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ABSTRACT The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented
Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for
using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low
precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme
referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of
the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical
approximation approach to get the estimation values of coefficient matrix based on least weighted squares.
Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity
Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error
boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the
uncertain system and practical experiments in the INS/GPS integrated navigation.

INDEX TERMS Fitting transformation, fitting H-infinity Kalman filter, stability analysis, uncertain system.

I. INTRODUCTION
The state estimation is an important research topic in many
fields such as signal processing, target tracking, system iden-
tification, navigation and so on [1]–[3], [5], [6]. A large num-
ber of filtering approaches have been developed to address the
problems of nonlinear state estimation [4].

From the perspective of the continuous-time systems,
Taghvaei et al. introduced various modern extensions of
the Kalman filter for the continuous-time nonlinear filter-
ing problem [5]. Chen et al. [6], [7] designed the novel
distributed formation controllers with estimating unknown
parameters for the cases of the bidirectional or the directed
strongly connected topology. For uncertain targets, redundant
relative measurements are used to improve the robustness
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of the formation circumnavigation framework. This kind of
estimation method makes high precision due to no rounding
error, and it can be used for the continuous-time systems (i.e.
in analog circuits). Meanwhile, generally speaking, it needs
to be discretized in the engineering application generally.

From the perspective of the discrete-time system, nonlinear
Kalman filters are commonly used such as the extended
Kalman filter (EKF) [8], [9], unscented Kalman filter
(UKF) [10], [11] and cubatureKalman filter (CKF) [12], [13].
This kind of filtering is assigned to the real-time recursion
filtering, which does not need to store large amounts of mea-
surement information in chronological order beforehand as
the continuous-time filtering.Meanwhile, these filters require
the prior statistics of random interference signals such as the
process and measurement noises, which must be subject to
the Gaussian distribution [14]. However, in practice, it is
ubiquitous for a system to involve uncertainty, unknown noise
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statistics, non-Gaussian noise or all of them [15]. If there is
uncertainty involved in the dynamic system model, the above
filters will lose the optimality, leading to deteriorated or
diverged solutions [16].

Robust filtering methods were reported to solve the per-
formance degradation involved in nonlinear Kalman-based
filters [1], [17], [18]. The H∞ filter with H∞ norm as the
performance standard is a robust filter for a variety of system
uncertainties [4], [19]. It treats system modeling errors or
uncertainties in the system as unknown but bounded noises,
which is more flexible than the prior condition of noise statis-
tics in Kalman-based filters. Different from Kalman-based
filters which minimize the variance of estimation errors [4],
the H∞ filter minimizes the effect of the worst-case dis-
turbances on system state estimate. However, the H∞ fil-
ter is designed for linear systems, unsuitable for nonlinear
systems [20].

Various improved H∞ filters were reported to address
nonlinear filtering problems [21]–[24]. The extended H∞
Kalman filter (EHKF) is a commonly used method for non-
linear systems [25], [26]. It is an approximation filter using
the linear Taylor (LT) approximation as the original nonlin-
ear function. It is fast and easy to implement [26]. How-
ever, the using of LT causes a model error, which makes
EHKF unsuitable for the cases that the nonlinear model
is not derivable or the linearizable degree of a system is
strong [20], [27]–[29]. Further, since LT is an approxima-
tion at one point, the using in EHKF to replace the entire
random distribution area ignores the randomness of the sys-
tem state, which affects the filtering accuracy. To over-
come the EHKF problems, unscented transformation (UT)
and spherical-radial cubature rules are applied to the struc-
ture of EHKF, leading to the unscented H∞ Kalman fil-
ter (UHKF) [29]–[31] and cubature H∞ Kalman filter
(CHKF) [32], [33]. UHKF approximates the Gaussian inte-
grals encountered in nonlinear filtering by a set of sample
points determined by UT [30], while CHKF by a set of sam-
ple points determined according to spherical-radial cubature
rules [33]. Both UHKF and CHKF can achieve not only high
accuracy but also robustness under the disturbance of system
error or uncertain noise. However, their improvements are
achieved at the cost of expensive computations, especially for
high-dimensional problems.

The fitting transformation (FT) [34] is a new numerical
approximation method. According to the state distribution
(typified by sample points), this method approximates a
nonlinear system function by minimizing the error between
the nonlinear function and a multivariate fitting function in
the sense of weighted least squares (WLS). It has higher
accuracy than LT approximation, especially for systems
with strong nonlinearity. Similar to UT and spherical-radial
cubature rules, FT also avoids the complex computation
of the Jacobian matrix. Moreover, different from UT and
spherical-radial cubature rules, FT provides a numerical FT
matrix and thus it can be used for nonlinear systems without
an analytical expression. Further, the principle of FT is also

much simpler than those of UT and spherical-radial cubature
rules. Therefore, FT provides a promising solution to address
the EHKF problems due to the use of LT approximation.
However, the incorporation of FT in the structure of EHKF is
a difficult task and the related research has been very limited.
Recently, Xiong et al. studied a linear fitting Kalman filter
by applying FT into the structure of EKF [35]. As it inherits
the basic theory of Kalman estimation solution, this method
still suffers from the problems of Kalman-based filters. The
fitting error is not considered in fitting system functions.
Meanwhile, there is no theoretical proof of the relationship
between FT and UT in [35].

This paper presents a novel fitting H-infinity Kalman
filter (FHKF) for nonlinear filtering based on numerical
approximation with a low computational cost. Instead of LT,
this filter applies FT to the structure of EHKF. Specifically,
the main contributions of this paper are as following:

1) The novel FT is presented based on the improvement of
the original FT in [34]. According to the pre-obtained
sample sets, the new fitting function and fitting matri-
ces are created by FT even without the analytical
expression. Meanwhile, the relationship between FT
and UT is established by theoretical analysis, which
rigorously derives that FT has a similar approximation
accuracy as UT. However, it does not need to select the
unknown parameter like UT.

2) FHKF is proposed as a robust estimation approach
based on FT technique with a low computational cost.
It takes into account the minimization of the approxi-
mation error as a posterior distribution function of the
system state. It not only avoids complex computations,
but also provides a numerical Jacobian matrix, and
thus it can also be used for nonlinear systems with-
out an analytical expression. The proposed FHKF is
also robust to system uncertainties due to the use of
the upper bound. Meanwhile, the attenuation level γo,
which is used to improve the overall performance in
the estimation process is adaptively estimated in FHKF.
We design an adaptive relevant parameter to ensure
the asymptotic optimality of attenuation level, which
indicates the asymptotically optimal upper bound of
filtering. Moreover, there is no redundant parameter
selection in filtering design.

3) The stability analysis of FHKF is presented as a
theoretical method according to the stochastic sta-
bility lemma. It indicates that the filtering solution
of the proposed method is bounded and stable even
if the attenuation level γo → ∞. Furthermore,
the simulation experiments and comparison analysis
demonstrate the improved performance of the proposed
FHKF.

