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ABSTRACT We propose the Edge-Embedded Multi-Dropout (EEMD) framework for real-time face
alignment. The EEMD framework extracts facial edge features and explores multiple dropout architecture
for locating facial landmarks. It consists of two major component networks, namely the Contour Detection
Network (CDN) and the Multi-Dropout Network (MDN); and two supplementary networks, one for face
detection and the other for pose regression. When a face is detected by the face detector, its pose will
be classified by the pose classifier, then the associated facial edges be detected by the CDN, and then
the landmarks be located by the MDN. The embedding of the CDN into the EEMD framework describes
the observation that most landmarks are located on the contours/edges of the facial components and of
the whole face. We revise a state-of-the-art edge detector as part of the base network for the CDN. The
MDN is proposed to better design the regression architecture with appropriate dropout settings for better
preventing overfitting and enhancing regression accuracy. Unlike most of the 2D approaches unable to locate
landmarks in extreme poses, the proposed framework can detect landmarks on profile faces, i.e., ±90◦ in
yaw, in real time. Evaluated on benchmark databases, the EEMD demonstrates a competitive performance
to other state-of-the-art approaches with a satisfying runtime speed.

INDEX TERMS Face alignment, facial landmark, dropout.

I. INTRODUCTION
Face alignment refers to the method that depicts the geomet-
ric structure of a face, including the contours of the face and
of the facial components, such as eyes, nose and mouth. The
depiction is generally performed by automatically locating
the fiducial points, commonly known as facial landmarks,
along the presumably unknown contours on a given facial
image. The face alignment problem is therefore often cast
as the detection of facial landmarks. The facial landmark
detectionmust be accurate and robust to all poses, expressions
and illumination variations.

Many approaches have been proposed in recent
years [1]–[14]. Some of these approaches can only handle
poses with yaw up to 45◦ [1], [2], and some recent methods
can handle full pose, i.e., up to full profile [4], [7]–[14].
The methods able to locate full-pose landmarks can be split
into 2D and 3D. Although part of the 2D landmarks can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Shen .

considered as the 2D projection of the 3D landmarks,
the ground-truth landmarks defined for the 2D and 3D
approaches are different. The number of the 2D landmarks
changes across pose, and it is common that more 2D land-
marks are defined for yaw <45◦ than those defined for
yaw ≥45◦. However, the number of the 3D landmarks is a
constant, and the landmarks can be split into visible and invis-
ible (or self-occluded). The framework proposed in this paper
is for detecting the full-pose 2D landmarks. In addition to
landmark accuracy, we are also concerned about the runtime
speed as an objective of this study is to develop a real-time
face alignment solution.

We propose the Edge-Embedded Multi-Dropout (EEMD)
framework for real-time full-pose face alignment. The archi-
tecture of the EEMD is shown in Figure 1. It consists of two
major component networks, namely the Contour Detection
Network (CDN) and the Multiple Dropout Network (MDN).
Given a training image with landmarks annotated, we first
connect the neighboring landmarks to form the landmarked
edges, and define the binary landmarked edge image as the
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FIGURE 1. The proposed Edge-Embedded Multi-Dropout (EEMD) framework consists of two
primary networks, namely the Contour Detection Network (CDN) and Multiple Dropout Network
(MDN), and two supplementary networks, the (YOLO3) face detector and the (MDN) pose
classifier.

output of the CDN with the given face image as input. The
CDN is trained to estimate the landmarked edges for an
input facial image. The trained CDN is then exploited as a
preprocessor for the MDN. The MDN takes the facial image
combined with the associated landmarked edge image, gen-
erated by the CDN, as the 2-channel input and the landmark
locations as the output. The MDN has multiple dropouts
implemented at convolutional layers, instead of the common
fully-connected layers, to enhance the robustness against
overfitting and improve the landmark accuracy.

The motivation to the design of the EEMD is the obser-
vation that most facial landmarks are located on the edges
of the facial contour and facial components, for example,
eyes, mouth and nose. The accuracy of the facial landmark
detection can be improved if those edges are considered
as part of the input and serve as a constraint for landmark
regression. The network for landmark regression advances
the Multi-Dropout Network (MDN) that we proposed in [15]
with an additional loss function proposed in this paper. The
study in [15] shows that multiple dropouts implemented at
the convolution layers can better prevent overfitting than
the regular way of a single dropout implemented at the
fully-connected layers. Because of the overfitting prevention,
the regression error can be further decreased, and in turn,
improving the accuracy of the landmark localization. The
recommended architecture has double dropouts implemented
at the convolution layers.

In addition to the aforementioned CDN and MDN,
the EEMDhas two supplementary networks, the face detector
and the pose classifier. The pose classifier aims at grouping
the pose of a 2D face into similar orientations, so that the pose
variation in each pose group can be constrained to a limited
range. As the pose variation is reduced within each pose
group, the pose-oriented landmark regressor can be better
trained, and the landmarks can be more accurately located.
The pose classifier is trained on the synthetic 300W-LPA
data generated by the 3DMM (3-Dimensional Morphable
Model). The pipeline of the EEMD works as follows: it first

detects a face, then the pose classifier classifies the face into
one of the pose clusters, then the pose-oriented CDN esti-
mates the landmarked edge map, and then the pose-oriented
MDN estimates the locations of the landmarks. The CDN
and MDN work in series for each pose cluster, as shown
in Figure 1.

