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ABSTRACT Many community discovery algorithms add attribute information of nodes to further improve
the quality of community division in the complex network with redundant and discrete data, but these
algorithms lack of multi-dimensional information, such as users’ interests in social networks, social relations,
geography and education background, in addition to topological structure and attribute information. There-
fore,this paper proposes a Multi-dimensional Information Fusion Community Discovery(MIFCD) method.
Firstly, based on the idea of label propagation, link information and attribute information are combined to
get link weights between nodes. Secondly, link weights are added to the topology potential to divide the
sub group communities. Finally, the sub group communities are combined by using the distance information
and attribute information of the core nodes between communities. In order to verify the effectiveness of the
algorithm proposed in this paper, the algorithm is compared with six community partition algorithms which
only consider the link information of nodes and consider the two kinds of information of node attributes and
links. Experiment results on eight social networks show that this method can effectively improve the quality
of community classification in both attribute communities and non-attribute communities by analyzing
four evaluation indexes: improved modular degree, information entropy, community overlap degree and

comprehensive index.

INDEX TERMS Community division, complex network, discrete data, multi-dimensional information.

I. INTRODUCTION

Many complex systems can be regarded as complex and
abstract networks composed of vertices and links or edges,
such as computer networks, information networks, social
networks, biological networks, etc. [1]-[4] Therefore, com-
munity detection problems are of great significance to the
study of complicated systems and our daily life. In a gen-
eral manner, community detection views the most closely
connected nodes as being part of the same community,
so as to better understand the whole social network and
utilize resources [5]. In fact, the research results of com-
munity detection can be applied to personalized interest
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recommendation [6], [7], protein function prediction [8], [9],
and traffic network detection [10]-[12].

At present, a variety of community detection algorithms
have been proposed explore the community structure of
complex networks. Based on graph partitioning, community
detection needs to define the number of partitions of the
community and the volume of the community in advance,
realizing the community partitioning by minimizing the num-
ber of link edges of a community, such as the Kemighan-Lin
algorithm [13] and Spectral Clustering [14]. Community
detection based on clustering uses the thought of clustering
via the relation of nodes, such as the GN algorithm [15],
Newman greedy algorithm [16]. Community detection based
on maximum modularity uses the modularity to obtain
the optimal network community division, such as the
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Louvain algorithm [17]. The results of these studies is the
communities which may incorporate different dimension
information since they only consider the strengths of connec-
tions between individuals, and there is no analysis of differ-
ent dimension information characteristics in the process of
community detection. However, the network in the real scene,
such as social network, will be affected by many factors
such as interest, social relationship, region, education back-
ground and so on. Therefore, many scholars add the attribute
information of nodes into the algorithm research of commu-
nity detection. Community detection based on a nonnegative
matrix uses the thought of a nonnegative matrix, decom-
poses a node’s connection matrix and obtains the node’s
ownership matrix, such as the SACluster algorithm [18],
BAGC algorithm [19] and LANMF algorithm [20]. Com-
munity detection based on labels uses randomly generated
labels of each node and refreshes the labels of each node in
rounds until the labels of each node no longer change, such
as the NGLPA algorithm [21], ELPA-ACO algorithm [22],
LPPB algorithm [23], etc. Although these algorithms take
into account the attribute information of nodes to make the
community modular, but due to the characteristics of the real
network data, such as redundant relationship, large amount
of data storage, discrete data distribution and so on, the com-
munity is divided into a high degree of overlap and a large
number of communities.Therefore, how to make full use
of this complex multi-dimensional information to improve
the quality of results has become an important problem for
community detection.

The algorithm proposed in this paper divides social net-
works into communities based on topological potential struc-
ture. Community detection based on the domain topological
potential uses node connection information to build the topo-
logical potential field in which we can partition the commu-
nity. Many researchers have proposed numerous improved
algorithms. For example, the DOCET algorithm [24] is anal-
ysed under the topological potential field in the valley struc-
ture according to the node position. However, through the
experimental process, it is proved that, for the DOCET algo-
rithm, although the value of modularity is large, the number
of community partitions is also large.Partitioning the commu-
nity according to the theory of topological potential causes
three or four nodes to be isolated as a community.There are a
large number of isolated communities that are easy to affect
the public opinion push and community expansion of the real
scene. HCDTP algorithm [25] divides the initial community
according to the node topology potential, and selects the
community corresponding to the maximum module degree
as the final community structure by community merging.
Although the algorithm reduces the number of isolated com-
munities, it lacks consideration of the network affected by
multi-dimensional information because the community mem-
bers interact in a large number of distinguishable ways in
various fields.

