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ABSTRACT At present, the multiscale fuzzy entropy has been verified to be an excellent measure
of the complexity for dynamic time series. However, when using to short-time time series collected in
practical application, the conventional multiscale fuzzy entropy may result in undefined or unreliable value.
In this work, improved multiscale fuzzy entropy, named moving-average based multiscale fuzzy entropy
(MA_MEFE), is presented at first to potentially characterize the complexity of short-term time series. The
MA_MEFE algorithm can successfully produce more template vectors to overcome the problem of shortening
the samples in the procedure of the existing approaches. The analysis experiments for both white noise
signal and 1/f noise signal are made and the results show MA_MFE method is more effective for the
short-term datasets. Then, a novel fault detection scheme has been developed. After using non-local mean
approach to reduce background noise, the non-stationary vibration signals are decomposed into several
intrinsic scale components (ISCs) by a newly developed time-frequency signal analysis method— partly
ensemble local characteristic-scale decomposition (PELCD); The ISCs with higher correlation coefficients
are used to reconstruct into a new signal and the inherent MA_MFEs are extracted to quantify the complexity
of the collected vibration signal. At last, the multiSVM and improved variable predictive model based
class discrimination (VPMCD) are employed as small-sample classifiers to achieve fault detection. Two
experiments have been conducted, which include both rolling bearing as vital component in rotating
machinery and a piston pump as typical reciprocation machinery in hydraulic system. The comparison results
show that the proposed fault detection scheme is more effective and reliable and suitable for real-time online
fault detection.

INDEX TERMS Multiscale analysis, moving-average, partly ensemble local characteristic-scale
decomposition, fault detection.

I. INTRODUCTION

Condition monitoring and fault detection are crucial to ensure
the high reliability, safety and maintainability of the whole
mechanical system. Local faults in mechanical system will
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cause extra vibration and noise, and the vibration signals
collected by sensors would change with different fault types
and fault severity. Moreover, the structure is extremely com-
plex and many factors including working load, friction, and
damping capacity vary instantaneously in the running condi-
tion, and strong coupling also exists among the fault features.
Simultaneously, the samples for fault states are rare and they
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always are short-term time series. As a result, it is still a
huge challenge to detect the running states and fault types
effectively and quickly [1]-[5].

The validity of a data-driven condition monitoring and
fault detection system greatly depends on the fault fea-
tures extracted and the performance of the classifier. This
procedure mainly involves two key steps: feature extrac-
tion and class recognition [2], [4]-[6]. At present, var-
ious methods have been developed and applied to fault
detection [2], [7]-[10]. In the stage of feature extraction,
entropy-based measures have been widely used to charac-
terize the complexity of time series from dynamical sys-
tem. These commonly entropy-based complexity indexes
mainly include sample entropy (SampEn) [11], fuzzy entropy
(FuzzyEn) [12], [13], permutation entropy (PE) [14], [15].
However, the results of most traditional single-scale entropy
methods are not always consistent with the complexity of
real-world signals [16]. For example, the SampEn of white
noise is higher than that of 1/f noise, but the latter has more
complex structure [16]. Aiming at this issue, Costa et al pro-
posed multiscale entropy (MSE) to represent the complexity
of time series [16], [17]. In order to quantify the complexity
at different time scales, the original time series are coarse-
grained with time scales and then the multiscale fuzzy entropy
for each coarse-grained time series is computed. In the mul-
tiscale technique, for the scale factor t, coarse-graining pro-
cedure is achieved by calculating the arithmetic mean of
neighboring values without overlapping. The original data
with length N is divided into N/t segments and obtain the
coarse-grained time series with length N/t, which is used
to compute an entropy value with regard to scale factor 7.
Integrated with the MSE conception, the multiscale fuzzy
entropy (MFE) [18], [19] and the refined composite mul-
tiscale fuzzy entropy (RCMFE) were proposed and used
successfully to analysis complex time series in different
research fields [20], [21]. However, from the perspective of
signal processing, the coarse-graining procedure averages
the data within a window and the data is down-sampled
by multiple time scales. The length of coarse-grained time
series is shorten and may be not long enough to calculate
an accurate value and obtain either undefined or unreliable
values [22]. Hence, as far as the short-term vibration signals
from dynamic mechanical system are concerned, it is more
difficult to obtain accurate multiscale entropies using large
scale factor. Targeting at this problem, Wu et al introduced
a moving-average approach to complete the coarse-graining
procedure so that large number of template vectors can be
obtained to better MSE performance [22]. Inspired by this
idea, Li et al introduced moving-average approach to improve
multiscale fuzzy entropy for fault feature extraction [23].