This paper presents an extension to our previous work
on the multiple dropout network [15] and the edge cou-
pled framework [16] for facial landmark detection. In [15],
we report the influences of different dropout settings on
the performance of classification and regression networks.
The settings that we have investigated include the number
of dropout layers and the locations to implement dropout
considered appropriate for stabilizing the training of a deep
convolutional neural network (CNN). In [16], we report the
combination of the multiple dropout network and an edge
detection network which gives a preliminary version of the
EEMD framework presented in this extended version. The
extended parts include the following:

1) In [16], the loss function used for locating the facial
landmarks is the common Euclidean distance between
the predicted and ground-truth landmarks, which is
known as the between-landmark loss. The loss consid-
ered in this extension adds in the L1 distance between
the CDN-generated contour Sc and themodel-predicted
contour Sm. This additional loss function considers
the between-shape error and effectively improves the
accuracy of the landmark localization.

2) In [16], the CDN follows the HED (Holistically-Nested
Edge Detector) [17]. In this extension, we redesign the
CDN based on the state-of-the-art edge detector, RCF
(Richer Convolutional Feature) network [18], so that
the inter-layer convolutional features can be explored
for better extraction of the facial contour.

3) In [16], we used the 300W-LP [7] for training. In this
extension, we augment the 300W-LP with pitch data
and compose the 300W-LPA (Large Pose Augmented)
dataset for training, which enhances the learning of
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the multi-pose facial contour and landmark localiza-
tion. Due to the additional pitch data included in the
training set, the pose classifier in this extension is
also redesigned accordingly, making it different from
that in the previous work [16]. We have released the
pitch-augmented 300W-LPA dataset with this paper.

The contributions of this paper can be summarized as follows.

1) It is verified that facial edges are important clues for
locating facial landmarks. Justified on the benchmark
databases, the EEMD framework that considers both
the facial edges and RGB images demonstrates a com-
petitive performance with a satisfying runtime speed
among state-of-the-art approaches.

2) It is verified in this extended study that the loss
function can be better designed to include both the
between-landmark and between-shape losses, leading
to better landmark accuracy than the common loss
solely based on the between-landmark distance.

3) Multiple dropout architecture is better understood
through this study with extensive experiments. It is
verified that dual dropouts at the convolution layers
can better prevent overfitting than the common way of
implementing one single dropout at the fully-connected
layers. Multiple dropouts have different influences on
the CNN training phases for classification and regres-
sion, but this important issue has never been discussed
until this study.

4) Cross-pose face alignment can be better solved by
incorporating pose clustering that transforms a highly
nonlinear regression problem into a set of weakly
nonlinear regression problems. The EEMD framework
explores a pose classifier to classify the pose of a given
face, and then processes the face by the pose-oriented
CDN and MDN networks for landmark detection. The
pose-oriented CDN and MDN are benefited by faster
training and lower validation loss due to the limited
in-class variation in each pose cluster.

The contents of this paper are organized as follows.Wefirst
give a brief review in Sec. II. The development of the pro-
posed EEMD framework is presented in Sec. III, followed
by the training data preparation in Sec. IV. In Sec.V-B,
we present the experimental evaluation of the EEMD frame-
work. A conclusion is finally given in Sec.VI.

II. PREVIOUS WORK
An extensive review on the face alignment challenges, meth-
ods and databases can be found in [19]. We only high-
light the recent (<6 years) approaches in this brief review.
As described in Sec.I, we split the methods into 2D and 3D
for better description on the approaches and performance.

A. 2D APPROACHES
The Supervised Descent Method (SDM) [1] minimizes a
nonlinear least squares cost function formed by the initial
and target landmark locations. The core part of SDM learns

a sequence of descent directions that minimizes the mean
of the cost functions sampled from the training set. The
Regressing Local Binary Features (RLBF) [2] explores a bet-
ter learning-based locality principle which learns the discrim-
inant characteristics of local binary features, and achieves
better accuracy than SDM. Although both SDM and RLBF
attain high accuracy with good runtime speed, they can only
handle pose up to 45◦ in yaw. To handle large-pose face
alignment, Hsu et al. [4] propose the Regressive Tree Struc-
tured Model (RTSM), which is composed of a coarse TSM
(c-TSM) and a refined TSM (r-TSM). The c-TSMworks with
fewer parts on a low-resolution image, and the r-TSM works
with more parts on a high-resolution image. The c-TSM acts
as a fast but coarse face detector that searches for facial
candidates which are processed by the r-TSM for removing
the false positives and locating the landmarks. It takes 0.7 sec
to locate the landmarks on a face from the AFW database.

Many approaches have been built on the deep CNNs
after 2013. The three-level cascade CNN [20] extracts the
global features by the first level for initializing the land-
mark locations, and refines the initial predictions by the
next two levels. However, it only locates 5 sparse landmarks
within a face without considering any landmarks on the facial
boundary/contour, and also works for limited poses (<45◦)
only. The Cascade Multi-Channel CNN (CMC-CNN) [5]
locates the landmarks by performing bottom-up detection and
top-down correction via a cascade of CNNs. Zhang et al. [6]
propose the Tasks-Constrained Deep Convolutional Network
(TCDCN), which not only learns the inter-task correlation
but also employs the dynamic task coefficients to facilitate
the multi-task optimization. Although the above CNN-centric
approaches attain good accuracy and a few can work at high
speed, they cannot handle extreme poses, i.e., >60◦ in yaw.
A boundary-aware algorithm is proposed in [21] that uses
stacked hourglass to estimate facial boundary heatmap and
model the structure between facial boundaries through mes-
sage passing for better robustness to occlusion. It is, however,
unclear about how this approach handles large poses. Further-
more, although this approach also utilizes the facial contours
to improve the landmark learning, the complex framework
with a discriminator slows down the runtime (60 ms/image).

