n−,m+ + n+];
(4) km = [km−, km+].
Example 12: Pick k = 3, m = [3, 4] and n = [7, 9]. Then
(1) m+ n = [3+ 7, 4+ 9] = [10, 13];
(2) km = 3[3, 4] = [9, 12].
Definition 13 [24]: Let m ∈ [R] and µ ∈ [0, 1]. Define

mµ = (1− µ)m− + µm+.

Then mµ is called µ-dot of the interval number m.
Theorem 14: Suppose m, n ∈ [R]. Then the following

properties hold:

(1) m0 = m−, m1 = m+, m0.5 =
m−+m+

2 .

(2) ∀ µ ∈ [0, 1], mµ ∈ m;
(3) If 0 ≤ µ1 ≤ µ2 ≤ 1, then mµ1 ≤ mµ2;

(4) m = n⇒ ∀ µ ∈ [0, 1], mµ = nµ;
(5) (km)µ = kmµ (k ≥ 0);
(6) (m+ n)µ = mµ + nµ.

Proof: (1), (2) and (4) are obvious.
(3) By Definition 13,

mµ1 = (1− µ1)m− + µ1 m+ = m− + µ1(m− + m+),

mµ2 = (1− µ2)m− + µ2 m+ = m− + µ2(m− + m+).

Since 0 ≤ µ1 ≤ µ2 ≤ 1, we have mµ1 ≤ mµ2 .

(5) Since k ≥ 0, by Definition 13, we have

(km)µ = (1− µ)(km−)+ µ1(km+)

= k[(1− µ)m− + µm+)] = kmµ.

(6) By Definition 13, we have

(m+ n)µ = (1− u)(m− + n−)+ u(m+ + n+)

= (1− µ)m− + (1− µ)n− + µm+ + µn+)

= [(1− µ)m− + µm+]+ [(1− µ)n− + µn+]

= mµ + nµ.

�
Theorem 15 [24]: Given µ ∈ [0, 1]. Define

m 4µ n ⇔ mµ ≤ nµ.

Then 4µ is m similarity relation on [R].
Define

m ≺µ n ⇔ mµ ≤ nµ ⇔ m 4µ n and m 6= n.

Specially,
(1) m 40 n ⇔ m− ≤ n−, ‘‘40’’ can be applied to

conservative decision;
(2) m 40.5 n ⇔ m−+m+

2 ≤
n−+n+

2 , ‘‘40.5’’ can be applied
to neutral decision;

(3) m 41 n ⇔ m+ ≤ n+, ‘‘41’’ can be applied to risky
decision.

III. THE 3WD IN LIGHT OF GROUP DECISION-MAKING
The 3WD is amethod on account of human cognitive process.
AsYao stated in [45], [46], the two key researches of 3WD are
focus on conditional probability and the threshold pair (α, β).

A. THE 3WD-BASED DECISION-THEORETIC ROUGH
SETS (DTRSs)
In this subsection, we recall the 3WD is generated from
DTRSs.

Below, we can construct a 3WD method in a CDIS. Given
that (U ,1, {d}) is a CDIS. For any X ∈ 2U , two states
are denoted by X and X c that indicate an object belongs to
X and an object does not belong to X , respectively. In this
paper, it’s worth noting that X not only is a subset of U but
also expresses a state set. Three actions are denoted by aP, aB
and aN which mean accepting something, deferment decision
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and rejecting something, respectively. We can apply a named
‘‘cost table’’ to show loss values during decision-making
process. As is known to all, loss values in DTRSs are exact
real numbers. Then, the loss function of three actions in two
states is presented by the following:

TABLE 1. The loss functions of three actions in two states.

From TABLE 1, the symbol λ�• (� = P,B,N ; • = X ,X c)
means the losses of taking correspondingly actions. Where
λPX , λ

B
X and λNX express the losses of taking correspondingly

actions, respectively, when an object belongs to X ; λPX , λ
B
X c

and λNX c indicate the losses for taking the same actions, when
an object belongs to X c.
Clearly, loss functions in a CDIS satisfy the following

conditions:

λPX ≤ λ
B
X ≤ λ

N
X ;

λNX c ≤ λ
B
X c ≤ λ

P
X c . (III.1)

Taking the individual actions contacts with the expectation
cost R(ai|[u]R)(i = P,B,N ) in a CDIS can be represented as

R(aP|[u]R) = λPXP(X |[u]R)+ λ
P
X cP(X

c
|[u]R),

R(aB|[u]R) = λBXP(X |[u]R)+ λ
B
X cP(X

c
|[u]R),

R(aN |[u]R) = λNX P(X |[u]R)+ λ
N
X cP(X

c
|[u]R).

Since P(X |[u]R)+P(X c|[u]R) = 1, on account of Bayesian
decision criterion, the above-mentioned conditions can be
written as
(P1) R(aP|[u]R) ≤ R(aB|[u]R) and R(aP|[u]R) ≤ R(aN |[u]R)

imply u ∈ POS(X );
(B1) R(aB|[u]R) ≤ R(aP|[u]R) and R(aB|[u]R) ≤ R(aN |[u]R)

imply u ∈ BND(X );
(N1) R(aN |[u]R) ≤ R(aP|[u]R) and R(aN |[u]R) ≤

R(aB|[u]R) imply u ∈ NEG(X ).
Below, we simplify the conditions (P1) − (N1). First part

of the condition (P1) is denoted as

R(aP|[u]R) ≤ R(aB|[u]R).

Then

λPXP(X |[u]R)+ λ
P
X cP(X

c
|[u]R)

≤ λBXP(X |[u]R)+ λ
B
X cP(X

c
|[u]R).

Thus

P(X |[u]R) ≥
λPX c − λ

B
X c

(λPX c − λ
B
X c )+ (λBX − λ

P
X )
.

Second part of the condition (P1) is denoted as

R(aP|[u]R) ≤ R(aN |[u]R).

Then

λPXP(X |[u]R)+ λ
P
X c (1− P(X |[u]R))

≤ λBXP(X |[u]R)+ λ
B
X c (1− P(X |[u]R)).