II. FITTING TRANSFORMATION
The system state x is a column vector of n × 1. According
to linear fitting [34], [35], the state function of the nonlinear
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system can be expressed as

z = g(x) = Ax+ b+ e = Ãx̃+ e (1)

where z is a vector ofm×1,A is a coefficientmatrix ofm×n, b
is a constant vector ofm×1, and e represents the linearization
error. Ã and x̃ are expressed by

Ã =
[
A b

]
m×(n+1) = [ãT1 , ã

T
2 , · · · , ã

T
m]

T (2)

x̃ = [ xT 1 ]T (3)

where Ã is a matrix of m × (n + 1), and x̃ is a vector of
(n+ 1)× 1.

By WLS [34], the linear fitting parameters of g(x) are
determined as

ˆ̃A = argmin
Ã

[g (x)− Ãx̃]TW[∗] (4)

whereW is the positive weighting matrix.
It should be noted that it is difficult to find an analytical

solution to (4). In the following, we shall discuss how to use
FT to solve (4).

Assume that the mean and covariance are x̃00 and P00
for a set of sample points which represents the probability
distribution of x. Weight the set of sample points by

[X̃, W] = sp
[
x̃00,P00

]
(5)

where X̃ =
[
x00 ±

√
P00ξ

11×2n

]
,W = 1

2n I2n, the unit points are

ξ = [
√
nIn,−

√
nIn], and 11×2n represents a 1 × 2n vector

with all elements as 1.
Substituting all sample points X̃ into (1) yields

ZT = X̃T ÃT
+ ET (6)

where

X̃ =
[
x̃1 x̃2 · · · x̃2n

]
(7)

E = [e1, e2, · · · , e2n] = [ẽT1 , ẽ
T
2 , · · · , ẽ

T
m]

T (8)

Z = [f (x̃1), f (x̃2), · · · , f (x̃2n)] = [z̃T1 , z̃
T
2 , · · · , z̃

T
m]

T (9)

and X̃ is the (n+ 1)× 2n matrix consisting of sample points,
E ∈ Rm×2n is the linearization error of all the sample points,
and the j-th column of ZT is

z̃Tj = X̃T
j ã

T
j + ẽ

T
j (10)

where ẽj is a vector related to all the sample points and
j = 1, · · · ,m. Then, the minimization problem described by
(4) can be solved by estimating the parameter ãj to minimize
the error ẽj in terms of WLS

ˆ̃aTj = (X̃W X̃T )−1X̃Wz̃Tj = (X̃X̃T )−1X̃z̃Tj (11)

whereW = diag([w1,w2, · · · ,w2n]).
Finally, estimate the fitting matrix Ã and the fitting error

covariance Pee by WLS

ˆ̃A = [(X̃X̃
T
)−1X̃ZT ]T (12)

Pee = [Z− ˆ̃AX̃ i]W[∗]T (13)

TABLE 1. FT algorithm.

Table 1 shows the detailed algorithm of a novel FT, which is
considering the error in fitting system functions.
Remark 1: Theorem 1 reveals that FT has the same approx-

imation accuracy as UT. The sampling sets {X̃,Z} in FT can
be generated in two different ways. One is that the sampling
set is created by the rules in (5) at each time step based on the
spherical cubature rule with the specific analytical expression
(It is mainly used in this article owing to its simplicity). The
other is that the sampling sets of inputs and outputs are gotten
by multiple training without the analytical expression. It pro-
vides basic thinking of establishing mathematical models of
unknown system. According to the pre-obtained sample sets
and the basic idea of regression, the newfitting dynamic func-
tion and fitting matrices are created by FT even without the
analytical expression and applied to the next robust filtering.
However, the sample set in UT cannot be obtained without the
analytical expression since its criteria are different from FT.
Remark 2: It is the parameter κ selected in advance that

determines the performance of unscented filters [4], [30]. The
best parameter entirely depends on the specific circumstances
of the subject. The inappropriate parameter can cause the
poor performance of filtering [4].Moreover, it is worth noting
that the filtering could be interrupted due to the non-positive
covariance inUT.Nevertheless, there are no such issues in FT,
which does not need the selection of unknown parameters.
Due to no redundant calculation, it can be implemented with
a lower complex computation.
Theorem 1: Consider a nonlinear function z = g(x) with

mean x00 and covariance P00. The accuracy to approximate
g(x) by FT is the same as that by UT.

Proof: The proof is described in Appendix B.

III. FITTING H-INFINITY KALMAN FILTER
Since LT is an approximation at one point and then using it
replace the entire random distribution area. The randomness
of states which affects the filtering precision is ignored in
EHKF. Moreover, the performance of UHKF is related to
the selection of unknown parameters. The filtering is inter-
rupted due to the non-positive covariance in UT. Meanwhile,
the computational complexity is relatively large with the
above redundant computing. The sample-set in UHKF cannot
be obtained without the known analytical expression. Thus,
to address the above issues, FT is designed based on the
idea of regression or fitting that avoids selecting unknown
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parameters. The nonlinear dynamic function is fitted by the
pre-obtained sampling sets even without specific analytical
expression. It can be implemented with a lower complex
computation as well.

However, some difficulties in the design of FHKF present
as follows. i) The selection of sampling number and sample
set. ii) Integrating FT into the structure of nonlinear H-infinity
based filtering to obtain FHKF by considering the covari-
ance Pee of fitting errors. iii) Verifying the estimated error
boundness of the proposed FHKF is work worth considering.
These difficulties can be overcome in this section and the next
section.

A. THE NONLINEAR SYSTEM AND ITS APPROXIMATION
Consider the discrete-time nonlinear dynamic state-space
model {

xk = f (xk−1)+ wk
zk = h(xk )+ vk

(14)

where f (·) and h(·) denote the non-linear process and mea-
surement function; xk ∈ Rn is the n-dimensional state;
zk ∈ Rm is the measurement; wk is the process noise with
non-zero mean and unknown or deterministic variance Qk
as well as bounded energy, i.e.,

∑
∞

k=0w
T
k wk < ∞; and vk

is the measurement noise with non-zero mean and unknown
or deterministic variance Rk as well as bounded energy,
i.e.,

∑
∞

k=0v
T
k vk < ∞. wk and vk are assumed to be uncor-

related.
The estimation error can be written as

1xk , xk − x̂k (15)

Let J (υ) represent the transfer operator to map the unknown
disturbances x0 − x̂0, {wj}kj=0 and {vj}kj=0 to the estimation
error {1xj}kj=0, where x̂0 is the priority estimation of x0, and
x0−x̂0 indicates the unknown estimation error. The nonlinear
H∞filter aims to select an appropriate strategy υ tominimize
1xj.