To detect full-pose landmarks, the HyperFace [9] fuses the
intermediate layers of a deep CNN using a separate CNN
followed by a multi-task learning algorithm that operates on
the fused features. It exploits the synergy among multiple
tasks which boosts up the individual performances, including
the full-pose landmark localization. The study reported in
[10] covers both 2D and 3D landmark localization using
the Face Alignment Network (FAN) architecture built on
four Hour-Glass (HG) networks. Three FANs are considered,
the 2D-FAN, 3D-FAN, and 2D-to-3D FAN. The synthetic
datasets 300W-LP-2D and 300W-LP-3D [22] are used to train
the 2D-FAN and 3D-FAN, respectively, for locating the 2D
and 3D landmarks. The 2D-to-3D FAN is trained on the
300W-LP with both 2D and 3D landmark annotations so
that after training the network can convert the 2D landmark
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annotations to 3D landmark annotations. Most of the above
reviewed methods and other state-of-the-art algorithms are
included in the performance comparison with the proposed
approach reported in Sec. V-B3.

B. 3D APPROACHES
To handle large-pose face alignment, Zhu et al. propose
the 3D Dense Face Alignment (3DDFA) that combines a
cascaded CNN regressor and the 3D Morphable Model
(3DMM), and formulates the alignment as 3DMM fitting
problem [7]. The 3DMM fitting result can incorporate 2D
landmark detectors to locate the landmarks. In the 3DDFA
framework, the HOG features at landmarks are extracted
to train a linear regressor to refine the landmark locations.
To tackle the issue of limited landmark labeling for 3D dense
alignment, Liu et al. [8] propose the Dense Face Align-
ment (DeFA) to employ contour and local feature constraints
to the 3D dense fitting. These constraints are integrated into
the CNN training as additional loss terms, and hence enhance
the CNN for the 3D face fitting. Zhang et al. [11] propose
the Joint Voxel and Coordinate Regression (JVCR) method
for 3D landmark localization. The JVCR uses a volumetric
representation to encode the per-voxel likelihood of land-
mark positions, and a stacked hourglass network to estimate
the volumetric representation from coarse to fine, followed
by a 3D convolution network that takes the estimated vol-
ume as input and regresses the 3D landmark coordinates.
Deng et al. [12] propose the Cascade Multi-view Hourglass
Model (CMHM) made of two Hourglass models for 3D face
alignment. One Hourglass model aims to predict semi-frontal
and profile 2D landmarks, the other is used to estimate the 3D
facial shapes. A 3D reconstruction-based method with two
multitask CNNs (MTCNNs) embedded is proposed in [13]
for 3D shape and landmark estimation. OneMTCNN handles
pose estimation and 3D shape reconstruction and the other
extracts the modified shape indexed features for more precise
estimation of the 3D shape. The shape-aware heatmap is pro-
posed in [14] for large-pose face alignment. The shape-aware
heatmap is built on a Gaussian mixture model that considers
adjacent landmarks to reconstruct the shape of local regions
with a probability measure for the goodness of fit. Most of
the above reviewed and other 3D approaches consider 3D
landmark databases for validation, such as the AFLW2000-
3D [7] and Menpo-3D [10], and only a few also consider
2D large-pose databases. The performance on the AFLW
2D database [23] reported in [7] and [8] is included in the
performance comparison in Sec. V-B3.

III. PROPOSED APPROACH
The EEMD (Edge-Embedded Multi-Dropout) framework is
shown in Figure 1. It has two major component networks,
the CDN (Contour Detection Network) and MDN (Multiple
Dropout Network) landmark regressor; and two supplemen-
tary component networks, the face detector and the MDN
pose classifier. When a face is detected by the face detector,
its pose will be classified by the MDN pose classifier, then

its edges will be detected by the corresponding pose-oriented
CDN, and then the landmarks will be located by the paired
pose-oriented MDN landmark detector.

In the following, we first present the CDN (Contour Detec-
tion Network) in Sec. III-A, followed by the MDN (Multiple
Dropout Network) in Sec. III-B, including both the MDN
pose classifier and MDN landmark detector (or called the
MDN landmark regressor). The supplementary face detector
is briefed in Sec. III-C.

A. CONTOUR DETECTION NETWORK
The CDN network explores the state-of-the-art RCF (Richer
Convolutional Feature) network [18] as the base net.
We improve the RCF architecture with two modifications:
1) Shallower convolution layers for better scaled and leveled
features and 2) Local window enhancement for extracting
fine scaled features from component regions. The first mod-
ification with shallower convolution layers is due to the fact
that our targets, including the eyes, mouth and the whole face,
are in the same scale as the input is a face cropped by the face
detector, instead of the multi-scaled objects considered in the
general edge detection as in [18]. The second modification
makes the network focus more on the components (or the
regions of interests) and extracts features from up-scaled
component regions.