Thus

P(X |[u]R) ≥
λPX c − λ

N
X c

(λPX c − λ
N
X c )+ (λNX − λ

P
X )
.

Similarly, one may adjust the expression of the conditions
(B1) and (N1).

According to the foreshadowing of the calculation results,
let

α =
λPX c − λ

B
X c

(λPX c − λ
B
X c )+ (λBX − λ

P
X )
,

β =
λBX c − λ

N
X c

(λBX c − λ
N
X c )+ (λNX − λ

B
X )
,

γ =
λPX c − λ

N
X c

(λPX c − λ
N
X c )+ (λNX − λ

P
X )
.

Furthermore, the condition (B1) shows α > β, that is

α =
λPX c − λ

B
X c

(λPX c − λ
B
X c )+ (λBX − λ

P
X )

> β =
λBX c − λ

N
X c

(λBX c − λ
N
X c )+ (λNX − λ

B
X )
.

Then
1

1+ λBX−λ
P
X

λPXc−λ
B
Xc

>
1

1+ λNX−λ
B
X

λBXc−λ
N
Xc

.

Thus

λBX − λ
P
X

λPX c − λ
B
X c
<

λNX − λ
B
X

λBX c − λ
N
X c
.

From this inequality, we have

λBX − λ
P
X

λPX c − λ
B
X c
<

(λBX − λ
P
X )+ (λNX − λ

B
X )

(λPX c − λ
B
X c )+ (λBX c − λ

N
X c )

=
λNX − λ

P
X

λPX c − λ
N
X c
<

λNX − λ
B
X

λBX c − λ
N
X c
.

Hence

0 ≤
λBX c − λ

N
X c

(λPX c − λ
N
X c )+ (λNX − λ

B
X )

<
λPX c − λ

N
X c

(λPX c − λ
N
X c )+ (λNX − λ

P
X )

<
λPX c − λ

B
X c

(λPX c − λ
B
X c )+ (λBX − λ

P
X )

≤ 1.

This suggests 0 ≤ β < γ < α ≤ 1. Then, we can otain

POS(α,β)(X ) = {u ∈ U : P(X |[u]R) ≥ α},
BND(α,β)(X ) = {u ∈ U : β < P(X |[u]R) < α},

NEG(α,β)(X ) = {u ∈ U : P(X |[u]R) ≤ β}.
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Especially, if α < β, we set ‘‘α = β = γ ’’, then the 3WD
transformed into 2WD. It is able to be rewritten as

POS(γ,γ )(X ) = {u ∈ U : P(X |[u]R) ≥ γ },

NEG(γ,γ )(X ) = {u ∈ U : P(X |[u]R) < γ }.

B. LOSS FUNCTIONS BASED ON GROUP
DECISION-MAKING
As described in subsection 3.1, the 3WD-based DTRSs
mainly concentrates upon the single decision making. In light
of DTRSs and the results provided in [20], this subsection we
will extend to group decision-making [19]. Under the back-
ground of group decision-making, how to obtain loss func-
tions is ameaningful research topic. Liu et al. [21] take advan-
tage of interval numbers to obtain loss functions λ�• (� =
P,B,N ; • = X ,X c). Interval number, as an extended form
of single value, is used to measure uncertain or inaccurate
problem. It accords with the fuzziness of human thinking and
insufficient information in practical decision-making. In the
following, we describe the process to obtain interval number
loss functions from the angle of group decision-making.

On the basic of idea of 3WD, DTRS utilize two states
� = {X ,¬X} and three actions A = {P,B,N } to depict the
decision-making process. During practical decision-making
process, there are many experts being invited to evaluate loss
functions. Suppose that E = {e1, e2, · · · , em} is a set of
experts and W = {we1 ,we2 , · · · ,wem}

T is a weight vector

of experts, where
m∑
t=1

wl = 1 and wl > 0. As one can see the

loss functions of TABLE 1, all experts should be assigned the
results of loss functions that are represented by TABLE 2.

TABLE 2. The results of loss functions from all experts.

From the results of TABLE 2, the value of loss function
λ�• is evaluated by the expert el (1 ≤ l ≤ m) is (λ�•)

l (� =
P,B,N ; • = X ,X c). The value of loss function (λ�•)

l also
satisfy the following conditions:

(λPX )
l
≤ (λBX )

l
≤ (λNX )

l
;

(λNX c )
l
≤ (λBX c )

l
≤ (λPX c )

l .

Each loss function in TABLE 1 has multiple eval-
uation results in group decision-making. For exam-
ple, loss function λPX has multiple evaluation results of
(λPX )

1, (λPX )
2,· · · ,(λPX )

l ,· · · ,(λPX )
m (see TABLE 2). In this case,

in order to obtain the evaluation results of all experts and

improve the effectiveness of evaluation in group decision-
making, we have to aggregate all evaluation results to deter-
mine the loss function. Namely, we need to extract fea-
tures from datasets to improve the inconsistency of group
decision-making [43]. The principle of justifiable granu-
larity can satisfy our demands. It supports a method of
searching for information granule with numerical features
[33]. The information granularity of loss functions in group
decision-making is shown in FIGURE 2.

On the basis of these ideas, we able to employ the principle
of justifiable granularity to achieve information granule of
every loss function with interval number.We consider the loss
function λ�• , the evaluation results of all experts are acquired
in the following:

(λ�•)
1, (λ�•)

2, · · · , (λ�•)
l, · · · , (λ�•)

m.

In the actual decision-making process, we need to consider
the weight of all experts, i.e., ωe1 , ωe2 , · · · , ωel , · · · , ωem .

For the loss function λ�• , we merge the same values and sort
them in ascending order:

(λ�•)
σ (1), (λ�•)

σ (2), · · · , (λ�•)
σ (l), · · · , (λ�•)

σ (m′).

where (λ�•)
σ (l) expresses the lth value of all experts’ evalua-

tion results and 1 ≤ l ≤ m′ ≤ m. In the meantime, we get
their corresponding weight:

(ω�• )
σ (1), (ω�• )

σ (2), · · · , (ω�• )
σ (l), · · · , (ω�• )

σ (m′).