Define |f ||2S = f TSf , ∀f ∈ Rn, where S is an asymmetric
and positive definite matrix. The standard transfer operator
(i.e., the cost function) of H∞ norm is represented by

Jk= sup
x0,w,v∈l2

∑ k
j=0||1xj||

2
2

||x0 − x̂0||2P−10
+
∑ k

j=0(||wj||
2
Q−1+||vj||

2
R−1)

(16)

where Jk < γ 2
o , γo > 0 is the attenuation level specified by

users, and P0 is the covariance of the state estimation error at
the initial time. Applying FT to (14) yields

xk = 8̂k−1x̂k−1 + ux,k−1 + ex,k−1 + wk−1

=
ˆ̃
8k−1 ˆ̃xk−1 + ex,k−1 + wk−1

zk = Ĥk x̂k/k−1 + uz,k−1 + ez,k−1 + vk

=
ˆ̃Hk ˆ̃xk/k−1 + ez,k−1 + vk

(17)

where ˆ̃xk−1 = [x̂Tk−1, 1]
T ; ˆ̃xk/k−1 = [x̂Tk/k−1, 1]

T ; ux,k−1 and
uz,k−1 are the constant fitting terms of the process and mea-
surement functions; ex,k−1 and ez,k−1 are the fitting errors of

the process function; and ˆ̃8k−1 and
ˆ̃Hk are the fittingmatrices

of f (·) and h(·), which are represented as according to (4)

ˆ̃
8k−1 = argmin

Ã
eTx,k−1Wx,k−1ex,k−1

= arg min
8̃k−1

[f
(
xk−1

)
− 8̃k−1 ˆ̃xk−1]

TWx,k−1[∗]

ˆ̃Hk = argmin
Ã
eTz,k−1Wz,kez,k−1

= argmin
H̃k

[h
(
xk/k−1

)
− H̃k ˆ̃xk/k−1]

TWz,k [∗]

(18)

B. DERIVATION OF FITTING H-INFINITY KALMAN FILTER
Applying FT to the structure of EHKF [25] yields

ˆ̃xk−1 = [x̂Tk−1 1]T (19)

[ ˆ̃8k−1,Pk−1,xe]← FT(f (·), ˆ̃xk−1,Pk−1) (20)

ˆ̃xk/k−1 =
ˆ̃
8k−1 ˆ̃xk−1 (21)

Pk/k−1 = 8̂k−1Pk−18̂
T
k−1 +Qk,o (22)

[Ĥk ,Pk/k−1,ze]← FT(h(·), ˆ̃xk/k−1,Pk/k−1) (23)

Kk = Pk/k−1ĤT
k (Rk,o + ĤkPk/k−1Ĥ

T
k )
−1 (24)

x̂k = ˆ̃xk/k−1 +Kk (zk − Ĥk x̂k/k−1) (25)

Pk = Pk/k−1 − Pk/k−1[−ITn ĤT
k ]M

−1
k [−ITn ĤT

k ]
TPk/k−1

(26)

Mk =

[
−γ−2o In 0

0 R−1k,o

]
+ [−ITn ĤT

k ]
TPk/k−1[−ITn ĤT

k ]

(27)

where Pk−1,xe is the covariance of ex,k−1; 8̂k−1 is the numer-

ical Jacobian matrix of f (·), which is the fitting matrix ˆ̃8k−1
without the last column; Pk/k−1,ze is the covariance of ez,k−1;
Kk is the gain matrix of the state vector;Qk,o = Pk−1,xe+Qk
and Rk,o = Rk + Pk/k−1,ze. By the matrix inversion lemma,
(26) can be further written as

P−1k = P−1k/k−1 + ĤT
k R
−1
k,oĤk − γ

−2
o In > 0 (28)

where γo is the attenuation level to adjust the filtering robust-
ness and accuracy and is determined according to (16); and
Ĥk is the numerical Jacobian matrix of h(·), which is the
fitting matrix Ĥk without the last column.

The attenuation level γo has an important influence on the
filtering performance. For the traditional H∞ filter, it is a
known value which is generally determined by the experience
of engineering practices. To solve above problem, adaptive
adjustment of γo is presented for improving the filtering
performance. According to lemma in [22], the existence con-
dition (28) can be obtained as

γ 2
o > λ((P−1k/k−1 + ĤT

k R
−1
k,oĤk )−1) (29)

VOLUME 8, 2020 10557



J. Xia et al.: Novel FHKF for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation

where λ(A) denotes the maximum eigenvalue of A. Accord-
ing to (22), it can be written as

γ̂o,k = ηk

√
λ((P−1k/k−1 + ĤT

k R
−1
k,oĤk )

−1
) (30)

where γ̂o,k is the local minimum for the attenuation level γo
and ηk = 1+ η−1k−1(η0 > 0).
Remark 3: The attenuation level γ 2

o is the upper bound
of H-infinity norm of estimation error, and its local mini-
mum at time k is γ̂o,k . The smaller fixed-γo causes insta-
bility and unavailability of filtering. In contrast, the larger
fixed γo could cause poor robust, which takes large estima-
tion errors. Its adaptive adjustment is aimed to estimate the
optimal upper at each instant time to improve the robust-
ness, stability, and availability. However, there is no absolute
optimal upper bound for H-infinity based filters by (30).
Therefore, we design an adaptive relevant parameter ηk to
ensure the asymptotic optimality of γ̂o,k , which tends to
the optimal upper bound asymptotically. Meanwhile, it is
designed by decreasing adaptively to achieve the absolute
convergence of local attenuation level, which promises better
performance. The related parameter ηk is decreased over time
to increase the robustness and availability of filtering process.
Thus, the min-max criteria is used by the proposed filtering
to bound these uncertainties without online tuning of them.

C. ALGORITHM IMPLEMENTATION
The proposed FHKF includes the following steps:
Step 1: Initialize the state and its covariance: x̂0 = x0 and

P0 = εIn, where In is the n-dimensional unit matrix.
Step 2: Update the state parameters by (19)-(20) based on

FT.
Step 3: Prediction update: update the prediction mean
ˆ̃xk/k−1 and the prediction covariance Pk/k−1 by (21)-(22).
Step 4. Update the measurement parameters by (23) based

on FT.
Step 5: Update the attenuation level γ̂o,k by (30).
Step 6: Measurement update: update the state estimation

x̂k and the covariance Pk by (24)-(25), (26)-(27) or (28).
Remark 4: For the selected sampling number or set, too

few sample points could lead to poor precision, and too many
points could result in computational redundancy. The sample
points are selected symmetrically to obtain a fitting function
with superior performance. It is undoubtedly that the optimal
choice is not only characterize the sampling distribution but
also present superior performance. Then, FT is integrated into
the structure of H-infinity based filters to design FHKF. The
fitting model of nonlinear system is established by fitting
transformation to get the fittingmatrices, which are combined
with H-infinity based filtering. Moreover, the covariance of
fitting errors is considered and used to compensate for fitting
errors in filtering.
Remark 5: As FT′s inherited the characteristics, unlike

unscented filters, the selection of important unknown param-
eter values is unnecessary for FHKF. The attenuation level
about the optimal upper bound in FHKF as an important

parameter is adaptively estimated according to the specific
rules in (30), and then FHKF is a robust filter based on
the adaptive parameter. The asymptotically optimal bound
is designed to guarantee better robustness and availabil-
ity. Hence, by using the adaptive upper bound at each
instant time, the estimation performance is under control with
the situation of system uncertainties. Due to no redundant
calculation, it can be implemented with a lower complex
computation.
Remark 6: The prerequisite of the FHKF filtering,

i.e., Jk < γ 2
o described by (16), is that the estimation error

1xk is bounded. When γo → ∞, it will be the same as the
linear fitting Kalman filter (see Appendix A for details).

Proof: The proof is described in Appendix B.