As the RCF is the base net of our CDN, and the VGG-
16 [24] is the base net of the RCF, the CDN can be
better explained by looking into the architecture of the
VGG-16. The VGG-16 demonstrates outstanding perfor-
mance in various computer vision tasks, e.g., image classi-
fication [25] and face recognition [24]. It consists of two
double-convolution blocks, three triple-convolution blocks
and three fully-connected layers. The fully-connected layers
are all removed in the RCF, and the five convolution blocks
(called ConvBlocks 1∼5) with 13 convolution layers are
kept. The convolution layers are commonly denoted as conv-
1-1, conv-1-2, conv-2-1, . . . conv-5-2 and conv-5-3, where
conv-i-k denotes the k-th convolution layer in ConvBlock-i.
A pooling layer with 2× 2 window is implemented between
the convolution blocks, as shown by the leftmost column of
processors in Figure 2.
The modifications made by the RCF include the following:

(1) Each conv layer is connected to a conv layer with kernel
size 1 × 1 and channel depth 21 (denoted as 1 × 1-21).
The resulting layers in each block are accumulated using an
eltwise layer to form hybrid features. (2) Each eltwise layer is
connected to a 1×1-1 conv layer, followed by a deconv layer
for feature map upsampling. The deconv layer is connected to
a sigmoid layer for minimizing the cross-entropy loss from
the target. (3) All upsampling layers are concatenated and
followed by a 1× 1-1 conv layer for fusing the feature maps
from each block. The fused feature is connected to a sigmoid
layer for minimizing the cross-entropy loss.

For building the CDN, we further modify the RCF
network by (1) removing the 5th convolution block,
i.e., ConvBlock 5, and (2) removing the last convolution
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FIGURE 2. Architecture and settings of the proposed CDN (Contour
Detection Network), the four stage edge outputs are extracted from
ConvBlocks 1∼4.

layer in ConvBlocks 3 and 4, i.e., conv-4-3 and conv-5-3.
Since edges are of high spatial frequencies which can be
weakened by deeper convolution, removal of deeper con-
volution blocks and layers can better preserve such high
frequency features. The CDN is therefore configured as the
four double-convolution blocks shown in Figure 2.
To prepare the training data, we connect each neighboring

landmark pair by a straight line, forming the landmarked
contours over the face. The ground-truth edge probability yi
at pixel i is defined as 1 if it is on the contour, and 0 oth-
erwise. Given the network with parameters lumped into the
parameter vector Wc, the contour loss L(X ki ;Wc) considered
in ConvBlock-k can be computed as follows:

L(X ki ;Wc) =

{
α · log(1− P(X ki );Wc), if yi = 0
β · logP(X ki ;Wc), if yi = 1

(1)

where X ki is the feature output extracted from ConvBlock-k ,
and

α = γ ·
|Y+|

|Y+| + |Y−|
, β =

|Y−|
|Y+| + |Y−|

Y+ and Y− denote the set of edge pixels (as positive data) and
the set of non-edge or background pixels (as negative data),
respectively. γ is a hyper-parameter weight chosen to balance
the positive and negative sets. P(·) is the sigmoid function.
In most cases, the non-edge pixels substantially outnumber
the edge pixels, i.e., |Y−| � |Y+|, making α and β weight
the loss much more on the edge pixels.

Summing up the above loss from each ConvBlock with the
fused loss contributed by all ConvBlocks, the total loss con-
sidered in the proposed CDN can be written as the following.

LT =
|I |∑
i=1

(
K∑
k=1

L(X ki ;Wc)+ L(X
fuse
i ;Wc)

)
(2)

where |I | is the number of pixels in image I , K is the num-
ber of convolution blocks (4, in this case), and X fusei is the
concatenated output feature from all ConvBlocks.

B. MULTIPLE DROPOUT NETWORK
Consider a typical neural network of M layers with input
u(m) = [u(m)i ]i, output v(m) = [v(m)i ]i at Layer m, m =
1, . . . ,M , with the activation function f (·), the layer opera-
tion can be described as

u(m)i = w(m)
i v(m−1) (3)

v(m)i = f (u(m)i ) (4)

where w(m)
i is the layer parameter vector that maps v(m−1)

to u(m)i (v(0) is the input to Layer 1). The activation f (·) can
be followed by a max-pooling operation. With the dropout
operation added in, (3) and (4) can be written as

v̂(m−1) = q(m−1). ∗ v(m−1) (5)

u(m)i = w(m)
i v̂(m−1) (6)

v(m)i = f (u(m)i ) (7)

where q(m−1) = [q(m−1)j ]j, q
(m−1)
j ∼ B(p), and B(p) is

the Bernoulli distribution with probability p of being 1; .∗
denotes element-wise multiplication. According to the imple-
mentation in [26], the vector q(m−1) is first sampled and then
multiplied element-wise with the output vector v(m−1) of the
activation at Layer m− 1 to create the thinned output v̂(m−1).
The thinned output v̂(m−1) is then used as the input to Layerm.
This process can be repeated at each layer, amounting to sam-
pling a sub-network from a larger network. At the learning
phase, the derivatives of the loss function are back-propagated
through the sub-network. At the validation and testing phases,
the weights are scaled as Ŵ (m)

= pW (m), and the network
is exploited without the dropout. These computations are
undertaken when we compute the test and validation errors
of the proposed multiple dropout architectures with various
dropout settings.