Considering weights of experts [43], we usually use mean
value to depict the result of group decision-making, which
is computed as:

m�• =
m′∑
t=1

(λ�•)
σ (t)(ω�• )

σ (t).

For the sake of obtaining majority suggestions of experts,
we need to determine its lower and upper bound of λ�• . We
mainly focus on the implementation of interval information
granularity with evaluation results, which is considered as
an optimization problem [32], [40]. According to the results
reported in [32], [40], the optimization functions of l�• and u

�
• ,

denoted by V (l�• ) and V (u
�
•), respectively, are calculated as:

V (l�• ) = exp(−ε|m
�
•−l
�
• |) ∗

∑
l�•≤(λ�• )σ (t)≤m�•

(ω�• )
σ (t), (III.2)

V (u�•) = exp(−ε|m
�
•−u

�
• |) ∗

∑
m�•≤(λ�• )σ (t)≤u�•

(ω�• )
σ (t). (III.3)

where l�• and u�• indicate the lower and upper bound of
(ω�• )

σ (t) (1 ≤ t ≤ m′). ε is a positive parameter, which
provides flexibility for generating information granule.

When ε is a constant, the optimized result of λ�• with an
interval is written as λ�• = [(λ�•)

−, (λ�•)
+] by optimizing (3.2)

and (3.3), namely,

(λ�•)
−
= argmax

l�•≤m�•

V (l�• ), (III.4)

(λ�•)
+
= argmax

m�•≤u�•

V (u�•). (III.5)
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FIGURE 2. The generation process of interval loss functions.

C. 3WD INDUCED BY INTERVAL LOSS FUNCTION OF
GROUP-DECISION MAKING
As is known to all, 3WD procedure is mainly dependent on
the conditional probability P(X |[u]R) and the threshold pair
(α, β), where P(X |[u]R) is related to the equivalent class [u]R,
The pair of (α, β) are dependent on loss functions λ�• (� =
P,B,N ; • = X ,X c). In the following discussions, we inves-
tigate 3WD derived from the δ rank method. It can convert an
intervals to real numbers, thus the formula conversion process
is the key step to construct the 3WD.
Definition 16 [21]: Let λ ∈ [R] and δ ∈ [0, 1]. Define

fδ(λ) = λδ,

where λδ = (1 − δ)λ− + δλ+. Then fδ(λ) is called the
transformed outcome of λ with respect to δ, and the threshold
δ reflects the risk attitude of decision makers.

In practical application, those risk-averters may seek a
higher δ to lessen the probability of making mistakes.
Inversely, those risk-lovers may choose a lower δ to pursue
high risks and yields.

Particularly, By Definition 16, three special decisions are
expressed as follows:

(1) Conservative decision: If δ = 0, then fδ(λ) = λ−, the
risk-averter selects the minimum of fδ(λ);

(2) Neutral decision: If δ = 0.5, then fδ(λ) = λ++λ−

2 ,
the decision maker adopts the standpoint of a risk neu-
tral;

(3) Risky decision: If δ = 1, then fδ(λ) = λ+, the risk-lover
selects the maximum of fδ(λ).

Proposition 17: On the basis of Definition 16, the follow-
ing properties hold.

(1) fδ(λPX ) ≤ fδ(λ
B
X ) < fδ(λNX );

(2) fδ(λNX c ) ≤ fδ(λ
B
X c ) < fδ(λPX ).

Proof: Obviously. �
The δ ranking method is a typical approach by we chosen

which can describe 3WD. According to the previous defini-
tions and conclusions, decision rules (P1)−(N1) may further
write as

(P2) If

fδ(R(aP|[u]R)) ≤ fδ(R(aB|[u]R)),

fδ(R(aP|[u]R)) ≤ fδ(R(aN |[u]R)),

then [u]R ∈ POS(X );
(B2) If

fδ(R(aB|[u]R)) ≤ fδ(R(aP|[u]R)),

fδ(R(aB|[u]R)) ≤ fδ(R(aN |[u]R)),

then [u]R ∈ BND(X ),
(N2) If

fδ(R(aN |[u]R)) ≤ fδ(R(aP|[u]R)),

fδ(R(aN |[u]R)) ≤ fδ(R(aB|[u]R)),

then [u]R ∈ NEG(X ),
where,

fδ(R(aP|[u]R))

= (1− δ)(λPX )
−P(X |[u]R)+ δ(λPX )

+P(X |[u]R)

+ (1− δ)(λPX c )
−P(X c|[u]R)+ δ(λPX c )

+P(X c|[u]R)

= P(X |[u]R)((1− δ)(λPX )
−
+ δ(λPX )

+))

+ (1− P(X |[u]R))((1− δ)(λPX )
−
+ δ(λPX )

+)

= P(X |[u]R)fδ(λPX )+ (1− P(X |[u]R))fδ(λPX ),
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fδ(R(aB|[u]R))
= (1− δ)(λBX )

−P(X |[u]R)+ δ(λBX )
+P(X |[u]R)

+ (1− δ)(λBX c )
−P(X c|[u]R)+ δ(λBX c )

+P(X c|[u]R)
= P(X |[u]R)((1− δ)(λBX )

−
+ δ(λBX )

+))
+ (1− P(X |[u]R))((1− δ)(λBX c )

−
+ δ(λBX c )

+)
= P(X |[u]R)fδ(λBX )+ (1− P(X |[u]R))fδ(λBX c ),

fδ(R(aN |[u]R))
= (1− δ)(λNX )

−P(X |[u]R)+ δ(λNX )
+P(X |[u]R)

+ (λNX c )
−P(X c|[u]R)+ (λNX c )

+P(X c|[u]R)
= P(X |[u]R)((1− δ)(λNX )

−
+ δ(λNX )

+)
+ (1− P(X |[u]R))((1− δ)(λNX c )

−
+ δ(λNX c )

+)
= P(X |[u]R)fδ(λNX )+ (1− P(X |[u]R))fδ(λNX c ).