At the same time, vibration signals from mechanical sys-
tem are always non-stationary, including some superimposed
trend oscillations which could influence the standard devia-
tion of the estimated values. Hence, it is necessary to deal
with the original signals using data-driven signal decom-
position method before feature extraction. Empirical mode
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decomposition (EMD ) method is widely-used time-
frequency analysis technique for non-stationary time
series [24]. But, EMD has some shortcomings such as
mode-mixing phenomenon, end-point effect [25] et.al. The
complementary ensemble empirical mode decomposition
(CEEMD) is an improved EMD method and can overcome
mode-mixing problem to a certain degree [26]. However,
the CEEMD needs large amount of calculation. In [23],
the local mean decomposition ( LMD ) method was also
served as an improved EMD method to extract multiscale
fuzzy entropy for rolling bearing. However, the LMD method
has also the problem of mode mixing, distorted compo-
nents and large time-consuming [27]. Local characteristic-
scale decomposition (LCD) was proposed by Cheng et. al
in [27]. Compared with EMD-based method, LCD shows
much higher computation efficiency. However, mode-mixing
and end-point effect [28]-[30] still exist. In the latest
years, as an improved LCD method, partly ensemble local
characteristic-scale decomposition (PELCD) has been devel-
oped and applied successfully for fault diagnosis in [31], [32].
Accordingly, in this paper, PELCD is employed as data-
driven signal decomposition method to eliminate the super-
imposed trend oscillations. Firstly the original signal is
decomposed into several intrinsic scale components (ISCs)
by PELCD. Then, inherent ISCs are selected out using
spearman correlation coefficients to reconstruct a new signal.
Lastly, the MA_MFEs of the reconstructed signal, defined as
inherent MA_MFEs, are extracted to evaluate the complexity
of the vibration signal. Moreover, novel fault detection mod-
els are built. It is noted that though deep learning network
and its improved techniques are proved to be promising
intelligent identification approaches and have been widely
applied in fault diagnosis field [4], [5], a large number of
samples are generally required. In this paper, multiSVM
and improved VPMCD [33] are used as small-sample mul-
ticlass recognition techniques to verify the proposed inherent
MA_MFE method. At the end of this paper, the proposed
scheme is applied not only to fault detection experiment for
rolling bearing but also to multi-fault detection experiment
for hydraulic piston pump.

The remaining part is organized as follows. In Section II,
the algorithm of MA_MFE is developed and verified with
two simulation signals. A novel fault detection scheme is
presented In Section III, and applied in Section IV. The
conclusions are given in Section V.

Il. BACKGROUNDS
A. MULTISCALE FUZZY ENTROPY
Sample entropy and fuzzy entropy are two most prevalent
approaches and have been commonly utilized to quantify the
dynamical complexity of time series. As an improved sample
entropy, fuzzy entropy is more reliable and less dependent
on the parameters and data length [12], [13], [29]. The main
conception is described as follows.

A time series is written as'y = [y1,¥2, -, Vi, -, YN]
with the length N. Given embedding dimension m, a template
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vector is reconstructed as

V=i Yiets 0 YVigm—1} — ¥ (D

_ -1 .
wherey;.”z.é ]’.":O y,-+.j,z=132,~-~,N—m+1
Then, define the Euclidean distance between the vectors

y;" and y!* as

dg-l = d[y?",y]’-"] = max { - yj'-”

| @)

where 0 <k <m—1landi#j

In the conventional sample entropy algorithm, a match hap-
pens while d?‘ <r; Accordingly, the similarity of the vectors
y¥" and yJ'-" is defined by the Heaviside Function. But, in the
fuzzy entropy, a family of exponential function is employed
as the fuzzy function to calculate the similarity between the
two vectors. That is,

Dy = u(dyf,n,r) = exp(=(ip)" /) 3)

For the vector y", all the similarities of its neighboring vectors
can be averaged as the following formula,

1 N—m
el D DR @
And define a function as
1 N—m
m _ m
" )= o3 ) &)

Repeat the above procedure, then we get ¢"+! (n, r) as

N—m—1
T Aen ©
The fuzzy entropy value of the original time series with the
data length N can be estimated statistically as

m+1
FuzzyEn X, m.n. ) = —In & 1) %)
@™ (n, 1)
In order to quantify the complexity in different time scales,
the multiscale entropy (MSE) algorithm have been developed
in the literature [16]. A coarse-graining procedure is used
to extract the subsequence of the original time series in dif-
ferent time scales. To obtain the coarse-grained time series,
the original data X = [x1,xp,- -, X, --- ,xn] is separated
into segments of length v and the data points are averaged
in each segment. Each element z7 of the coarse-grained time
series z* is defined according to the formula as below.

1 T
1 Z} ' .
G =7 2o 1SIEN/T ®

The multiscale analysis was introduced to the fuzzy entropy
to produce the conception of the multiscale fuzzy entropy
(MFE) [19]. However, from the formula (8), it can be seen
that the coarse-grained time series z* is greatly shorten with
the scale factor t increasing. Therefore, for short-term time
series, both the MSE and MFE could cause inaccurate and
even undefined entropy values.