IV. STOCHASTIC STABILITY OF FITTING H-INFINITY
KALMAN FILTER
In order to verify the estimated error boundness of the pro-
posed FHKF, the stochastic stability analysis as a theoretical
method is considered in this section. Analysis result indicates
that the filtering solution of the proposed method is bounded
and stable even if the attenuation level tends to infinity. For
a large value γ 2

o or even γ 2
o → ∞, the cost function Jk

has a large upper bound or even no upper bound. Then the
estimation error increases, which leads to a poor or even
divergence solution. Therefore, it is necessary to analyze the
stability of FHKF, especially when γ 2

o → ∞. Since a large
upper bound is a special case of γ 2

o → ∞, without loss of
generality, we only discuss the filtering stability for γ 2

o →∞.
Lemma 1 [10], [36, [37]: Suppose that there is a random

process V (ξk ) as well as real numbers vmin > 0, vmax > 0,
µ > 0 and 0 < λ 6 1, such that the following inequalities
hold

vmin||ξk ||
2 6 V (ξk ) 6 vmax||ξk ||

2 (31)

E [V (ξk )|ξk−1]− V (ξk−1) 6 µ− λV (ξk−1) (32)

Then, the root mean square (RMS) of the random process ξk
is bounded, i.e.

E
{
||ξk ||

2
}
6
vmax

vmin
E
{
||ξ0||

2
}
(1− λ)k +

µ

vmin

k−1∑
i=1

(1− λ)i

(33)

where the operator || · || is the Euclidean norm in Rn.
Define the prediction error as

1xk/k−1 = xk − x̂k/k−1 (34)

By (14), (21) and (22), the prediction error vector can be
calculated as

1xk/k−1 = f (xk−1)−
ˆ̃
8k ˆ̃xk + wk

=
ˆ̃
8k x̃k + ek,x −

ˆ̃
8k ˆ̃xk + wk

=
ˆ̃
8k (x̃k − ˆ̃xk )+ ek,x + wk

≈ 8̂k1xk−1 + wk (35)
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where 1xk = xk − x̂k is the estimation error. Similarly,
the innovation 1zk can be calculated as

1zk = zk − ẑk

= h(xk/k−1)−
ˆ̃Hk ˆ̃xk/k−1 + vk

=
ˆ̃Hk x̃k/k−1 + ek/k−1,z −

ˆ̃Hk ˆ̃xk/k−1 + vk

=
ˆ̃Hk (x̃k/k−1 − ˆ̃xk/k−1)+ ek/k−1,z + vk

≈ Ĥk1xk/k−1 + vk (36)

Then, the prediction error 1xk|k−1 and the innovation 1zk
can be expressed as

1xk/k−1 = βk8̂k1xk−1 + wk (37)

1zk = θkĤk1xk/k−1 + vk (38)

where βk and θk are the unknown diagonal matrices at time k.
Suppose that ek,x is not related to 1xk−1, from (35) the
covariance of the prediction error vector is

E(1xk/k−11xTk/k−1)

= E[(8̂k1xk−1 + ek,x + wk )(∗)T ]

= 8̂kPk−18̂
T
k + Pk−1,xe +Q+ δPk/k−1

= 8̂kPk−18̂
T
k +Qk,o + δPk/k−1 (39)

From (37), the covariance of the prediction error vector is
written as

E(1xk/k−11xTk/k−1)

= E[(βk8̂k1xk−1 + wk )(∗)T ]

= (βk8̂k )Pk−1(∗)T +Q+ βkδPk/k−1 (40)

For simplicity, denote

Ak = βk8̂k , Bk = θkĤk , Ck = I−KkBk (41)

Since (39) and (40) are equivalent and considering (21) and
(22), the prediction error covariance can be written as

Pk/k−1 = AkPk−1AT
k +Qk,e (42)

where Qk,e = [Q+ (βk − I)δPk/k−1].
Since γ 2

o → ∞ means γ−2o → 0, (28) can be further
written as

P−1k = P−1k/k−1 + ĤT
k R
−1
k,oĤk − γ

−2
o In

= P−1k/k−1 + ĤT
k R
−1
k,oĤk (43)

Substituting (43) into (24), the gain matrix is obtained as

Kk = (P−1k/k−1 + ĤT
k R
−1
k,oĤ

T
k )
−1ĤT

k R
−1
k,o

= PkĤ
T
k R
−1
k,o (44)

Substituting (14) and (25) into 1xk = xk − x̂k yields

1xk = 1xk/k−1 −Kk1zk
= Ak1xk−1 + wk −Kk (Bk1xk/k−1 + vk )

= Ak1xk−1 + wk −KkBkAk1xk−1
−Bkwk −Kkvk

= CkAk1xk−1 + Ckwk −Kkvk (45)

Theorem 2: Consider the random dynamic system
described by (14), when γ 2

o →∞, if the following conditions
are fulfilled:

aminI 6 AkAT
k 6 amaxI,BkB

T
k 6 bmaxI

CkCT
k 6 cmaxI, hminI 6 ĤkĤ

T
k 6 hmaxI (46)

are held for any positive real numbers amin, amax, bmax and
cmax;

R 6 rmaxI, qmin 6 Q 6 qmaxI, pminI 6 Pk 6 pmaxI

ro,minI 6 Rk,o, qe,minI < Qk,e 6 qe,maxI (47)

are held for any positive real numbers qmax, qmin, pmin,
pmax, ro,min, ro,max, qo,minand qo,max, where ro,min >

bmax(pmaxamax + qmax)− hmin(pminamin + qmin); and for any
real number εmax > 0, we have∥∥∥Ĥk − Bk

∥∥∥ 6 εmax (48)

where ε2max < a−1max(pmax + p
2
maxamaxq

−1
min)
−1ro,min.

Then, the estimation error 1xk is bounded in the mean
square even when the cost function is unbounded, i.e.,
γ 2
o → ∞. In other words, FHKF is always stable as long

as γ 2
o > 0.
Proof: Define the Lyapunov function as

Vk (1xk ) = 1xTk P
−1
k 1xk (49)

According to (31), the bounds of the Lyapunov function are
obtained as

1
pmax
||1xk ||2 6 Vk (1xk ) 6

1
pmin
||1xk ||2 (50)

In order to fulfill the conditions inLemma 1, the upper bound
of E [1xk |1xk−1] − V (1xk−1) in (32) needs to be found.
Substituting (45) into (49), Vk (1xk ) can be represented as

Vk (1xk )= (CkAk1xk−1 + Ckwk −Kkvk )TP−1k (∗) (51)

Thus, the conditional expectation can be written as

E[Vk (1xk )|1xk−1]

= E[(CkAk1xk−1 + Ckwk −Kkvk )TP−1k (∗)|1xk−1]

= E[(CkAk1xk−1)TP−1k (∗)+ (Ckwk )TP−1k (∗)

+ (Kkvk )TP−1k (∗)|1xk−1]

= E[(1xTk−1A
T
k C

T
k P
−1
k CkAk1xk−1

+wTk C
T
k P
−1
k Ckwk + vTk K

T
k P
−1
k Kkvk )|1xk−1] (52)
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Substituting (33), (46) and (47) into the first item of (52),
we get

E[1xTk−1A
T
k C

T
k P
−1
k CkAk1xk−1|1xk−1]

= E[1xTk−1A
T
k (I− BTk K

T
k )P
−1
k (I−KkBk )

·Ak1xk−1|1xk−1]