By Proposition 17, the decision rules can be simplified as
follows:
(P2′) P(X |[u]R) ≥ α and P(X |[u]R) ≥ γ imply u ∈

POS(X );
(B2′) P(X |[u]R) ≤ α and P(X |[u]R) ≥ β imply u ∈

BNX (X );
(N2′) P(X |[u]R) ≤ β and P(X |[u]R) ≤ γ imply u ∈

NEG(X ).
Then, three thresholds α, β, γ are provided by

α =
fδ(λPX )− fδ(λ

B
X c )

(fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX )− fδ(λ

P
X ))
,

β =
fδ(λBX c )− fδ(λ

N
X c )

(fδ(λBX c )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

B
X ))
,

γ =
fδ(λPX )− fδ(λ

N
X c )

(fδ(λPX )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

P
X ))
.

Moreover, so as to well-defined boundary region, the condi-
tion of (B2′) indicates α > β, that is

fδ(λPX )− fδ(λ
B
X c )

(fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX )− fδ(λ

P
X ))

>
fδ(λBX c )− fδ(λ

N
X c )

(fδ(λBX c )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

B
X ))
.

Then

1

1+ fδ(λBX )−fδ(λ
P
X )

fδ(λPX )−fδ(λ
B
Xc )

>
1

1+ fδ(λNX )−fδ(λ
B
X )

fδ(λBXc )−fδ(λ
N
Xc )

.

Thus

fδ(λBX )− fδ(λ
P
X )

fδ(λPX )− fδ(λ
B
X c )

<
fδ(λNX )− fδ(λ

B
X )

fδ(λBX c )− fδ(λ
N
X c )
.

From this inequality, we have

fδ(λBX )− fδ(λ
P
X )

fδ(λPX )− fδ(λ
B
X c )

<
(fδ(λBX )− fδ(λ

P
X )+ fδ(λ

N
X )− fδ(λ

B
X )

fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX c )− fδ(λ

N
X c ))

=
fδ(λNX )− fδ(λ

P
X )

fδ(λPX )− fδ(λ
N
X c )

<
fδ(λNX )− fδ(λ

B
X )

fδ(λBX c )− fδ(λ
N
X c )
.

When 0 ≤ β < γ < α ≤ 1, the decision rules can also be
written in the following:
(P2′′) P(X |[u]R) ≥ α implies u ∈ POS(α,β)(X );
(B2′′) β < P(X |[u]R) < α implies u ∈ BNX (α,β)(X );
(N2′′) P(X |[u]R) ≤ β implies u ∈ NEG(α,β)(X ).
When 0 ≤ β = γ = α ≤ 1, the decision rules can also be

written in the following:
(P2′′′) P(X |[u]R) ≥ γ implies u ∈ POS(γ,γ )(X );
(N2′′′) P(X |[u]R) < γ implies u ∈ NEG(γ,γ )(X ).

IV. THREE-WAY GROUP DECISIONS IN A CDIS
We have already mentioned that the threshold pair (α, β) is
one of the most important researches of 3WD. In Section 3,
we have give the approach to obtain loss functions by means
of group-decision making. On the basis of the idea of DTRSs,
we can structure a three-way group decision method in a
CDIS.
Definition 18: Suppose that (U ,1, {d}) is a CDIS. Given

a pair thresholds (α, β) with 0 ≤ β < α ≤ 1. The
(α, β)-lower and (α, β)-upper approximations of D ∈ U/{d},
denoted by (R1)(α,β)(D) and (R1)

(α,β)
(D), respectively, are

defined as

(R1)(α,β)(D) = {u ∈ U : P(D|1u) ≥ α},

(R1)
(α,β)

(D) = {u ∈ U : P(D|1u) > β}.

Theorem 19: Let (U ,1, {d}) be a CDIS. Suppose
D,D1,D2,∈ U/ind({d}), Given 0 ≤ β < α ≤ 1. Then
the following properties hold.

(1) (R1)(α,β)(D) ⊆ (R1)
(α,β)

(D).

(2) (R1)(α,β)(D) =∼ (R1)
(1−α,β)

(∼ D);

(R1)
(α,β)

(D) =∼ (R1)(α,1−β)(∼ D).

(3)

(R1)(α,β)(D1 ∪ D2) ⊇ (R1)(α,β)(D1) ∪ (R1)(α,β)(D2);

n(R1)
(α,β)

(D1 ∪ D2) ⊇ (R1)
(α,β)

(D1) ∪ (R1)
(α,β)

(D2).

(4) If 0 ≤ β < α1 ≤ α2 ≤ 1, then

(R1)(α2,β)(D) ⊆ (R1)(α1,β)(D).

(5) If 0 ≤ β1 ≤ β2 < α ≤ 1, then

(R1)
(α,β2)(D) ⊆ (R1)

(α,β1)(D).
Proof: (1) Suppose u ∈ (R1)(α,β)(D). By Definition 18,

we have P(D|1u) ≥ α. Since 0 ≤ β < α ≤ 1, then
P(D|1u) > β. So,

u ∈ {u ∈ U : P(D|1u) > β}.

Thus, u ∈ (R1)
(α,β)

(D). Hence

(R1)(α,β)(D) ⊆ (R1)
(α,β)

(D).

(2) (a) Suppose u ∈ (R1)(α,β)(D). By Definition 18,
we have P(D|1u) ≥ α. Then,

P(∼ D|1u) ≤ 1− α.
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So, u 6∈ {u ∈ U |P(∼ D|1u) ≤ 1 − α}. Thus, u 6∈
(R1)

(1−α,β)
(∼ D). Hence,

u ∈∼ (R1)
(1−α,β)

(∼ D).

Conversely, u ∈∼ (R1)
(α,β)

(∼ D). Then, u 6∈

(R1)
(1−α,β)

(∼ D). By Definition 18, we have

P(∼ D|1u) ≤ 1− α.