It is worthwhile noting that a refined composite multiscale
fuzzy entropy (RCMFE) has been developed as an improved

" (n,r) =
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multiscale fuzzy entropy algorithm recently. The RCMFE uti-
lizes different start points to produce different coarse-grained
time series in the same scale and obtain the final results
by averaging the entropy values [20]. Please refer to the
literatures [20], [21] for the details. The relevant research
have shown that RCMFE is more reliable than MFE tech-
nique and has widely used in varying fields [12], [21], [34].
However, the shorten-data problem still exists unavoidably in
the procedure. As aresult, to address the issue of the MFE and
RCMEFE, a moving-average based multiscale fuzzy entropy
(MA_MEFE) algorithm is proposed as below.

B. MOVING-AVERAGE BASED MULTISCALE
FUZZY ENTROPY
In this paragraph, moving-average based multiscale fuzzy
entropy (MA_MFE) algorithm is proposed, including the
following steps.

Step 1: Conduct coarse-graining procedure using moving-
average algorithm at a scale factor t. A coarse-grained
time series at a scale factor t can be written as z' =

[er(i =1,2,---,N—1t+4+1¢, which can be constructed
according to the following Equation (9). And the schematic
illustration of the coarse-graining procedure based on
moving- average is given in Fig. 1.
- 1 i+7—1 .
G ==-), . Vi k=j=sN-1+]1 9
T iy

Step 2: For a defined scale factor t, embedding dimension
m and tolerant r,@?'(n, r) and (p’r”“'l(n, r)| are calculated for
each of the moving-average time series Z® according to

Equation (5)-(6).

Scale 2
Vi Y2 s Vs Yio Vin Vi
x LR ¢ v
z 4 % Z 4 z Z =
2
Scale 3
1 2 Vs Vi Vs Vi YVin Vi
M
2 . z z z 2= Vit Vint Vi

FIGURE 1. Schematic illustration of the coarse-graining procedure based
on moving- average algorithm.

Step 3: Thus the MA_MFE values can be obtained as

gyt n, r)
P (n,r)
From the description above, both the MFE and the RCMFE
employ non-lapping windows to construct the template vec-
tors, while the MA_MFE method uses lapping windows to
acquire new coarse-graining time series. Thus, the template

vectors used in the MA_MFE algorithm are much more
than ones in the MFE and the RCMFE so that the yielding

MA_MFE (X, t,m,n,r) = —1In (10)
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FIGURE 2. Entropy- based analysis of simulated signals under different scale factors. (a) Mean of
analysis results for 200 white noise. (b) Standard deviation of analysis results for 200 white noise.
(c) Mean of analysis results for 200 1/f noise. (d) Standard deviation of analysis results for 200 1/f

noise.

probability of undefined entropy would greatly decreased
even in the case of big scale factors.

In this paragraph, the MA_MFE will be compared with
the MSE, the MFE and the RCMFE to verify its advantages.
According to the definition of various multiscale entropy,
their calculation are commonly related to the length N of a
time series, embedding dimension m, similarity tolerance r
and gradient n. Generally speaking, the bigger m is, the richer
the information obtained from the time series would be. But,
while adopting a bigger m, a bigger data length N would be
required. Generally speaking, N = 10 — 30™. In order to be
fair for comparison in this paper, the embedding dimension
is set m = 2. Similarity tolerance r represents the bound-
ary width of comparison window and mainly controls the
similarity of template matching. Hence similarity tolerance
r directly involves in the accessibility of templates matching
and the accuracy of the statistical information in the calculat-
ing process. Too large r would make matching more difficult,
but too small r could make the estimated value sensitive to
noise and become inaccurate. In order to obtain better effect,
it is usually set » = 0.15SD (SD is standard deviation of
the analyzed time series). Regarding to gradient n, detailed
information will be lost more as n rises up; therefore, a small
n=2 is set. In the end, considering a fact that there is a limited
data length N in the engineering practice, the maximum scale
is set by Tmax = 20. In summary, the parameters are set
m=2,r =0.155D, n = 2, t,4x = 20.
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The white noise and 1/f noise with different length N
ranged from N =500 to N =3500 at the interval of
500 as two synthetic noise signals are represented to eval-
uate the advantages of the proposed MA_MFE method.
In this simulation analysis, 200 independent noise sam-
ples are taken to compare four multiscale entropy-based
feature extraction techniques—-MSE, MFE, RCMFE and
MA_MEFE.