As our framework consists of a classifier, namely theMDN
pose classifier, and a regressor, namely the MDN landmark
detector, we are able to study the influences of implementing
multiple dropouts on both types of networks. The struc-
tures of the MDN pose classifier and of the pose-oriented
MDN landmark detector determined by this study are shown
in Figure 3, with parameter settings in Table 1. The MDN
pose classifier is made of three single-convolution blocks
and three fully-connected layers. Each single-convolution
block is composed of a convolution layer connected to a
max-pooling layer. The dropouts are implemented at the last
two convolution blocks, next to the max-pooling layers. The
loss considered is the empirical softmax function. As we
use a synthetic dataset for training which allows group-
ing of the training data according to preferred pose ranges,
we have experimented 2 groups for yaw≤45◦ and>45◦, and
14 groups for both yaw and pitch variations considered. See
Sections IV and V for details.

6036 VOLUME 8, 2020



G.-S. HSU et al.: EEMD Framework for Real-Time Face Alignment

FIGURE 3. Top: The MDN pose classifier is trained to classify a face into
one of the pose classes. Bottom: The MDN landmark regressor (or
detector) is trained to locate the facial landmarks.

TABLE 1. Input, output and network settings for the MDN pose classifier
and MDN landmark regressor.

The pose-oriented MDN landmark detector is made of
two double-convolution blocks, one triple-convolution block
and three fully-connected layers. The dropouts are imple-
mented at the second double-convolution block and at the
triple-convolution block, also next to the max-pooling lay-
ers. Note that the output dimension of the MDN landmark
detector is 136 for yaw ≤ 45◦ and 78 for > 45◦, i.e., for
68 and 39 landmarks, respectively. DenotingN as the number
of landmarks, the loss considered in the MDN landmark
detector is the Normalized Mean Error (NME) between the
predicted landmarks L(p)i and the ground-truth landmarks
L(g)i , normalized to the size of the ground-truth bounding
box. The NME is known as the between-landmark loss Ll ,
computed as follows:

Ll =
1
N

N∑
i=1

||L(g)i − L
(p)
i ||2

d
(8)

where d =
√
hb · wb is the size of the ground-truth bounding

box, computed as the square root of the area hb · wb.

Both of the aboveMDNpose classifier andMDN landmark
detector networks are determined from extensive experiments
for comparing the training stability and network performance
with different ways of applying the dropouts, including dif-
ferent numbers of dropouts and different locations for imple-
menting the dropouts. Note that in contrary to the general way
of implementing dropouts at fully-connected layers, our study
reveals that dropouts can be better implemented at convolu-
tion layers, especially for regression networks. Additionally,
our experiments also show that multiple dropouts are required
for better stabilizing the training of the landmark regression
network, and can improve the stability when training the pose
classifier network. See the experiments in Sec. V for more
details.

The between-landmark loss Ll in (8) is considered with
the 2-group pose classifier when we were experimenting for
the determination of the most appropriate settings for the
multiple dropout network, and when we were locating the
landmarks in our previous work [15]. To further improve
the landmark accuracy, in this extended study we also con-
sider the between-shape (or shape-to-shape) loss Ls. Given
a training image Ij, Ls accounts for the difference between
Sm,j, the contour formed by the estimated landmarks, and Sc,j,
the contour rendered by the CDN, denoted by ej as shown
in Figure1. ej is computed as the L1 norm between Sm,j and
Sc,j, i.e.,

ej = ||Sm,j − Sc,j||1 =
|I |∑
i

|sim,j − s
i
c,j| (9)

C. FACE DETECTOR
For face detection, we revise the YOLO3 detector [27]
and train it on the WIDER FACE database [28] that offers
393,703 labeled faces in 32,203 images with a large vari-
ability in pose, illumination, expression, scale and occlusion.
Following the data partition specified in [28], the WIDER
FACE is split into a training and validation set with 199k
faces in 16,106 images and a test set with 194k faces
in 16,097 images. Instead of following the default settings of
YOLO3, we customize the anchor boxes with the facial bboxs
of the training set so that we can enhance the performance.
Compared with the state-of-the-art approaches on the AFW
database [29], the YOLO3 achieves AP (Average Precision)
99.6%, better than the DPM (97.2%) [30], the HeadHunter
(97.1%) [30] and the Faster RCNN (95.3%) [31]. Note that
the Faster RCNN is proposed in [31] for object detection,
we retrained it for face detection the same way as we did for
the YOLO3.

IV. TRAINING DATA GENERATION
To train the MDN pose classifier and landmark detectors,
a large dataset is needed with each sample labeled in pose
and landmarks. Such a database collected in the wild is
hardly available so far [29], [32]. However, the face profiling
approach [7] that takes a nearly frontal face as an input and
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TABLE 2. Number of images in each pose group.

FIGURE 4. Face profiling with the original placed on the bottom left. The
top row shows the rotated faces and background, the bottom row shows
the 3DMM fitted face with 3D meshed background.

generates its rotated counterparts offers an effective solution
to this issue.

The core part of the face profiling is the 3D image meshing
on a given 2D face and its background. The 3D meshing
begins with a 3D Morphable Model (3DMM) fitted to the
2D face by following the Multi-Features Fitting (MFF) [33].
This approach can be directly applied to faces labeled with
landmarks. Given a landmark labeled 2D face, the MMF
fitting will be appropriately constrained by the landmarks and
deliver a well fitted 3D model. To include expression varia-
tion to the 3DMM, Zhu et al. [22] combine the identity shape
from the Basel Face Model (BFM) [34] and the expression
shape from the Face Warehouse [35]. In addition, they pro-
pose the landmark marching technique for fitting the 3DMM
to a face with pose variation, allowing an accurate estimate
of the pose for the face in terms of orientations in yaw, pitch
and roll. The 3D facial model and its 3D meshed background
form a 3D object that can be rotated to a specified orientation.
We use the code downloaded via the link provided in [22].