So, P(D|1u) ≥ α. This implies u ∈ {u ∈ U |P(D|1u) ≤ α}.
Thus, u ∈ (R1)(α,β)(D).

Hence,

(R1)(α,β)(D) =∼ (R1)
(1−α,β)

(∼ D).

(b) Suppose u ∈ (R1)
(α,β)

(D). By Definition 18, we have
P(D|1u) > β. Then,

P(∼ D|1u) ≤ 1− β.

So, u 6∈ {u ∈ U |P(∼ D|1u) ≤ 1 − β}. Thus, u 6∈
(R1)

(α,1−β)
(∼ D). Hence,

u ∈∼ (R1)
(α,1−β)

(∼ D).

Conversely, u ∈∼ (R1)
(α,1−β)

(∼ D). Then, u 6∈

(R1)
(α,1−β)

(∼ D). By Definition 18, we have

P(∼ D|1u) ≤ 1− β.

So, P(D|1u) > β. This implies u ∈ {u ∈ U |P(D|1u) > β}.

Thus, u ∈ (R1)
(α,β)

(D).
Hence,

(R1)
(α,β)

(D) =∼ (R1)(α,1−β)(∼ D).

(3) (a) Since D1 ⊆ D1 ∪ D2, we have

(R1)(α,β)(D1) ⊆ (R1)(α,β)(D1 ∪ D2),

(R1)(α,β)(D2) ⊆ (R1)(α,β)(D1 ∪ D2).

Thus,

(R1)(α,β)(D1) ∪ (R1)(α,β)(D2) ⊆ (R1)(α,β)(D1 ∪ D2).

(b) Since D1 ⊆ D1 ∪ D2, we have

(R1)
(α,β)

(D1) ⊆ (R1)
(α,β)

(D1 ∪ D2),

(R1)
(α,β)

(D2) ⊆ (R1)
(α,β)

(D1 ∪ D2).

Thus,

(R1)
(α,β)

(D1) ∪ (R1)
(α,β)

(D2) ⊆ (R1)
(α,β)

(D1 ∪ D2).

(4) Suppose u ∈ (R1)(α2,β)(D). By Definition 18, we have
P(D|1u) ≥ α2. Since 0 ≤ β < α1 ≤ α2 ≤ 1, then
P(D|1u) ≥ α1. So, u ∈ (R1)(α1,β)(D).

Thus,

(R1)(α2,β)(D) ⊆ (R1)(α1,β)(D).

(5) Suppose u ∈ (R1)
(α,β2)(D). By Definition 18, we have

P(D|1u) > β2. Since 0 ≤ β1 ≤ β2 < α ≤ 1, then
P(D|1u) > β1. So, u ∈ (R1)

(α,β1)(D).

Thus,

(R1)
(α,β2)(D) ⊆ (R1)

(α,β1)(D).

�
On the basis of above DTRS model, ∀ D ∈ U/{d}, U

can be divided into positive, boundary and negative region
of D, denoted by POS(α,β)(D), BND(α,β)(D), NEG(α,β)(D),
respectively, are given as follows:

POS(α,β)(D) = (R1)(α,β)(D),

BND(α,β)(D) = (R1)
(α,β)

(D)− (R1)(α,β)(D),

NEG(α,β)(D) = U − (R1)
(α,β)

(D).

Obviously,

BND(α,β)(D) = {u ∈ U : β < P(D|1u) < α},

NEG(α,β)(D) = {u ∈ U : P(D|1u) ≤ β}.

According to the idea of 3WD, the decision rules of D ∈
U/{d} can be written as

(P) : if P(D|1u) ≥ α, then u ∈ POS(α,β)(D);
(N ) : if P(D|1u) ≤ β, then u ∈ NEG(α,β)(D);
(B) : if β < P(D|1u) < α, then u ∈ BND(α,β)(D).
In the following, we give the detailed step-wise procedure

as an algorithm on 3WD based on group decision-making of
a CDIS.

Input: A CDIS (U ,1, {d}), a positive parameter ε,
a threshold δ, loss functions (λ�•)

1,(λ�•)
2,· · · ,

(λ�•)
m (� = P,B,N ; • = X ,X c) of each object

and the corresponding weight ωe1 , ωe2 , · · · , ωem .
Output: The three-way group decision rules.
Step 1. For a given positive parameter ε, we achieve

interval-valued information granule for each loss
function in light of (3.2)-(3.5), i.e., λPX =

[(λPX )
−, (λPX )

+], λBX = [(λBX )
−, (λBX )

+], λNX =

[(λNX )
−, (λNX )

+], λNX c = [(λNX c )
−, λNX c )

+], λBX c =
[(λBX c )

−, λBX c )
+], λPX c = [(λPX c )

−, λPX c )
+].

Step 2. For a given threshold δ, compute fδ(λ�•) = (1 −
δ)(λ�•)

−
+ δ(λ�•)

+.
Step 3. Calculate thresholds α, β and γ ,

α =
fδ(λPX )− fδ(λ

B
X c )

(fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX )− fδ(λ

P
X ))
,

β =
fδ(λBX c )− fδ(λ

N
X c )

(fδ(λBX c )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

B
X ))
,

γ =
fδ(λPX )− fδ(λ

N
X c )

(fδ(λPX )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

P
X ))
.

Step 4. For ui ∈ U , obtain the similarity class 1ui ;
Step 5. For ui ∈ U and D ∈ U/{d}, compute P(D|1ui );
Step 6. Based on the results of Step 3, for any D ∈ U/{d},

obtain POS(α,β)(D), BND(α,β)(D), NEG(α,β)(D);
Step 7. For any D ∈ U/{d}, give the three-way group

decision rules of D.
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Algorithm 1 An Algorithm on 3WD Based on Group
Decision-Making of a CDIS
Input: A CDIS (U ,1, {d}), a positive parameter ε,

a threshold δ, loss functions (λ�•)
1,(λ�•)

2,· · · ,
(λ�•)

m (� = P,B,N ; • = X ,X c) of each object
and the corresponding weight ωe1 , ωe2 , · · · , ωem .