= E[1xTk−1(A
T
k P
−1
k Ak − AT

k B
T
k K

T
k P
−1
k Ak

−AT
k P
−1
k KkBkAk + AT

k B
T
k K

T
k P
−1
k KkBkAk )

·1xk−1|1xk−1]
= 1xTk−1A

T
k P
−1
k/k−1Ak1xk−1 + (Ak1xk−1)

T

· (ĤT
k R
−1
k,oĤk − BTk R

−1
k,oĤk − ĤT

k R
−1
k,oBk

+BTk R
−1
k,oĤkPkĤ

T
k R
−1
k,oBk )(∗) (53)

where

BTk R
−1
k,oĤkPkĤ

T
k R
−1
k,oBk = BTk [R

−1
k,o

− (ĤkPk/k−1Ĥ
T
k + Rk,o)

−1]Bk
(54)

Letting µk = E(wTk C
T
k P
−1
k Ckwk + vTk K

T
k P
−1
k Kkvk ) and

considering (53) and (54), (52) can be expanded as

E[Vk (1xk )|1xk−1]

= 1xTk−1A
T
k P
−1
k/k−1Ak1xk−1 + (Ak1xk−1)

T

· (ĤT
k R
−1
k,oĤk − BTk R

−1
k,oĤk − ĤT

k R
−1
k,oBk

+BTk R
−1
k,oĤkPkĤ

T
k R
−1
k,oBk )(∗)+ µk

= 1xTk−1A
T
k P
−1
k/k−1Ak1xk−1 + (Ak1xk−1)

T

· {ĤT
k R
−1
k,oĤk − BTk R

−1
k,oĤk − ĤT

k R
−1
k,oBk

+BTk [R
−1
k,o − (ĤkPk/k−1Ĥ

T
k + Rk,o)

−1]Bk}(∗)

+µk

= 1xTk−1A
T
k P
−1
k/k−1Ak1xk−1 + (Ak1xk−1)

T

· [(Ĥk − Bk )TR−1k,o(∗)− BTk (ĤkPk/k−1Ĥ
T
k + Rk,o)

−1

·Bk ](∗)+ µk (55)

Subtracting Vk−1(1xk−1) from both sides of (55) yields

E[Vk (1xk )|1xk−1]− Vk−1(1xk−1)

= 1xTk−1A
T
k (AkPk−1AT

k +Qk,e)−1Ak1xk−1
−1xTk−1P

−1
k−1Ak1xk−1

+ (Ak1xk−1)
T [(Ĥk − Bk )TR−1k,o(Ĥk − Bk )

−BTk (ĤkPk/k−1Ĥ
T
k + Rk,o)

−1Bk ](∗)+ µk

= 1xTk−1[A
T
k (Ĥk − Bk )TR−1k,o(Ĥk − Bk )Ak

−AT
k B

T
k (ĤkPk/k−1Ĥ

T
k + Rk,o)

−1BkAk

− (Pk−1 + Pk−1A
T
k Q
−1
k,eAkPk−1)

−1](∗)+ µk (56)

Then, a form similar to (37) can be written as

E[Vk (1xk )|1xk−1]− Vk−1(1xk−1)

= µk − λkVk−1(1xk−1) (57)

where

λk = 1xTk−1[−A
T
k (Ĥk − Bk )TR−1k,o(Ĥk − Bk )Ak

+AT
k B

T
k (ĤkPk/k−1Ĥ

T
k + Rk,o)

−1BkAk

+ (Pk−1 + Pk−1A
T
k Q
−1
k,eAkPk−1)

−1]

· (∗)/Vk−1(1xk−1) (58)

Now let us determine the ranges of µk and λk . Substituting
(44) and taking the trace on both sides of µk yield

µk = E[trace(wTk C
T
k P
−1
k Ckwk + vTk K

T
k P
−1
k Kkvk )]

= E[trace(wTk C
T
k P
−1
k Ckwk

+ vTk R
−1
k,oĤkPkĤ

T
k R
−1
k,ovk )] (59)

Thus, µk can be represented as

µk= trace[(CT
k P
−1
k Ck )Qk + (R−1k,oĤkPkĤ

T
k R
−1
k,o)R] (60)

Applying the matrix identity tr(AB) = tr(BA) and consider-
ing (46) and (47), we have

µk 6 c2maxp
−1
minqmaxL + r

−2
o,minhmaxpmaxrmaxM

, µmax (61)

Choosing µmax > 0, (61) becomes

µk 6 µmax (62)

Based on (46)-(48), the second term of (60) satisfies the
following condition

1xTk−1A
T
k B

T
k (ĤkPk/k−1Ĥ

T
k + Rk,o)

−1BkAk1xk−1>0

(63)

Let

τk = 1xTk−1[−A
T
k (Ĥk − Bk )TR−1k,o(Ĥk − Bk )Ak

+ (Pk−1 + Pk−1A
T
k Q
−1
k,eAkPk−1)

−1]1xk−1 (64)

where

τk > [−amaxε
2
maxr

−1
o,min + (pmax + p

2
maxamaxq

−1
e,min)

−1]

1xTk−11xk−1 , τmin > 0 (65)

From (58) and (63)-(65), it can be verified that

λkVk−1(1xk−1) > τk > τmin (66)

Then, it follows from (66) that

λkVk−1(1xk−1) > 0, or λk > 0 (67)

where the value on the right of (67) denotes the upper bound
of λk or λkVk−1(1xk−1).

Let

(Pk−1 + Pk−1A
T
k Q
−1
k,eAkPk−1)

−1
− P−1k−1

= −AT
k (AkPk−1A

T
k +Qk,e)

−1Ak (68)

−1xTk−1A
T
k (Ĥk − Bk )TR−1k,o(Ĥk − Bk )Ak1xk−1 6 0

(69)
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By (46)-(48), we can obtain

λkVk−1(1xk−1)− Vk−1(1xk−1)

6 (
amaxbmax

(pminamin + qmin)hmin + ro,min

−
amax

pmaxamax + qmax
)1xTk−1(∗) (70)

Obviously, we can obtain the lower bound

λkVk−1(1xk−1)− Vk−1(1xk−1) < 0, or λk < 1 (71)

From (67) and (71), the upper bound of λk can be obtained as

λmin = min
k
(λk ) ∈ (0, 1) (72)

Therefore, applying Lemma 1, (62) and (72), (57) can be
satisfied by

E[Vk (1xk )|1xk−1]− Vk−1(1xk−1) 6 µmax

− λminVk−1(1xk−1) (73)

Equation (73) indicates (33) is fulfilled. It also guarantees the
boundness of the estimation error1xk when γ 2

o →∞. Thus,
FHKF is stable when γ 2

o > 0. The proof of Theorem 2 is
completed.

V. PERFORMANCE EVALUATION AND DISCUSSION
The performance of the proposed FHKFwas evaluated by two
simulation cases. Firstly, the comparison of the accuracy of
mean and covariance between FTwith LT andUT by using on
the 2D transformation from the Polar coordinate system to the
Cartesian coordinate system. Secondly, the reentry vehicle
tracking system is being used to compare the presence of
system noises between FHKF with UKF, EHKF, and UHKF.