The entropy curves of white noise and 1/f noise are shown
in Fig. 2. The MSE curve of white noise decreases with the
scale factors increasing whereas those of 1/f noise remains
constant [17], which can be seen in Fig. 2. As mentioned
above, fuzzy entropy algorithm is the improvement of sample
entropy, so it can be found that the same trend as MSE value
is presented for the results of MFE, RCMFE and MA_MFE.
In the meantime, the means and standard deviations of the
two synthetic noise signals are given in Table 1 and 2,
respectively. Moreover, whatever kind of noise signals is
used, it can be observed that the MA_MFE has the smallest
standard deviations (SDs), which indicates that its results
are the most reliable. In addition, for 1/f noise, the MSE
method causes undefined entropy values when the data length
is smaller than 1500, whereas the MFE and the RCMFE
can still achieve reliable entropy values, especially using the
MA_MFE method. In the end column of Table 1, the SDs of
mean values using the MA_MFE method are smaller in both
cases, which shows the MA_MFE method is robust to the data
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TABLE 1. Mean of analysis results at = 20 obtained by different algorithms with various data length N.

Method Data length N Std
500 1000 1500 2000 2500 3000 3500 (with N)
MSE 1.0887 1.0330 1.0306 1.0204 1.0113 1.0139 1.0158 0.0269
White MFE 0.2344 0.2406 0.2406 0.2394 0.2394 0.2381 0.2366 0.0023
noise RCMFE 0.3990 0.4047 0.4048 0.4040 0.4011 0.4051 0.3992 0.0027
MA_MFE 0.0796 0.0753 0.0742 0.0732 0.0729 0.0723 0.0723 0.0026
MSE w * pAe 1.9224 1.9153 1.9037 1.8964 w
V3 MFE 0.8756 0.8211 0.8016 0.8020 0.7862 0.7896 0.7834 0.0322
noise  RCMFE 0.2825 0.2304 0.2195 0.2098 0.2045 0.2006 0.1951 0.0299
MA_MFE 0.1097 0.0985 0.0947 0.0930 0.0912 0.0907 0.0892 0.0071
Note: ¥ refers to undefined value .
TABLE 2. Table 2 SDs of analysis results at - = 20 obtained by different algorithms with various data length N.
Data length
Method 500 1000 1500 2000 2500 3000 3500
MSE 0.3319 0.1621 0.1151 0.0880 0.0786 0.0764 0.0679
MFE 0.0589 0.0422 0.0319 0.0265 0.0246 0.0234 0.0229
White noise
RCMFE 0.0759 0.0506 0.0376 0.0324 0.0276 0.0267 0.0238
MA_MFE 0.0051 0.0038 0.0033 0.0025 0.0023 0.0022 0.0021
MSE Y * * 0.2752 0.2431 0.1936 0.1710
MFE 0.1604 0.1091 0.0871 0.0689 0.0638 0.0588 0.0551
1/f noise
RCMFE 0.0906 0.0612 0.0565 0.0455 0.0468 0.0428 0.0421
MA_MFE 0.0118 0.0098 0.0082 0.0075 0.0070 0.0067 0.0068
Note: v refers to undefined value.
length N. Therefore, the MA_MFE method is suitable for the average of the experiments
short-term complex signals like 1/f noise signal. 1
10 =S [rro+1;0 (12)
T 2Ne eizt L i

C. PARTLY ENSEMBLE LOCAL CHARATERISTIC-

SCALE DECOMPOSITION

In order to improve LCD method, following the main idea
of CEEMD, the literatures [31], [32] proposed a new noise
assisted data analysis method, termed as partly ensemble
local characteristic-scale decomposition, whose procedure is
summarized as follows.

Step 1: Add a pair of noises with opposite signs,
whose amplitudes are o to a raw signal S(t). Generally,
a(t) =0.05kSD, k = 1,2,3,---,8, SD is the standard
deviate of the raw signal s(¢)

SH) = St) +a x ni(t) (11a)
ST (@) = S@t) —a x ni(t) (11b)
i=1,2,---, Neindicates the number of noise pairs, n;(f) is

the noise to add.
Step 2: Starting with j = 1, perform LCD decomposition

on Sf () and S; (¢) respectively to obtain a series of {Il;r (t)}

and {Ilj_ (t)}, and [;(t) can be obtained by integrating the
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Step 3: Calculate the permutation entropy ( PE ) value E,; of
Ii(t) according to the literature [14], and check if E,; > 6
(6o is the threshold value of PE, generally , 6y is set to
[0.4,0.6]). If the answer is ‘yes’, then [;(¢) is high frequency
intermittent signal or noise, then, let j = j + 2 and return and
repeat Step 2 until £,; < 6.