Output: The three-way group decision rules;
1 for ε > 0, do
2 Based on (3.2)-(3.5), we calculate

λ�• = [(λ�•)
−, (λ�•)

+].
3 end
4 for 0 ≤ δ ≤ 1, do
5 compute fδ(λ�•) = (1− δ)(λ�•)

−
+ δ(λ�•)

+, then
calculate

α =
fδ(λPX )− fδ(λ

B
X c )

(fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX )− fδ(λ

P
X ))
,

β =
fδ(λBX c )− fδ(λ

N
X c )

(fδ(λBX c )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

B
X ))
,

γ =
fδ(λPX )− fδ(λ

N
X c )

(fδ(λPX )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

P
X ))
.

6 end
7 for ui ∈ U, do
8 obtain the similarity class 1ui .
9 end
10 for u ∈ U and D ∈ U/{d} do
11 Calculate P(D|1ui ).
12 if P(D|1ui ) ≥ α then
13 then ui ∈ POS(α,β)(D);
14 end
15 if β < P(D|1ui ) < α then
16 then ui ∈ BND(α,β)(D);
17 end
18 if P(D|1ui ) ≤ β then
19 then ui ∈ NEG(α,β)(D).
20 end
21 end

V. AN ILLUSTRATIVE EXAMPLE
In this section, we demonstrate the feasibility of our proposed
method in a CDIS by an example.
Example 20: We will describe the process of 3WD in a

CDIS by an example of interviewees’ position competition.
Suppose that U = {u1, u2, · · · , u10} is a set of ten

interviewees compete for a job position. Assume that E =
{Education,Weight,Height,Ability} is a set of four charac-
teristics to evaluate these interviewees whose values are given
as follows:

‘‘Education’’ = {high, middle, low};

‘‘Weight’’ = {heavy, average};

‘‘Height’’ = {tall, average, short};

‘‘Ability’’ = {very strong, strong, normal, weak}.

We have four interviewers E = {A,B,C,D} to evaluate
these interviewees through their performance. It is possible
that the interviewers’ evaluation results may not be the same
for the same interviewee. But the evaluation results given by
these interviewers are the same importance. If we want to
combine these evaluation results without losing information,
then we should union the evaluation results given by each
interviewer. The interviewers’ evaluation results for each
characteristic are listed as follows.
For ‘‘Education’’, A: high={u1, u2, u3, u8, u9, u10}, middle
={u4, u6}, low={u5, u7};
B: high={u1, u2, u6, u8, u9, u10}, middle={u4, u7},

low={u3, u5};
C: high={u1, u2, u6, u8, u9, u10}, middle={u3, u7},

low={u4, u5};
D: high={u1, u2, u4, u7, u8, u9, u10}, middle={u3},

low={u5, u6}.
For ‘‘Weight’’,
A: heavy={u1, u2, u6, u8, u9, u10},

average={u3, u4, u5, u7};
B: heavy={u1, u3, u6, u8, u10},

average={u3, u4, u5, u7, u9};
C: heavy={u1, u2, u8, u9, u10},

average={u3, u4, u5, u6, u7};
D: heavy={u1, u3, u8, u10},

average={u2, u4, u5, u6, u7, u9};
For ‘‘Height’’,
A: tall={u1, u2, u3, u4, u5, u6, u7}, average={u8, u9},

short={u10};
B: tall={u1, u2, u3, u4, u5, u6}, average={u7, u8, u9},

short={u10};
C: tall={u1, u2, u3, u4, u5, u6}, average={u7, u8, u9},

short={u10};
D: tall={u1, u2, u3, u4, u5, u7}, average={u6, u8, u9},

short={u10}.
For ‘‘Ability’’,
A: very strong={u1, u2, u3}, strong={u4, u5, u7},

normal={u8, u9, u10}, weak={u6};
B: very strong={u1, u2, u3}, strong={u4, u5},

normal={u6, u8, u10}, weak={u7, u9};
C: very strong={u1, u3}, strong={u2, u4, u5, u6},

normal={u8, u9, u10}, weak={u7};
D: very strong={u1, u2, u6}, strong={u3, u4, u5},

normal={u8, u10}, weak={u7, u9}.
Since these interviewers’ evaluation results are equal

importance, we should consider all results. For ‘‘Education’’,
the covering C1 is obtained to describe the evaluation results
of ten interviewees.

C1 = {{u1, u2, u3, u8, u9, u10} ∪ {u1, u2, u6, u8, u9, u10} ∪
{u1, u2, u6, u8, u9, u10}∪ {u1, u2, u4, u7, u8, u9, u10}, {u4, u6}
∪{u4, u7} ∪ {u3, u7} ∪ {u3}, {u5, u7}∪ {u3, u5} ∪ {u4, u5} ∪
{u5, u6}} = {{u1, u2, u3, u4, u6, u7, u8, u9, u10}, {u3, u4, u6,
u7}, {u3, u4, u5, u6, u7}};
Similarly, for ‘‘Weight’’,‘‘Height’’ and ‘‘Ability’’, the cov-

erings C2, C3 and C4 are obtained to describe the
evaluation results of ten interviewees, respectively.
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TABLE 3. Compute the similarity classes 1ui .