Using the face profiling approach, Zhu et al. offer the
300W-LP (Large-Pose) dataset that contains faces made from
the 300W database [32] with each face rotated in yaw at 5◦

each step up to 90◦ [7]. On top of this dataset, we augment
it with additional data made with rotation in pitch with the
same 5◦ step up to ±20◦. We call this dataset the 300W-
LPA (Large-Pose Augmented). Figure 4 shows a sample
with its 3D meshed face and background model rotated in
yaw and pitch, and the rendered 2D images. To show the
differences between the original 300W, 300W-LP and our
augmented 300W-LPA databases, Figure 5 shows 3 subjects
from the 300W original dataset, the yaw-augmented samples,
and our pitch-augmented samples. As the pitch augmentation
is performed for different yaw, we only show one subject

instead of all three. To obtain the 300W-LPA, please visit
https://sites.google.com/view/300w-lpa-database for details.

As the faces generated by 3DMM face profiling are
tagged with 3D pose, we classify them into 7 inter-
vals in yaw: [−90◦,−70◦], [−70◦,−45◦], [−45◦,−15◦],
[−15◦, 15◦], [15◦, 45◦], [45◦, 70◦] and [70◦, 90◦]; and fur-
ther into 2 intervals in pitch in each yaw interval, namely
chin-up (−20◦ ∼ 0◦) and chin-down (0◦ ∼ 20◦). Note
that the yaw classes are the horizontal mirrors of the other
sides, e.g., [−90◦,−70◦] is the mirror of [70◦, 90◦]. There-
fore, the data in the 300W-LPA are actually grouped into
4 yaw classes, in which 3 yaw classes are flipped to the
horizontal mirrors, forming 7 yaw classes in total. It gives
14 pose classes with the additional split in pitch. The number
of images in each group is given in Table 2. An ablation
study reported in Sec.V-B2 reveals that the landmark accu-
racy improves when the number of pose classes increases.
More pose classes make the pose variation in one pose class
decreased, reducing the difficulty for landmark regression
and thus improving the accuracy. See Sec.V-B2 for more
details.

V. EXPERIMENTS
The experiments are split into two parts. The first part aims to
determine the most appropriate settings for multiple dropout
network, including the location(s) and number of dropouts to
better stabilize training. Without loss of generality, we only
consider a simplified network with the 2-group MDN pose
classifier andMDN landmark regressor, as shown in Figure 3,
i.e., without the CDN in the framework. The second part aims
to demonstrate the strength of embedding the CDN into the
EEMD framework, study the influences of using the 300W-
LPA and with different numbers of pose classes, and compare
with other contemporary approaches. The NME (Normal-
ized Mean Error) in (8) is used to compute the landmark
error.

Two benchmark databases are considered in our evalu-
ation, 300-W [32] and AFLW [23]. The 300-W dose not
offer data with large/extreme poses, but the AFLW does. The
AFLW can be further split into different pose ranges in yaw
to better understand the performance for large poses. Because
the median pose samples in the AFW [29] are merged to
the 300W training set, the rest data with large poses are
used as testing set in our experiments. To clarify the datasets
used for training and testing, Table 3 gives the settings for
evaluating the MDN pose classifier and the proposed EEMD
landmark detector. All experiments were run on a Ubuntu
14.04 with Titan X GPU, and CUDA 7.5 with cuDNN 4.0
on Caffe.
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FIGURE 5. Data generated by using 3DMM face profiling. Left: the original 300W; Center: 300W-LP from [7]; Right: 300W-LPA (augmented with pitch
samples added to 300W-LP, proposed in this paper).

TABLE 3. Training and testing setups.

A. ARCHITECTURE OF MULTI-DROPOUT NETWORK (MDN)
The network considered in this section is a simplified network
without the contour detection module, as the MDN landmark
regressor shown in Figure 3 without the contour image input.
When training the MDN landmark detectors, we adopt a
two-phase scheme. We train the network for locating a sparse
set of landmarks in Phase 1, and then fine tune the last
fully-connected layer for locating the desired dense set of
landmarks in Phase 2.

In Phase 1, we train the frontal-pose MDN landmark
detector using the Multi-Task Facial Landmark (MTFL)
dataset [36] for 5-landmark localization with 5 location out-
puts. The MTFL contains 10,000 face images labeled with
5 landmarks each, including two pupils, nose and two corners
of the mouth. In Phase 2, the network is fine tuned by training
on the 300W training set for locating the 68 landmarks.
We augment different reception field images to overcome
deviation of face detection by random shifting and scal-
ing. When training the profile-pose MDN landmark detec-
tor, we also train the model for locating a sparse set of 5
landmarks first (eye corner, mouth corner, eyebrow cor-
ner, nose tip and chin), and fine tune it for the dense set
of 39 landmarks.

FIGURE 6. Training and validation errors of the MDN landmark detector
in Figure3 with different numbers of dropouts. Tr denotes training error
and Va is validation error. 0-Dp refers to no dropout, 1-Dp is one dropout
only next to Pool3, 2-Dp is 1-Dp with one more dropout next to Pool2,
3-Dp is 2-Dp with one more dropout next to Pool1, 1-Dp-fc is one dropout
only next to Fc5, and 2-Dp-fc is 1-Dp-fc with one more dropout added
next to Fc4.