Step 4: Separate the first (p — 1) components from the raw
signal S(¢) as

-1
R() = S@) =Y () (13)

Step 5: Perform LCD decomposition on R(t), then acquire N
intrinsic scale components ( ISCs) and a residual component
r(t), written as

S(t) = Zi_vzl ISC; + r(t) (14)

PELCD adds white noise in pair to reduce noise residue
and ensure decomposition completeness. At the same time,
it avoids unnecessary ensemble averaging by using PE to
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detect high frequency intermittent signal or noise in time.
It is noted that the key point of PELCD is to detect the high
frequency intermittent signal or noise, which greatly influ-
ence the decomposition result. PE is used to check dynamic
changes of the time series.The relevant theory regarding
to PE can be referred in [32]. Once those high frequency
intermittent signal or noise is eliminated, the normal LCD is
applied to decomposition the rest signal. which will not only
constrain mode-mixing to increase the analysis accuracy but
also improve the computing speed.

D. PROPOSED FEATURE EXTRACTION METHOD

Although PELCD is excellent signal processing technique,
some irrelevant ISCs are inevitably caused by background
noise or decomposition itself. Therefore, it is essential to
select the fault-relevant ISCs, which contain rich fault infor-
mation. A selection method for relevant intrinsic mode func-
tions (IMFs) using spearman correlation coefficient was
proposed in the literature [35]. Recently, ZHENG et al pro-
posed a quantified IMFs selection method based on complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and achieved a promising results [36]. How-
ever, CEEMDAN needs a large amount of computation cost.
Inspired by those literatures, a self-adaptive ISCs selection
technique is proposed in this paper. The details are described
as below.

Step 1: The false ISCs are eliminated. The product of the
energy density of mode component and its average period is
constant for a white noise signal [25], [37]. Consequently,
the product can be used to identify whether a ISC is a noise
signal. The product of the energy density of the jth ISC and
its average period should be computed as

Pj=Ej xTj (15)

where E; = ﬁ Zi\lzl [Aj(i)]2 Ty = 20—131, Oj is the number of
extra points including in the ISC and N is the length of the
ISC. Then, a coefficient RP; can be obtained, shown as,

1 NN
Pj_7§i 1 Pi
1N
]_'Zi_—lpi

If RP; > 1, then the first (j— 1) ISCs can be regarded as false
components, whose products of the energy density of mode
components and their average periods are constant. So they
should be removed together with the residue r(¢).

Step 2: Correlation coefficients between the rest ISCs and
the original signal are calculated and The ISCs with high
correlation coefficient are selected out. Correlation analysis
is a powerful tool to measure the correlation degree between
two time series. Considering that Spearman Correlation Coef-
ficient is superior to the commonly-used Pearson correlation
coefficient, it is used as a criterion to discriminate the ISCs,
which carry more relevant information with the original sig-
nal. For two variables X = {x;} and Y = {y;} with the data
length N, they can be converted into ranks g(x;) and g(y;)

RP; = (16)
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respectively, then the Spearman Correlation Coefficient is
defined as [35]:

6 d?

CONZ(N2 1) (17

ry =1
where d; = g(x;) — g(vi).
The greater the correlation coefficient is, the more relevant
the two variables are. Hence, if the correlation coefficient of
an ISC is high, then the ISC is highly relevant with the original
signal. If the is low, then the ISCs is a false ISC, produced
by signal decomposition procedure or by background noise.
In the end, m ISCs with high correlation coefficient can be
obtain.
Step 3: The selected m ISCs are reconstructed into a new
signal, written as,

S(t) = Z:"zl ISC; (18)

Step 4: In the end, the inherent MA_MFEs are extracted
according to Equation (10) from the reconstructed signal as
features prepared for intelligent recognition.

IIl. PROPOSED FAULT DETECTION SCHEME

The vibration signals generated by the local faults of machin-
ery can be easily converted to electrical signal and collected
by sensors with a large bandwidth and contain extremely
rich fault information. The intrinsic oscillations included in
the vibration signals will change under the working states,
representing the non-linear and non-stationary characteristics
and the energy distribution variety of the different frequency
components in the spectrum. In the other words, the com-
plexity of time series will greatly vary with different working
states.

The vibration signals contain unavoidably background
noises and interference signals. The non-local means (NLM)
denoising method has become an increasing popular
approach in imagine denoising area due to its excel-
lent performance for Gaussian additive and multiplicative
noise [38], [39]. The NLM method can be also utilized to
the vibration signals. Hence, the NLM technique is served as
a preprocessing technique in this work. At the same time, the
vibration signals include also superimposed trend oscillations
which could influence the standard deviation of the estimated
values. Therefore, following the NLM denoising, in order to
eliminate the superimposed trend oscillations, the original
vibration signal x(#) can be decomposed into several ISCs
and a residue r(¢) by the PELCD technique. Next, m ISCs
with higher spearman correlation coefficients will be selected
out to reconstruct into a new signal y(#) as Equation (18).
The superimposed trend oscillations are eliminated after
reconstructing and the new signal only contains the inherent
ISCs. So the inherent MA_MFEs can be extracted from y(t)
to valuate the complexity as fault features.