C2 = {{u1, u2, u6, u8, u9, u10} ∪ {u1, u3, u6, u8, u10} ∪
{u1, u2, u8, u9, u10}∪ {u1, u3, u8, u10}, {u3, u4, u5, u7} ∪
{u3, u4, u5, u7, u9} ∪ {u3, u4, u5, u6, u7}∪ {u2, u4, u5, u6,
u7, u9}} = {{u1, u2, u3, u6, u8, u9, u10}, {u2, u3, u4, u5, u6,
u7, u9}};

C3 = {{u1, u2, u3, u4, u5, u6, u7}∪{u1, u2, u3, u4, u5, u6}∪
{u1, u2, u3, u4, u5, u6}∪ {u1, u2, u3, u4, u5, u7}, {u8, u9} ∪
{u7, u8, u9}∪{u7, u8, u9}∪{u6, u8, u9}, {u10}∪{u10}∪{u10}∪
{u10}} = {{u1, u2, u3, u4, u5, u6, u7}, {u6, u7, u8, u9},
{u10}};

C4 = {{u1, u2, u3} ∪ {u1, u2, u3} ∪ {u1, u3} ∪
{u1, u2, u6}, {u4, u5, u7}∪ {u4, u5} ∪ {u2, u4, u5, u6} ∪
{u3, u4, u5}, {u8, u9, u10} ∪ {u6, u8, u10}∪ {u8, u9, u10} ∪
{u8, u10}, {u6}∪{u7, u9}∪{u7}∪{u7, u9}} = {{u1, u2, u3, u6},
{u2, u3, u4, u5, u6, u7}, {u6, u8, u9, u10}, {u6, u7, u9}}.
Let d denotes the decision attribute which determines

an information function d : U → Vd , where Vd =
{pass, eliminate}.
Pick

d(u1) = d(u2) = d(u3) = d(u6) = d(u7) = pass,

d(u4) = d(u5) = d(u8) = d(u9) = d(u10) = eliminate.

Then, U/{d} = {D1,D2}, where
D1 = {u1, u2, u3, u6, u7} is a set of interviewees which may

be passed;
D2 = {u4, u5, u8, u9, u10} is a set of interviewees which

may be eliminated.
Put

1 = {C1,C2,C3,C4}.

Then (U ,1, {d}) is a CDIS.
Below, we will describe in detail the process of 3WD in

(U ,1, {d}).
Step 1: Compute the similarity classes 1ui (i =

1, 2, · · · , 10) of (U ,1, {d}) (see TABLE 3).
Step 2: The conditional probability P(Dj|1ui ) (i =

1, 2, · · · , 10, j = 1, 2) can be calculated in TABLE 4.
Step 3: Based on the idea of DTRS, the problem of inter-

viewees competing for a job can make use of a set of two
states and a set of three actions to describe the decision
process. For each interviewee u, the state set is denoted
by � = {X ,X c}, which indicates an interviewee has a
good performance or not, respectively. The action set of for

TABLE 4. Calculate the conditional probability P(Dj |1ui ).

each interviewee is written as A = {aP, aB, aN }, in which
aP, aB, aN expresses the actions of being passed, being
delayed decision and being eliminated, respectively. λ�• (� =
P,B,N ; • = X ,X c) expresses the loss when one adopts exact
action with it’s homologous state. The loss function value
for each interviewee is carefully estimated by interviewers.
However, even an experienced interviewer may make errors
when he determines the loss function value. One may use
interval numbers to better express the loss functions. Thus,
λPX , λ

B
X and λ

N
X denote the losses for adopting actions of aP,

aB and aN , respectively, when an interviewee has a good
performance. Similarly, λPX c , λ

B
X c and λ

N
X c denote the losses

for adopting the corresponding actions when an interviewee
doesn’t have a good performance.
In order to make a reasonable decision, these four

interviewers give the evaluation results of loss functions
for each interviewee. The set of interviewers is E =

{A,B,C,D}, the corresponding weight vector of interviewers
is {ωA, ωB, ωC , ωD}T = {0.4, 0.25, 0.25, 0.1}T . Based on
TABLE 1, loss functions from interviewers of each interviewee
are summarized in TABLEs 5-6.
On the basis of loss functions from TABLEs 5-6, we can

calculate mean value for λ�• of group decision-making. Taking
λPX as an example, for the interviewee u10, the evaluation
results of (λBX )(u10) are obtained from four interviewers as
follows:

(λBX )
1(u10) = 22u, (λBX )

2(u10) = 8u,

(λBX )
3(u10) = 13u, (λBX )

4(u10) = 13u.
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TABLE 5. Loss functions determined by interviewers for each interviewee.

TABLE 6. Loss functions determined by interviewers for each interviewee.

TABLE 7. The interval-valued information granules for each interviewee when ε = 0.3.

And the corresponding weight for four interviewers are
given in the following:

ωA = 0.4, ωB = 0.25, ωC = 0.25, ωD = 0.1.

We need to merge the same values and sort them in ascend-
ing order:

(λBX )
σ (1)(u10) = 8u, (λBX )

σ (2)(u10) = 13u,

(λBX )
σ (3)(u10) = 22u.

We also get the corresponding weight for loss function after
sorting them in ascending order as follows:

(ωBX )
σ (1)
= 0.25, (ωBX )

σ (2)
= 0.35, (ωBX )

σ (3)
= 0.4.

Thus, the mean value is (mBX )(u10) = 15.35u.
According to the result of (mBX )(u10), we achieve

interval-valued information granule for the interviewee u10
in light of (3.2)-(3.5), i.e., (λBX )(u10) = [13u, 22u].
Homoplastically, we can get interval-valued information

granules for all interviewees in TABLE 7.
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Here, (λPX )(u1) = [1u, 2u] expresses that the loss function
values under group decision-making are between 1u and 2u
for taking the action of being passed when the interviewee
u1 has a good performance; (λBX )(u2) = [8u, 10u] means
that the loss function values under group decision-making are
between 8u and 10u for taking the action of being delayed
decision when the interviewee u2 has a good performance;
(λNX )(u3) = [11u, 13u] shows that the loss function values
under group decision-making are between 11u and 13u for
taking the action of being eliminated when the interviewee u3
has a good performance.
Analogously, (λPX c )(u8) = [18u, 21u] expresses that

the loss function values under group decision-making are
between 18u and 21u for taking the action of being passed
when the interviewee u8 doesn’t have a good perfor-
mance; (λBX c )(u9) = [7.5u, 16u] means that the loss func-
tion values under group decision-making are between 7.5u
and 16u for taking the action of being delayed decision
when the interviewee u9 doesn’t have a good performance;
(λNX c )(u10) = [0.5u, 2u] shows that the loss values under
group decision-making are between 0.5u and 2u taking the
action of being eliminated when the interviewee u10 doesn’t
have a good performance.
Interval-valued information granules for each interviewee

are clearly satisfy the following conditions:

(λPX )
−(ui) < (λBX )

−(ui) < (λNX )
−(ui),

(λPX )
+(ui) < (λBX )

+(ui) < (λNX )
+(ui);

(λPX c )
−(ui) < (λBX c )

−(ui) < (λNX c )
−(ui),

(λPX c )
+(ui) < (λBX c )

+(ui) < (λNX c )
+(ui).