FIGURE 7. Training and validation errors of the MDN landmark detector
(or regressor) with one dropout implemented next to different pooling
layers. Pool1 (Pool2, Pool3) is the dropout applied next to ‘‘Pool1’’
(‘‘Pool2’’, ‘‘Pool3’’).

Figure 6 shows the training and validation errors of the
MDN landmark detector with different numbers of dropouts
applied at different layers. The experiments are based on the
aforementioned Phase 1 setup on the MTFL dataset. 0-Dp
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FIGURE 8. Top and the 4th rows: the landmarks located by the EEMD network denoted in red and ground truth in green; the 2nd and 5th
rows: the ground-truth landmarked contours; the 3rd and bottom rows: the CDN estimated contours.

denotes the network without dropout. 1-Dp, 2-Dp and 3-Dp
denote respectively the networks with one to three dropouts
connected to the max-pooling layers in Figure 3. 1-Dp-fc and
2-Dp-fc denote the networks with one dropout implemented
next to the fully-connected layer Fc5 and two dropouts next
to Fc4 and Fc5, respectively. The tendency toward overfit can
be evaluated by the gap between the training and validation
errors as the epoch increases. We have applied a stopping
criterion that the training ends when the validation error
no longer decreases for more than 200 epochs (otherwise,
the training for each setup would have taken much longer
time to complete). The 0-Dp shows severe overfitting as the
training error decreases rapidly while the validation error
oscillates within a clear bound, and all take place shortly
after the training begins. 2-Dp and 3-Dp perform almost
equally well, and both appear better than 1-Dp in terms of
the stabilized gap and the validation error at large epochs.
1-Dp-fc appears better than 2-Dp-fc, as the latter shows some
tendency toward underfit, which refers to the observation
that the validation error decreases faster and lower than the
training error. When underfit takes place, it can be very
difficult to further reduce the validation error.

In addition to the comparison on different numbers of
dropouts in Figure 6, the comparison on a dropout imple-
mented at different layers is shown in Figure 7. Pooln refers to
a dropout implemented next to the layer ‘‘Pooln’’ in theMDN
landmark detector. Apparently, Pool3 is the best and Pool1 is
the worse, showing that dropout is better implemented rela-
tively deep in the network.

B. PERFORMANCE OF EDGE-EMBEDDED
MULTI-DROPOUT NETWORK
1) FACIAL CONTOUR DETECTION
We followed most of the parameter settings, including the
receptive field sizes, in the RCF [18] for setting up the
contour detection module CDN. Figure 8 shows the facial
contours obtained by the CDN (the 3rd and bottom rows),
the ground-truth landmarked contours (the 2nd and 5th rows)
and the landmarks detected (the top and 4th rows) in red
with the ground-truth landmarks in green. The CDN esti-
mated contours on the face and facial components are all
close to the ground-truth contours. As most of the detected
landmarks overlap with the ground truth, we compute the
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TABLE 4. Landmark accuracy (in % NME) for different settings on the pose classes and training databases (300W-LP v.s. 300W-LPA). kp refers to the
additional pitch grouping to the k yaw classes.

TABLE 5. Landmark accuracy (in NME %) comparison with SOTA approaches. The best three in each category column are in boldface. PCs stands for Pose
Classes.

landmark location errors and compare with other contempo-
rary approaches in the next section.

2) ABLATION STUDY ON TRAINING DATABASES
AND POSE CLASSES
To better understand the effectiveness of the pitch-augmented
300W-LPA and the influence of different pose classes,
we compare the performance of the same network trained
on the 300W-LP dataset, and the performance with various
numbers of pose classes. This comparison study is designed
with the following settings:

1) As the 300W-LPA contains both the yaw and pitch
augmented data, the pose classes (PCs) are primarily
defined in yaw, and each yaw class can be further split
in pitch. We first segment the data into 3, 5 and 7 PCs
in yaw, and each is further split into 2 pitch groups
(chin up and down) denoted as 3p, 5p and 7p, associated
with 6, 10 and 14 PCs, respectively.

a) 3 PCs: [−90◦, 45◦], [−45◦, 45◦] and [45◦, 90◦] in
yaw;

b) 6 PCs (3p): Additional split of each PC in
the above a) into 2 pitch classes [20◦, 0◦] and
[0◦,−20◦] in pitch, 3p refers to the additional
pitch grouping to the 3 yaw classes;

c) 5 PCs: [−90◦,−70◦], [−70◦,−45◦], [−45◦, 45◦],
[45◦, 70◦] and [70◦, 90◦] in yaw;

d) 10 PCs (5p): Additional split of each PC in c) into
2 pitch classes in the same way as in b);

e) 7 PCs: [−90◦,−70◦], [−70◦,−45◦], [−45◦,−15◦],
[−15◦, 15◦], [15◦, 45◦], [45◦, 70◦] and [70◦, 90◦]
in yaw;

f) 14 PCs (7p): Additional split of each PC in e) into
2 pitch classes in the same way as in b);

2) The 300W-LP is the 300W-LPA without the pitch-
augmented data, and can thus be grouped in yaw only,
i.e., the data in 300W-LP can only be grouped into 3,
5 and 7 PCs.