A. TRANSFORMATION FROM POLAR TO CARTESIAN
COORDINATE SYSTEM
In sensor-related problems, the polar coordinate (r, θ) is com-
monly used to characterize the target′s dynamics. However,
the physical world is most commonly described by the Carte-
sian coordinate system. Therefore, it is necessary to transform
the polar coordinate system (r, θ) into the Cartesian coordi-
nate system. Consider the 2D transformation from the polar
coordinate (r, θ) to the Cartesian coordinate system (x, y)

z =
(
x
y

)
=

(
r cos θ
r sin θ

)
(74)

Suppose the real position is (0, 1), the standard deviation
of the range and bearing measurement are 2cm and 15◦,
respectively. The parameter κ in UT is set to (α2 − 1)n
by multi-test, where α = 0.1. Meanwhile, the target in
the polar coordinate follows the Gaussian distribution. The
mean and covariance of the position vector z in the Cartesian
coordinate system are calculated by Monte-Carlo stochastic
sampling and taken as the reference data to assess the approx-
imation accuracy. Fig. 1 shows the samples in the Cartesian
coordinate system by 2000 Monte-Carlo simulations. Define
the 1σ contour by {z : (z − ẑ)P−1zz (z− ẑ)

T
= 1} [38].

FIGURE 1. The simulated samples from the coordinate transformation.

FIGURE 2. The means and standard deviation contours of z by LT, UT and
FT. The true values of mean and standard deviation are indicated by the
circle symbol and red ellipse. The UT mean and standard deviation are
displayed by the cross symbol and cyan ellipse. The LT mean and standard
deviation are displayed by star symbol and green ellipse. The FT mean
and standard deviation are displayed by the plus symbol and blue ellipse.

TABLE 2. The mean and standard deviations of by LT, UT and FT.

The approximations of the position vector z by FT, UT, and
LT are shown in Fig. 2. Their specific means and standard
deviations are shown in Table 2. The means of both FT and
UT are extremely close to the reference mean, and their errors
are within 10−5m. The standard deviations of both FT and
UT are also within 10−3m. In contrast, the errors between
the mean and standard deviation of LT and the real values
are (5.40 × 10−3m, 0.0346m) and (0.0105m, 0.0302m),
respectively. Thus, it is evident that LT is significantly inferior
than the accuracy of FT and UT. Both FT and UT have a
similar accuracy, which is much better than that of LT and
also in agreement with Theorem 1. However, the select of
the parameters in UT is hard work as stated in remark 2. The
filtering could be interrupted by the non-positive covariance
in UT.

B. THE REENTRY VEHICLE TRACKING SYSTEM
Simulation trials were conducted to evaluate the performance
of the proposed FHKF for a reentry vehicle tracking system,

VOLUME 8, 2020 10561



J. Xia et al.: Novel FHKF for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation

which is a typical nonlinear problem. Consider that a vehicle
enters the atmosphere at a high altitude with a high velocity.
The position of the vehicle is tracked by radar to measure the
distance and bearing angle of the vehicle. The system model
is same as (14) and the states vector is defined as

x(t) = [x1, x2, x3, x4, x5]T (75)

where (x1, x2) and (x3, x4) denote the position and veloc-
ity of the vehicle, and denotes the aerodynamic parameter
(aero-param).

The nonlinear process function is defined as

ẋ(t) = f (x(t))+ w(t)

=


x3(t)
x4(t)

D(t)x3(t)+ G(t)x1(t)
D(t)x4(t)+ G(t)x2(t)

0

+ w(t) (76)

where D(t) = β(t)exp [(R0 − R(t))/H0]V (t) is the drag-
related force term, G(t) = GM0/R3(t) is the gravity-related
force term, and β(t) = β0 exp (x5(t)), where R(t) =√
x21 (t)+ x

2
2 (t) is the distance from Earth’s core to the vehicle

and V (t) =
√
x23 (t)+ x

2
4 (t) is the total speed. R0, H0, β0

and GM0 are constants as R0 = 6374, H0 = 13.406,
β0 = −0.59783, GM0 = 3.986× 105.
The reference variances of w(t) is

Q = diag([10−6,10−6,10−4,10−4,10−6])

The measurement vector is

zk = [dk ,θk ] (77)

where dk is the distance between the vehicle and radar, and
θk is the bearing angle of the vehicle. The nonlinear measure-
ment function is

zk = h(xk )+ vk

=

[ √
(x1(t)− xs)

2
+ (x2(t)− ys)

2

tan−1[(x2(t)− ys)/(x2(t)− xs)]

]
+ vk (78)

where (xs, ys) denotes the location of the radar. The reference
variances of vk is

R = diag([(10−3)2; (0.17× 10−3)2])

Fig. 3 shows a sample trajectory of the vehicle with respect
to earth and radar. For comparison analysis, simulation trials
were conducted by UKF, EHKF [25], UHKF [30], adaptive
UKF (AUKF) [39] and FHKF under the same conditions, i.e.,
the parameters are set as

γ 2
ehkf = 10, ηuhkf = η

fhkf
0 = 4

the initial state estimate and its covariance are

x̂0 = [6500.4, 349.14, −1.80, 6.79, 0.69]

P̂0 = diag([1, 1, 1, 1, 0.1])

FIGURE 3. The trajectory of the simulation system.

The root mean square errors (RMSEs) of position and
velocity are selected as the performance metrics in this paper.
It is defined at time t as

RMSEpos(t)

=

√
1
M

∑
M
i=1[x

i
1(t)− x̂

i
1(t)]

2
+ [x i2(t)− x̂

i
2(t)]

2
(79)

where
(
x i1(t), x

i
2(t)

)
and

(
x̂ i1(t), x̂

i
2(t)

)
represent the real and

estimated position, respectively, at the i-th Monte-Carlo run.
RMSEs in velocity can also be written similar to the position
RMSEs.

1) CASE 1: UNKNOWN PROCESS AND
MEASUREMENT NOISES
In a practical system, the process and measurement noises
are unknown and vary with different environments as well.
For the purpose of analyzing the disturbances of the unknown
noises on the state estimate, the actual process noise covari-
ance was magnified to 100 times in the time interval (50, 75)
and the actual measurement noise covariance was magnified
to 10 times in the time interval (100, 125), i.e.

Qk =


Q k 6 50
100 ∗Q 50 < k 6 75
Q 75 < k 6 200

(80)

Rk =


R k 6 100
10 ∗ R 100 < k 6 125
R 125 < k 6 200

(81)

In this section, the noises in the filtering are respectively
set as zero means and variances Q and R in the estimation
process, and the simulation time is 200s. Fig. 4 shows the
RMSEs of filters under 100 Monte Carlo runs. From this
figure, the RMSEs of FHKF, UHKF and AUKF after filtering
stabilization are (5.51m, 4.58m/s, 0.102), (5.61m, 4.55m/s,
0.097) and (5.72m, 4.56m, 0.094), which are higher than
those of UKF (7.07m, 6.45m/s, 0.127) and EHKF (7.01m,
6.21m/s, 0.126). It is observed that FHKF and UHKF exceed
other methods.