Step 4: Suppose interviewers are different risk-takers and
given δ = 0, 0.25, 0.5, 0.75, 1, we compute three thresholds
α, β, γ for all interviewees. TABLEs 5-9 list the homolo-
gous calculating results, and under-lined values represent the
invalid values.
Step 5: The key step of 3WD in the (U ,1, {d}) is based on

P(Dj|1ui ) (i = 1, 2, · · · , 10, j = 1, 2) and δ. In 3WD in the
CDIS, we are able to reckon three thresholds α, β, γ , which
are closely related to δ, so we can reflect the change of three
thresholds for each interviewee, as shown in FIGUREs 2-6.
Step 6: Given δ = 0, 0.25, 0.5, 0.75, 1. The rules

can be generated by comparing conditional probability
P(Dj|1ui ) (i = 1, 2, · · · , 10, j = 1, 2) and three thresholds
in TABLEs 7-11. The decision results of each interviewee
are listed in TABLEs 12-13, and the under-lined values in
TABLEs 12-13 express invalid decision results.
Step 7: The detailed step-wise procedure as an algorithm

on 3WD based on group decision-making of (U ,1, {d}) are
given in the following:
Input: A (U ,1, {d}), ε = 0.3, δ = 0, 0.25, 0.5, 0.75, 1,

loss functions (λ�•)
A,(λ�•)

B,(λ�•)
C , (λ�•)

D (� = P,B,N ; • =
X ,X c) for each interviewee and the corresponding
weight vector of interviewers is {ωA, ωB, ωC , ωD}T =

{0.4, 0.25, 0.25, 0.1}T .

FIGURE 3. δ = 0.

FIGURE 4. δ = 0.25.

FIGURE 5. δ = 0.5.

Output: The three-way group decision rules.
1. For any ui ∈ U, obtain 1ui (see TABLE 3);
2. For any ui ∈ U and Dj ∈ U/{d}, compute the condi-

tional probability P(Dj|1ui ) (see TABLE 4);
3. For ε = 0.3, based on TABLEs 5-6 and formulas

(3.2)-(3.5), we calculate λ�• = [(λ�•)
−, (λ�•)

+] (see TABLE
7), i.e., λPX = [(λPX )

−, (λPX )
+], λBX = [(λBX )

−, (λBX )
+],

λNX = [(λNX )
−, (λNX )

+], λNX c = [(λNX c )
−, λNX c )

+], λBX c =

[(λBX c )
−, λBX c )

+], λPX c = [(λPX c )
−, λPX c )

+];
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TABLE 8. The values of α, β, γ when δ = 0.

TABLE 9. The values of α, β, γ when δ = 0.25.

TABLE 10. The values of α, β, γ when δ = 0.5.

TABLE 11. The values of α, β, γ when δ = 0.75.

4. Pick δ = 0, 0.25, 0.5, 0.75, 1, compute fδ(λ�•) = (1 −
δ)(λ�•)

−
+ δ(λ�•)

+ (see TABLEs 7-11);
5. Calculate corresponding thresholds α, β and γ for each

interviewee,

α =
fδ(λPX )− fδ(λ

B
X c )

(fδ(λPX )− fδ(λ
B
X c ))+ (fδ(λBX )− fδ(λ

P
X ))
,

β =
fδ(λBX c )− fδ(λ

N
X c )

(fδ(λBX c )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

B
X ))
,

γ =
fδ(λPX )− fδ(λ

N
X c )

(fδ(λPX )− fδ(λ
N
X c ))+ (fδ(λNX )− fδ(λ

P
X ))
;

6. For any Dj, based on α, β, γ in Step 5, obtain
POS(α,β)(Dj), NEG(α,β)(Dj), BND(α,β)(Dj);
7. For any Dj, give the three-way group decision rules of

Dj (see TABLEs 12-13).
For an example, we analysis two special cases (δ =

0, 0.5) to display the 3WD of D ∈ U/{d} in the
following:
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TABLE 12. The values of α, β, γ when δ = 1.

TABLE 13. The three-way group decision rules of D1 when δ change.

TABLE 14. The three-way group decision rules of D2 when δ change.

FIGURE 6. δ = 0.75.

(1) Pick δ = 0.
We obtain the positive, negative and boundary regions of

D1 from TABLE 12 as follows:

POS(α,β)(D1) = {u1, u2, u3, u6, u7},

NEG(α,β)(D1) = {u8, u10},

BND(α,β)(D1) = {u4, u5, u9}.

The results imply that interviewees u1, u2, u3, u6, u7 should
be passed, interviewees u8, u10 should be eliminated, intervie-
wees u4, u5, u9 should be further evaluated.
(2) Pick δ = 0.5.
We obtain the positive, negative and boundary regions of

D2 from TABLE 13 as follows:

POS(α,β)(D2) = {u8, u10},

NEG(α,β)(D2) = {u1, u2, u3, u4, u6, u7},

BND(α,β)(D2) = {u5, u9}.

FIGURE 7. δ = 1.

The results imply that interviewees u8 and u10 should be
eliminated, interviewees u1, u2, u3, u4, u6, u7 should be
passed, interviewee u5, u9 should be further evaluated.

VI. CONCLUSION
In this paper, the similarity classes induced by this CDIS have
been obtained by neighbourhood of the point. On the light
of idea of DTRS, a method of three-way group decisions
in this CDIS has been presented. An example of position
competition has been displayed to explain feasibility of our
proposedmethod. In future work, we will employ other meth-
ods to research decision problems and use big data to analyze
three-way group decisions in a CDIS.
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