When a large scale factor is applied, the dimension of
features is high. However, some features are not irrelevant
for classes and slow down the computing speed or calcula-
tion accuracy. If these irrelevant features are removed and
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TABLE 3. Details of datasets for rolling bearing experiment.

Class Fault size /in. Fault severity Number of sample Data length Class label

0.007 slight 55 2048 1-IRF1

Inner race fault 0.014 moderate 55 2048 2-IRF2
0.021 severe 55 2048 3-IRF3
0.007 slight 55 2048 4-BF1
Ball fault 0.014 moderate 55 2048 5-BF2
0.021 severe 55 2048 6-BF3

0.007 slight 55 2048 7-ORF1

Outer race fault 0.014 moderate 55 2048 8-ORF2
0.0021 severe 55 2048 9-ORF3

Normal 55 2048 10-Norm

the information for effective class recognition is presented
with fewer features, classifier would have less computa-
tional expense and higher accuracy. Therefore, it is vital
to obtain the optimal features as input variables. Here, the
ReliefF [42] method is employed to obtain the optimal fea-
tures according to their importance values. These optimal
features are used to train classifiers. Once the classifiers are
achieved, the fault features from testing samples will be input
into the trained classifier and produce output for detection
results. The flowchart of the proposed fault detection scheme
is shown in Fig. 3.

<Vibration signals collection)

v
( Training samples ) ( Testing samples )

Signal processing and
inherent MA-MFEs
extracting and selecting

Denoising via NLM
technique

e - A\
Decompose into

several ISCs by
PELCD
J
v v
N
Reconstruct the
relevant ISCs into a
new signal

J
v

Extract inherent MA-

MFEs J

A
v ( Detection results )

Select the optimal
inherent MA-MFEs

v

Train classifiers

FIGURE 3. Flowchart of proposed fault detection scheme.

Trained classifiers
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In the following section, two fault diagnosis experiments
are made. One is for rolling bearings, which is one of the
most key components in rotating machines and its failure is
one of the most frequent reasons for machine breakdown. The
other is for a piston pump which is a typical reciprocating
machinery and plays vital role in the hydraulic system of
some large-scale equipments. Moreover, in the second exper-
iment, multi-fault diagnosis will be completed

IV. APPLICATION TO FAULT DETECTION

A. EXPERIMENT 1

In this section, the experimental datasets shared by
Case Western Reverse Bearing Data Center [40] are used to
verify the fault detection scheme proposed in Section III.
The single point faults were set to the driven-end bearings
with fault diameters of 0.007 to 0.021 in. The sampling
frequency is 12kHz. The datasets include inner race fault
(IRF), ball fault (BF), outer race fault (ORF) and normal state.
The motor loads is 2hp, the shaft rotation speed is
fr = 1750rpm. Ten classes of vibration signals are obtained.
In this paper, the datasets are divide into 55 segments as
samples with the length N = 2048. The details of datasets
are given in the literature [41] and listed in Table 3.

In order to show the necessity of denoising procedure
envelop spectrum analysis is made for inner race fault. The
left top figure of Fig. 4 shows that the vibration signal with
inner race fault contains plenty of background noise, and the
right top figure is denoised signal after applying the NLM
approach. According to the theoretical calculation, the fault
frequency for inner race is f; = 5.415f, [41], equaling
to 158Hz. As shown in the bottom figures, though the fault
frequency can be found in the left bottom figure, more than
frequency components exist in the envelop spectrum graphic
of the original signal and confuse the operator. Whereas,
as seen in the right bottom figure, the fault frequency f; and 2f;
can outstand more clearly in the envelop spectrum graphic
of the denoised signal. Subsequently, each signal is decom-
posed into several ISCs and the correlation coefficients were
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TABLE 4. Comparison results for intelligent fault diagnosis on roller bearings.