Fig. 5 reports the averaged RMSEs of the four filters
between 50s and 75s under the process variance unknown.
During the time period (50s, 75s), the filtering performances
of UKF, EHKF, and AUKF are significantly disturbed by
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FIGURE 4. Estimated RMSEs of different filters in case 1.

the biased process noise covariance, resulting in the RMSEs
of (23.02m, 42.49m/s, 0.621), (20.65m, 45.13m/s, 0.617)
and (18.26m, 41.84m, 0.55) respectively. Both UHKF and
FHKF significantly improves the filtering performances of
UKF, EHKF, and AUKF, and their RMSEs are (13.69m,
34.61m/s, 0.402), and (13.84m, 34.75m/s, 0.412) respec-
tively. Fig. 6 shows the averaged RMSEs of four filters
between 100s and 125s with the measurement variance
unknown. During the time period (100s, 125s), the filtering
performances of UKF, AUKF, and EHKF are significantly
disturbed by the biasedmeasurement noise covariance, result-
ing in the RMSEs of (14.58m, 9.15m/s, 0.163), (13.75m,
8.36m, 0.153) and (14.37m, 9.84m/s, 0.162) respectively.
Both UHKF and FHKF significantly improves the filtering
performances compared with UKF, AUKF, and EHKF, and

FIGURE 5. The histogram of the average RMSEs at (50s, 75s) for filters in
case 1.

FIGURE 6. The histogram of the average RMSEs at (100s, 125s) for filters
in case 1.

their RMSEs are (11.54m, 6.91m/s, 0.097) and (11.63m,
6.84m/s, 0.099), respectively.

The time-varying results of attenuation level γ during the
last Monte-Carlo run in case 1 is shown in Fig. 7. The
estimated value of γ in FHKFwithin (0.029, 0.633) stabilizes
around 0.039 after 20s, while it is eventually increased to
0.198 due to the unknown noises during the time period (50s,
75s) and (100s, 125s), as shown in Fig. 4 and 7. There is an
asymptotic optimal upper bound γ̂ 2

k,o at each moment in the
FHKF. Nevertheless, the value of γ in EHKF is fixed at 3.33,
which is not the optimal upper bound to the total process.
Combining simulation and the result in Fig. 7, the estimation
process with fixed γ as EHKF can be interrupted, when
the selection of fixed γ is less than γmax = 0.633. The
fixed γ solution also causes the instability of the filtering
process. Further, since it is not the optimal bound of filtering,
the parameter γk in UHKF is larger than the value of FHKF
from Fig. 7. The fixed η which does not advocate the opti-
mal parameters eventually makes divergence of attenuation
level of UHKF, and then leads to the poor robust, stability
and availability of estimation. By contrast, from Fig. 7 the
adaptive relevant parameter ηk has been designed in FHKF
to ensure the asymptotic optimality of γ̂o,k , which takes the
asymptotically optimal upper bound. Based on the analyses,
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FIGURE 7. Time-varying results of γ in case 1.

the FHKF is robust to the case of unknown system noise
statistics, and its precision is higher than UKF, EHKF, and
AUKF. The attenuation level adaptation for FHKF is taken
to improve the performance of the fixed γ solution. Mean-
while, its robustness and availability are better than UHKF
by adding the adaptive tune of ηk .

2) CASE 2: ROBUST TO DYNAMICAL MODEL WITH
UNCERTAIN TERM
Due to aging processes and many other unknown factors,
the practical system has presented the variation compared
with the dynamical model. That means there are uncertain
terms in the dynamical model. In this section, the perfor-
mance of the proposed FHKF is evaluated with uncertain
terms in the system model. Assume that there is the unknown
random term1xk × rand(k) at (0s, 100s) in practical system,
where 1xk = [- 0.1; - 0.1; - 0.03; - 0.03;0.01]. The actual
noises of state and measurement are wk ∼ N (0,Q) and
vk ∼ N (0,R), respectively. The noise covariances in filtering
are set as Q and R.
Fig. 8 indicates the RMSEs of filters with a random uncer-

tain term in system model by 100 Monte Carlo runs. As far
as stability is concerned, the stability of FHKF outbalances
to the other methods. The convergence of FHKF is faster
than UKF, EHKF, and AUKF. To more clearly illustrate,
the average RMSEs at (0s, 100s) and (100s, 200s) are cal-
culated and shown in Fig. 9 and 10, respectively. Comparing
Fig. 9 and 10, it is obvious that the performance of all four
filters can be reduced since the model is interfered by the
random uncertain term. By observing Fig. 8-9, the filtering
performances of UKF, EHKF and AUKF are significantly
disturbed by the random uncertain term, resulting in (38.66m,
94.43m, 0.802), (35.93m, 94.84m, 0.788) and (32.71m,
90.85m, 0.591), respectively. During the time period (0s,
100s), the precision of FHKF is higher than the above filters
and close to UHKF. By observing Fig. 8 and 10, the per-
formance of FHKF is close to UHKF without the random
uncertain term during the time period (100s, 200s), which is
slightly higher than other filters. On balance, compared with
the Kalman-based filters, FHKF is a robust approach due to
increase the use of fresh measurement, which is suitable for
the estimation in case 2. It demonstrates that the FHKF has
more robust than the Kalman-based filters in case 2, which
inherits the advantages of H∞-based filters.

FIGURE 8. Estimated RMSEs of different filters in case 2.

FIGURE 9. The histogram of the average RMSEs at (50s, 75s) for filters in
case 2.

The time-varying results of attenuation level γo by the
last Monte-Carlo run in case 2 is shown in Fig. 11. It is

10564 VOLUME 8, 2020



J. Xia et al.: Novel FHKF for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation

FIGURE 10. The histogram of the average RMSEs at (100s, 125s) for filters
in case 2.

FIGURE 11. Time-varying results of γ in case 2.

evident that its estimation value in FHKF is within (0.063,
1.248), which has a rapid change at the first 100s with the
influence of system uncertainty, and then it remains stable at
0.454 after 100s without the influence of system uncertainty.
Moreover, the attenuation level in FHKF is increasing from
50s to 100s to reduce the impact of uncertainty. By observing
Fig. 8 and 11, the RMSEs of states have been stabilized
around the fixed value during the time period (50s, 100s).
The value of γ in EHKF is also fixed at 3.33, which is not the
optimal upper bound during the whole filtering. If it is smaller
than γmax = 1.248, the malfunction of EHKF has occurred
during the estimation process. The fixed γ can result in the
instability of the system estimation.Moreover, the attenuation
level in UHKF is not the optimal upper bound, which is larger
than the value of FHKF from Fig. 11. Its curve is divergent,
leading to the poor robust and availability of filtering. The
robustness in UHKF is becoming worse and worse with time,
and once there is uncertainty in the system, the filtering owns
poor stability, or even divergence. By contrast, adaptive reg-
ulation of attenuation level in FHKF is to modify the whole
performance of the other solutions as EHKF or UHKF. Our
proposed FHKF outperforms all other approaches, yielding
accurate state estimation in different situations.

3) COMPUTATIONAL PERFORMANCE
The computational performance of the proposed FHKF for
the Reentry vehicle tracking system was evaluated with the

TABLE 3. The average running time for different methods.

FIGURE 12. The UAV trajectory.