The following observations are based on the experimental
results given in Table 4.
• The additional pitch-augmented data in the 300W-LPA
helps to improve the accuracy, shown by all three
(3, 5, 7) PCs, compared with the training on 300W-LP.

• More PCs yields better landmark accuracy, which veri-
fies the proposition that a reduced pose variation within
a PC improves the regression for the landmark location.

3) FACIAL LANDMARK LOCALIZATION
Table 5 shows the normalized landmark localization error of
the proposed approach, along with the errors of other state-
of-the-art approaches. The errors of the selected approaches
are either directly copied from their publications or obtained
by running the codes provided by the authors. Those without
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numbers and shown in ‘‘−’’ are either not available in the
publications or unable to handle by their methods/codes. For
example, the code for the RLBF [2] can only deal with poses
≤45◦, and fails when handling larger poses. In each column,
the best three are shown in boldface.

Note the four closely related approaches in the last
four rows, namely our previous approaches MDN [15] and
ERN [16], the proposed EEMDwith two pose classes (3 PCs)
and the EEMD with 14 pose classes (14 PCs). The EEMD
outperforms the ERN [16] for two reasons:

• A better contour detector built on the more advanced
RCF architecture;

• Both the between-landmark and between-shape losses
are considered in the EEMD framework.

These upgraded versions also highlight the advantages of
contour embedding architecture, i.e., how advantageous the
CDN can contribute to the landmark accuracy. The EEMD
(14 PCs), obtained by using the training set with 14 pose
groups (described in Sec. IV), along with the ablation study
reported in Sec. V-B2, demonstrates the advantages of using
more pose classes.

For comparison purpose, we experimented with the facial
contour as the only input to the MDN, i.e., without the
RGB image in Fig. 1, in contrast to the EEMD and the
previous MDN [15], which considers the RGB image only
without the facial contour as input. Tested on the 300W
with 3 PCs, we have obtained 7.78%, 14.21% and 10.11%
NME on the common set, the challenging set and the full
set, respectively. As the accuracy is far from comparable
to those attained by the EEMD and MDN, the experiment
was not extended to the AFLW dataset. This comparison
shows that the facial contour can be considered as an effec-
tive clue to improve the landmark localization; however,
it is not appropriate to use it alone for locating the facial
landmarks.

The proposed EEMD (14 PCs) shows a highly compet-
itive performance to other state-of-the-art methods. When
tested on the 300-W common set, the EEMD outperforms
all selected methods. When tested on the 300-W challenge
set, it outperforms most except the TCDCN [6] with a small
margin. As the data in the 300-W common set are more
than those in the challenge set, the performance on the
full set stays at the best. The comparison on the AFLW
dataset also shows the effectiveness of the EEMD. For the
yaw range [0◦∼30◦], the EEMD (14 PCs) outperforms all;
for [30◦∼60◦], the EEMD (14 PCs) and HyperFace [9] both
perform equally well; but for [60◦∼90◦], it is slightly outper-
formed by the HyperFace. This reveals that the EEMD can be
further improved by incorporating themulti-task learning net-
workwith fused features as those exploited by theHyperFace.
However, there is a price to pay for the complex multi-task
learning network, it takes 200 ms for the HyperFace to pro-
cess a face. As our target solution must be able to meet
the real-time requirement, the HyperFace is therefore not
considered as a potential candidate. Figures 9 and 10 show the

FIGURE 9. Comparison with contemporary approaches in NME vs. the
fraction of the test faces on 300-W.

FIGURE 10. Comparison with contemporary approaches in NME vs. the
fraction of the test faces on AFLW.

comparisons with other contemporary approaches in terms
of the NME versus the fraction of test faces on 300-W and
AFLW databases, respectively. Both figures demonstrate the
same performances as shown in Table 5 but from a different
perspective.

Note the performance improvement from the previous
MDN [15] to the EEMD (3 PCs), and then to the EEMD
(14 PCs). The improvement made by the facial contour detec-
tion and CDN edge embedding appears more significant than
that made by incorporating more pose groups in the frame-
work. The experiments have verified that the facial landmark
localization can be better solved by considering the contour
features in the learning phase. More pose groups make the
shape variation in each groupmore constrained, and therefore
make the localization easier for the regression network to
handle. An attractive merit of the EEMD framework is
the 18 ms/face processing speed, contributed by the simple
network structure adopted. Compared with 76 ms using the
3DDFA [7], 150 ms using the CMC-CNN [5] and 200 ms
using the Hyperface [9], the EEMD can be considered as
one of the fastest and most effective approaches for face
alignment across large poses.

VI. CONCLUSION
Most landmarks are located on specific contours/edges, and
the proposed EEMD framework can be one of the pioneer
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works that consider this observation. The EEMD framework
consists of four components: 1) the YOLO3 face detector,
2) the MDN pose classifier, 3) the CDN contour detector and
4) the MDN landmark detectors. The CDN contour detector
is modified from the RCF edge detector with modifications
on the design of the convolution blocks and layers. With
the hierarchical features extracted from selected convolution
blocks, the CDN can generate edges in close similarity to
the targeted landmarked edges. The MDN architecture is
better understood from this study. It reveals that multiple
dropouts can better stabilize the training, and dropouts can
be better implemented at convolution layers, instead of at the
common fully-connected layers, especially for the regression
network. Extensive experiments show that the EEMD can be
an effective and competitive real-time solution for face align-
ment. We would consider the fused features from multi-task
learning using simplified architecture to warrant the runtime
speed in the continuing phase of this research.
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