Feature Number multiSVM VPMCD
extraction of test Optimal Features o o . o o .
method samples Mean (%)  Std(%) Time cost (s) Mean (%)  Std (%) Time cost (s)
MA_MFE 450 Fio F11 Fo Fs Fip Fy Fy 100.00 0 0.28 100.00 0 0.01
RCMFER! 450 F; F; F3 Fg Fs F, F; Fg Fyg 96.52 0.22 0.45 98.52 0.05 0.06
MFE!! 450 F, F, Fs Fy F3F¢ F; Fg Fy 96.41 0.34 0.70 97.09 0.12 0.12
» original signal 04 denoised signal decrease correspondingly. The main reason can be explained
' that the periodic impact characteristics generated by the
o | o 02 faults in the vibration signals become more intense with
° ° . . . . . .
N 2 5 the fault deepening and the self-similarity is more evident.
§ E The vibration signals present more regularity and smaller
k 02 entropy values, which are consistent with the dynamics of
2 04 rolling bearings.
0 0.05 0.1 0 0.05 0.1 In thi . ¢ th 10 ol 455 1
Time(s) Time(s) ~ In this experiment, there are classes an samples
envelope spectrum of original signal envelop spectrum of denoised signal in each class as described in Table 3. These samples are
randomly divided to 10 x 10 = 100 samples for training and
0.3 10 x 45 = 450 samples for test. After feature extraction by
(0] () o e, .
El f, 3 7 the MA_MFE method, initial fault features can be obtained.
3 0.2 3 0.05 ° .. .. .
g g The training sample matrix is noted as Trainjpox19, and the
< 01 21, < 21, test matrix as Test4s50x19. These features under different scale
o MJL o factors are able to discover some fault information in different
0 500 1000 0 500 1000

Frequency / Hz Frequency / Hz

FIGURE 4. Vibration signal with inner race fault and its envelop spectrum.

computed and the ISCs with the higher correlation coeffi-
cients are built into a new signal in which superimposed trend
oscillations are eliminated. Lastly, the inherent MA_MFEs
of the signals are extracted as fault features. According the
length of dataset, the scale factor is set to maximum 20 here.
In order to make a comparison, RCMFEs are computed at
the same time. In this experiment, 550 samples (55 samples
of each class) are used and the results of inherent MA_MFE
and RCMFE under ten different states are demonstrated in
Fig. 5, from which some conclusions can be obtained. First of
all, the inherent MA_MFE values are almost monotonically
decreasing with the scale factor growing, which is consistent
with the definition of multiscale entropy and the nature of the
vibration signals of rolling bearing. However, the RCMFE
values do not meet the basic law. Hence, the inherent
MA_MFE method has more physical sense than the RCMFE
technique and be more suitable to analysis the dynamic
characteristics of rolling bearings. Moreover, from the obser-
vation to the inherent MA_MEFE curves, it can be found that
the inherent MA_MFE values from normal state are much
larger than those from the normal state so that the faulty
states are easily distinguished out. This can be explained
by the fact that the self-similarity of the vibration signals
increase when the local faults occur, which cause the entropy
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views. However, some features are less relevant with the
fault type and are likely to make computation time increase,
even become inaccurate. Here, the ReliefF technique is
employed to reach the optimal features to boost the per-
formance of classifiers. For the training matrix Trainjggx19
obtained above, the ReliefF computes the importance values
of all features and sorts them from low to high. Seven fea-
tures with higher importance values are facilitated as the
optimal features. They were Fyg, F11,Fo, Fs, Fi2, F» and F;
(F; stands for the MA_MFE value under the scale factor
T = i), which are more sensitive to reflect the fault infor-
mation from vibration signals. Now, an intelligent classifier
is desired to achieve fault detection. Here, two kinds of class
discrimination methods are employed. One is widely-used
multiclass support vector machine (multiSVM) in the case of
small samples. In this work, one-vs-all technique is utilized
to extend the basic SVM with linear kernel to multiSVM.
Besides, an improved variable predictive model based class
discrimination (VPMCD) is served as the other multiclass
technique [33]. Table 4 shows the results of intelligent fault
detection and comparison.

From Table 4, the proposed multi-fault diagnosis model
presents the best performance—the highest detection accu-
racy, the smallest standard deviate (Std) and the lowest time
consumption. When using the MA_MFEs as input variables,
both the multiSVM classifier and the improved VPMCD
classifier have achieved 100% fault detection rate, more
importantly, and the time cost is greatly short, which is vital
for online fault detection. In comparison, the Std of both
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FIGURE 5. Results of (a) MA_MFE and (b) RCMFE under ten different states.
@ ®)

the RCMFE and the MFE are bigger, and the time costs
are longer, especially when using the multiSVM classifier.
On the other hand, from the comparison between multiSVM
and VPMCD, the latter is proved faster and more robust,
which indicates that the latter is more suitable to address the
classification problem with small samples.