Therefore, this paper proposes a Multi-dimensional Infor-
mation Fusion Community Discovery(MIFCD) method,
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which is a topological potential community discovery algo-
rithm combined with label propagation. First, the attribute
information is constructed in conjunction with the thought
of label propagation to obtain the link weight between the
nodes. Second, the link weight is added to the topological
potential to construct the topological potential field. Third,
the core node is used to partition the subgroup community.
Fourth, the distance of the core nodes between the subgroup
communities is used to partition the community.

The rest of this paper is organized as follows: The second
section explains the proper nouns and algorithms appear-
ing. The third section introduces the experimental pro-
cess and environmental analysis. In the fourth section,
the designed algorithm performs confirmatory experiments
through multiple experimental sets, including several param-
eter experiments to optimize the algorithm. The results of
the experiment were evaluated by citing several evaluation
criteria. Finally, we consider the idea of future development
based on these results.The contributions are summarized as
follows.

We construct a new community discovery algorithm based
on topological potential energy, which is fast and effective
for community partitioning with a large number of discrete
points.

« We construct attribute characteristics between nodes
with link and attribute information of nodes, where com-
munities with closely linked members and highly similar
attributes can be detected effectively.

« We design a propagation probability of label, that is the
link weight between nodes. It is constructed according
to attributes between nodes, which is based on charac-
teristics of Label Propagation Algorithms.

o Community merging is achieved by distance between
core nodes and attribute characteristics. It solves the
problem of partitioning communities by using the node
with the highest local topological potential as the core
node of the community. The phenomenon of too many
communities and too few nodes in community detec-
tion is reduced meanwhile quality of community is
kept.

Il. RELATED WORKS

A. TOPOLOGICAL POTENTIAL

Topological potential is a virtual potential field con-
structed in the network topological space, as presented by
Gan ef al. [26]. The topological potential refers to the topol-
ogy theory in mathematics and the field theory in physics
and regards the network G as an abstract system containing n
nodes and their interactions. There is a field of action around
each nodule, and any node in the field receives the influence
of its surrounding nodes. However, the influence of the node
rapidly decays as the network distance increases.

Definition 1 (Topological Potential Field): Given a net-
work G = (V, E), all nodes in the network v;, 1 < i < nhave
a topological potential ¢(v;), and the topological potentials of
all nodes interact to form a topological potential field.
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Definition 2 (Topological Potential): Given a network
G = (V,E), there is a network node V = {vi, vo, - - -, vy}
and anode edge set E = {(v,-, vi)lvi,vieV, i ;éj}, and the
topological potential calculation formula of each node is as
follows:

n dy
pv) = Y Im(v) x e~ )’] ()

j=1

where d;; denotes the network distance or hop count between
node v; and node vj, influencing factors o are used to control
the influence scope of each node, and m(v;) denotes the
weight of node v;, which is used to describe the inherent
attribute of each node. Through similar studies [27]-[30], let
m(v;) = 1 in this paper.

According to the mathematical properties of the Gaussian
function, if d; > L3o/ «/EJ, the topological potential influ-
ence of node v; to node v; will rapidly decay to 0 with
distance, which can be neglected. The topological potential
field is a short-range field whose range of influence is limited.
Let 0 = 0.4721 [31] in this paper; then, LSU/«/EJ = |3 x
0.4721/+/2] = 1 which means that network nodes only have
influence on their neighbour nodes.

B. LABEL PROPAGATION

Definition 3 (Node Influence): Let each node in the net-
work G = (V,E) have an influence value, expressed in
LR. Since most of the networks are not connected graphs,
this paper uses the LeaderRank algorithm proposed by
Lii er al. [32] Li et al. [33]. to calculate the LR values of the
nodes. The LeaderRank algorithm mentions that the social
network is not a strongly connected graph, so a node g
(Ground Node) is introduced to connect with other nodes to
make the social network become a strongly connected graph.
The core formula of the LeaderRank algorithm is as follows:

N+1
an
LR(t+1) =Y ﬁmj(z) )
j=1 "
LR, (t
LR; = LRi(t.) + % 3)

where aj; denotes whether node j to node i has a link (if the
link exist, aj; = 1, else aj; = 0), K" denotes the out-degree
of node j, N denotes the total number of nodes, LR;(¢) denotes
the score of node j at time ¢, ¢, denotes the time of LR;(t)
convergence, LR;(t.) denotes the score of the node at time 7,
and LR; denotes the final score of node i.

Figure 1 shows a small social network topological structure
diagram, with 18 nodes in total, which represents a person
who has one hobby. We divide the hobbies into two categories
and use two different icons to represent people’s hobbies. The
line connections between nodes represent the relationships
between people. As shown in Table 1, through the formula
above, we can calculate the node influence of each node of
this simple social network dataset.
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FIGURE 1. Small social network.