TABLE 4. Experiments parameters.

above simulation cases. The simulations in the previous sec-
tion were carried out on a Core i5 PC with 2.3-GHz CPU
and 8-GB memory. The averaged computation time of UKF,
EHKF, AUKF, UHKF, and FHKF for 500 steps are shown
in Table 3. As can be seen from Table 3, the computation
time of EHKF, UKF and AUKF are lower than FHKF, but
their precision is not satisfied in the previous cases. The
precisions of FHKF and UHKF are superior to the above
methods. However, the robust, availability and stability of
FHKF is far superior to UHKF due to its adaptive estimation
of attenuation level. Meanwhile, the computation of trajec-
tory estimation using FHKF is faster than UHKF.
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FIGURE 13. The positions errors obtained by different filters for the UAV
navigation case.

C. EXPERIMENT AND ANALYSIS
For the performance evaluation of the proposed FHKF, a prac-
tical experiment was also conducted to observe a UAV
(Unmanned Aerial Vehicle) navigation in Xi′an, Shaanxi,
China. The UAV applied an INS/GPS integrated system for
navigation and location, and its model system can be refer-
ence literature [40]. The INS/GPS integrated system consists
of an MPU 9250 inertial measurement unit (IMU) and a geo-
m8 GPS. The position data (its precision is less than 0.1m)
obtained off-line calibration of the camera (SONY ILCE-7R)
with the ground control points was taken as the reference
values to evaluate the position errors of UAV navigation. The
sampling frequencies of IMU, GPS and camera were set to
10Hz, 1Hz, and 1Hz, respectively, and test period was 900s.
The UAV trajectory is shown in Fig. 12. The parameter set-
tings of INS/GPS integrated systemwere displayed in Table 4

Fig. 13 indicates the position errors of UAV by UKF,
EHKF, AUKF, UHKF, and FHKF with period time 900s.
During the testing process, the system noise statistics involve
uncertainties due to disturbances in the dynamic environ-
ment. The UKF is significantly disturbed by the uncertainties
of system noise statistics, resulting in the large magnitude
of oscillations in the filtering curve. Its position errors are
within (−8.12m, 10.08m) and (−22.33m, 17.75m). These
are slightly larger than those obtained by EHKF, which are
within (−7.76m, 8.30m) and (−18.08m, 15.12m). Due to
the adding of noise estimation, the precision of AUKF is
within (−7.54m, 7.88m) and (−13.45m, 13.82m), which is
better than the above two filters. However, obvious oscilla-

TABLE 5. MAE and STD of the position errors by four filters for the UAV
navigation.

tions still remain in the filtering curve of AUKF. In contrast,
the position errors of UHKF are within (−7.32m, 4.96m)
and (−6.98m, 9.42m). Meanwhile, the position errors by the
proposed FHKF are within (−7.12m, 4.86m) and (−6.59m,
9.61m), which are close to UHKF. They are much smaller
than those by the UKF, EHKF, and AUKF. Themean absolute
errors (MAEs) and standard deviations (STDs) of the position
errors by UKF, EHKF, AUKF, UHKF, and FHKF are listed
in Table 5. It can be seen that the MAE and STD of the
position errors of the proposed FHKF and UHKF are also
much smaller than the other three methods.

VI. CONCLUSION
In this paper, the FHKF is proposed as a derivative-free
nonlinear HâĹd− filter based on numerical approximationwith
low computational cost. The contribution of this paper is
that the novel fitting transformation is presented as a new
numerical approximation technique, and then combined with
EHKF to handle nonlinear uncertain systems. Meanwhile, its
adaptive attenuation level is solved to improve the robustness,
availability, and stability of estimation process, which is bet-
ter than the other scheme as EHKF or UHKF. It gives the opti-
mal lower bound of attenuation level in the previous scenarios
and then provides a local optimal upper bound at each step
time as well, which serves to select the global optimal upper
bound. Moreover, the stability analysis of FHKF is presented
according to the stochastic stability lemma. It’s shown that
the proposed method is bounded and stable regardless of the
value of. Simulations and experiments show that the proposed
FHKF has better precision than UKF, EHKF, and AUKF with
unknown terms for nonlinear systems. Due to the proposed
filter no need to compute complex Jacobian matrices man-
ually, it is more simple than the standard EKF and EHKF.
Compared with UKF and AUKF, it is robust to the system
uncertainties since the use of the upper bound. Hence it is
suitable for systems with unknown priori noise statistics or
the uncertainty system.

APPENDIXES
APPENDIX A
γ 2
o →∞, (28) can be written as

P−1k = P−1k/k−1 + ĤT
k R
−1
k,oĤk (82)
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By the matrix inversion lemma and (82), there is

Pk = Pk/k−1 − Pk/k−1ĤT
k (Rk,o + ĤkPk/k−1Ĥ

T
k )
−1

× ĤkPk/k−1
= Pk/k−1 −KkĤkPk/k−1

= Pk/k−1 −Kk (Rk,o + ĤkPk/k−1Ĥ
T
k )Kk (83)

Therefore, when γ 2
o → ∞, (19)-(24) and (83) in FHKF are

equal to the linear fitting Kalman in [31] (24)-(34).

APPENDIX B
Consider a nonlinear function z = g(x) evaluated in 2n sigma
points, i.e., (xi, zi), where zi = g(xi) for i = 1, · · · , 2n.
Assuming that the nonlinear function is statistically lin-
earized as (3), which is

z = Ax+ b+ e = Ãx̃+ e (84)

The objective of fitting transformation is to find ˆ̃A so that the
point-wise linearization error ei is minimized, i.e.,

ˆ̃A = arg min
∑2n

i=1
wieTi ei (85)

where ˆ̃A = [Â, b̂], and ei = zi − Ãx̃i = zi − (Axi + b).
By taking the derivative of (85) with respect to Ã, then let it
equal to zero, that is Z = ÃX̃, as the system model Eq. (14),
which is transformed to

ˆ˜AX̃W X̃
T
= ZWX̃T (86)

where X̃ and W can be set as FT in table 1. Substitute ˆ̃A =
[Â, b̂] into (86) for decomposition, and obtain

b̂ = z̄− Âx̄ (87)

where x̄ =
∑2n

i=1 wixi and z̄ =
∑2n

i=1 wif (xi) =
∑2n

i=1 wizi.
Next, the error covariance of parameter estimation is written
as

Pee =

∑2n

i=1
wiêiê

T
i

=

∑2n

i=1
wi[zi −

ˆ̃Ax̃i][∗]T

=

∑2n

i=1
wi[zi − (Âxi + b̂)][∗]T

=

∑2n

i=1
wi[zi − Âxi + Âx̄− z̄)][∗]T

=

∑2n

i=1
wi[zi − z̄][∗]T − ÂPxxÂ

T (88)

Then, by taking the expectation and the outer product of
fitting transformation, respectively, the posterior statistics are
given by

ẑ = Âx̄+ b̂

= Âx̄+ (z̄− Âx̄)

=

∑2n

i=1
wizi

Pzz = ÂPxxÂ
T
+ Pee

= ÂPxxÂ
T
+

∑2n

i=1
wi[zi − z̄][∗]T − ÂPxxÂ

T

=

∑2n

i=1
wi[zi − z̄][∗]T (89)

where is the same expression as UT to the nonlinear function
z = g(x), which means that its precision is in accord with
the UT.
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