B. EXPERIMENT 2

In Experiment 2, the proposed scheme is applied to real-
ize incipient abrasion detection for a piston pump. The
experimental datasets are collected from axial piston pump
A11VLO190 with nine pistons. The speed of driving shaft
was 1600 RPM and the pressure of the main hydraulic circuit
was kept at 10MPa. The accelerometer was installed to the
axial piston pump with magnetic base to collect the vibration
signal using NI9233 data acquisition card with a sampling
frequency of 10 kHz. The axial piston pump was tested under
six different conditions; They are noted as class 1 to class 6:
class 1- normal condition (Normal), class 2—one piston abra-
sion (OPA), class 3—swash pate abrasion (SPA), class 4—valve
plate abrasion (VPA), class 5-both swash plate and valve
plate abrasion (BSVA), class 6-counter-position pistons abra-
sion (CPPA). There are three single fault types and two com-
pound fault types. The vibration signals collected for different
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FIGURE 6. Time domain waveform. (a) Normal condition. (b) OPA. (c) SPA.
(d) VPA. (e)BSVA. (f) CPPA.

condition are given in Fig.6. In this experiment, we collected
55 raw vibration signals under each condition and 330 raw
vibration signals were collected in all. The length of each
vibration signal is N = 2500. The samples are divided into
two groups, one group is used for training and the other for
test.

Similarly, after the NLM denoising, the signal is decom-
posed into several ISCs by PELCD, partly shown in Fig. 7.
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TABLE 5. Comparison results for fault diagnosis on a piston pump.

Feature multiSVM VPMCD
tracti Numb f test 1 . .
;Teiﬁgéon umber oL test sampres Mean (%)  Std (%) Time cost (s) Mean (%) Std (%) Time cost (s)
MA MFE 270 100.00 3.36 100.00 0 0.02
RCMFER! 270 99.26 4.45 99.67 0.62 0.05
MFE!"! 270 98.93 4.60 93.70 1.13 0.05
0.2 0.2 1.4
= —%— Normal
20 20 —5— OPA
0.2 0.2 1.2r —HB—VPA
0 005 01 015 02 025 0 005 01 015 02 025 SPA
0.1 0.2
g S —H— BSVA
20 g o N\ —&— CPPA
-0.1 0.2 o
0 005 01 015 02 025 005 01 015 02 0.25 2 08h
0.1 0.1 >
-0.1 0.1 =
0 005 01 015 02 025 0 005 01 015 02 025
0.05 0.05
0.4+
-0.05 0.05 0.2+
0 005 01 015 02 025 005 01 015 02 025
T T's
FIGURE 7. PELCD results of vibration signal under OPA. 00
Scale factor
(@) FIGURE 9. Inherent MA_MFE values of vibration signals for a piston
0.5 pump with abrasion faults.
T o0h ‘,‘
05 ‘ ‘ ‘ ‘ 0.45 .
0 0.05 0.1 0.15 0.2 0.25
(b)
0.5
0.4 1
<0 |
-0.5 I I I I
0 0.05 0.1 0.15 0.2 0.25

T/s

FIGURE 8. Waveforms of a vibration signal under OPA (a) original signal
(b) reconstructed signal.

Then, the correlation coefficients between the ISCs and the
denoised signal are computed. In the experiment, the max-
imum correlation coefficient is 0.75 and the threshold is
set to one tenth of the maximum correlation coefficient,
that is 0.075. The ISCs with higher correlation coefficient
are used to reconstruct into a new signal, shown in Fig. 8§,
from which it can be found that superimposed trend oscilla-
tions are reduced. In the end, the fault features are acquired
by the MA_MFE method with the maximum scale factor
Tmax = 20. Fig. 9 shows the MA_MFE values. the mul-
tiSVM and the improved VPMCD are employed to make
the multi-fault detection again. The first four features are
selected out using the ReliefF technique, which are Fg, Fi3,
F7, Fi9, shown in Fig.10 as optimal features. The comparison
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FIGURE 10. Feature importance weights ranked by ReliefF method.

results are given in Table 5. The detection rates of both mul-
tiSVM and VPMCD classifiers are 100%. Simultaneously,
the cost time for VPMCD training and classification is 0.02s.
Therefore, the results show that the proposed model is suit-
able for real-time online fault detection again.
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V. CONCLUSION

Multiscale entropy is a powerful tool to analysis com-
plex time series. However, it is difficult to characterize the
short-term datasets using the existing algorithms. Hence,
an improved multiscale fuzzy entropy MA_MFE is devel-
oped. In the technique, the moving-average algorithm is
utilized to obtain the coarse-grains for short-term complex
time series. The results from simulation analysis show that
MA_MEFE is more accurate and robust than the existing
MEFE and RCMFE techniques. Meantime, combining the new
data-driven signal processing method — partly ensemble local
characteristic-scale decomposition, inherent MA_MFE fea-
ture extraction method is proposed. Furthermore, a novel fault
detection scheme has been developed for mechanical system.
The comparison results on roller bearings show that the pro-
posed method works more effectively, reliably and quickly.
In addition, the proposed model can also be successfully
employed to identify the incipient multiple abrasion of a pis-
ton pump, which shows that the proposed method can achieve
incipient multi-fault diagnosis online even if only short-term
samples and less training samples are collected. Our fur-
ther work will focus on how to solve real-time online fault
diagnosis for large-scale machinery under variable working
conditions using the proposed method.
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