TABLE 1. Node influence of small community networks LR.

Node ID Inf Node ID Inf

1 0.762913 10 0.762707
2 0.91551 11 1.06772
3 1.06808 12 0.91516
4 1.06807 13 1.37268
5 0.915294 14 1.06761

6 1.06803 15 0.762559
7 1.06789 16 1.06758
8 0.915294 17 1.06758
9 1.06778 18 1.06758

Definition 4 (Propagation Characteristic k): Define k;j;
as the propagation characteristic metric of the label from
node j to node i.

_ log(1 + LRy)
" log((1 + LR x (1 + LRy))

This propagation characteristic is determined by the node
influence of node v; and node v;. While LR; is much larger
than Inf}, ki; ~ 1, which shows that the influence of node
vj is larger, and node v; will be easily affected by node v;.
In contrast, while LR; is much larger than LR;, ki« ; ~ 0,
which shows that the influence of node v; is larger, and node
v; will not be easily affected by node v;.

From the calculations above, the node influence of each
node can be obtained. Figure 2 shows the node influence of
node 1, node 2, and node 3. According to the formula of
definition 4, we can obtain that:

alog(1 +0.762913)

“

ki<—j

kye | = ~ 0.465892
log((1 + 0.762913) x (1 + 0.91551))
log(1 +0.91551
kiy = og(l + ) ~ 0.534108
log((1 +0.762913) x (1 + 0.91551))
log(1 + 0.762913
k3ey = og + ) ~ 0.438303
log((1 +0.762913) x (1 + 1.0680))
log(1 + 1.0680
ki s = 0g(1 + ) ~ 0.561696

log((1 4+ 0.762913) x (1 + 1.0680))

The influence LR; of node 1 is smaller than the influence
of node 3 and node 4. By comparison, we find that the prop-
agation characteristic of node 1 to node 2 is lower than that
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LR;=0.762913

FIGURE 2. Propagation characteristics of nodes in simple social
networks.

of node 2 to node 1. Similarly, the propagation characteristic
of node 1 to node 3 is also lower than that of node 3 to
node 1. Thus, the propagation characteristic value can reflect
the difference in the degree of influence between the node
with high influence and the node with low influence.

C. SIMILARITY BETWEEN NODES

The realistic social network not only has the topological struc-
ture characteristics, but the internal properties of the nodes in
the network are also easy to obtain. For example, the scholar
records in the C-DBLP have the research direction, the work
unit and other information, and thus the attribute charac-
teristics of the nodes (the similarity of the nodes) contain
two parts: the structural attribute S¢ and the node internal
property In.

Si,j = Sl‘i,j + In,-,j 4)
structural attribute:

51y = ANONL ©)

NI

node internal property:

I,
In;j = - Z ¢ (ink, injy)
%=
1, ing =ing
0, iny # inj

¢(ink, injr) = { @)

N; represents the set of all neighbour nodes of node i and
node i itself. in; = {iny, iny, - - - , in;} is the internal property
set of node i, in;; is the zth attribute value of the node, and z is
the total number of internal attributes.

In the social network data set shown in Figure 1, both
node 1 and node 2 have the same neighbour node 3 and
node 4, so the structural attribute is St; » = ﬁ = 0.57735.
Node 1 and node 2 have the same hobby, so the internal
property is Inj 2> = % x (1 + 1) = 1. The attribute feature
between node 1 and node 2is S12 = 0.5773541 = 1.57735.
In the same manner, S;3 = 0.51640 + 1 = 1.51640,
S1,4 =0.51640 + 1 = 1.51640.
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Definition 5 (Transmission Probability of the Label
(Correlation Strength Between Nodes, the Edge Weight)):
The label of node j propagates to node i with probability
P(i < j) - P(i < j) depends on the similarity measure S; ; of
node 7 and node j, the propagation characteristic metric k;;
and the adjacency matrix (i, j)

P(i < ) = Sij X kij x (i, J) ®)

Ill. THE FRAMEWORK FOR COMMUNITY DISCOVERY

A. IMPROVED TOPOLOGICAL POTENTIAL

In the paper we propose a improved topology potential
community discovery algorithm. First, in this work, we use
the characteristics of information propagation to transform
the attribute structure In and the chain relationship E of the
nodes into a link weight relationship R between nodes. Sec-
ond, we use the topological potential to transform a network
structure G = (V, E) with a link relation into a topological
potential domain G’ = (V,E, ¢) with a mountain shape.
Third, we find the local highest point in the spatial structure
of the mountain shape, from which we partition the subgroup
communities. Finally, according to the distribution of the
subgroup community, we merge the subgroup community to
obtain the community partitioning result C.

The transmission probability of the label from node i to
node j reflects the ability of the label to propagate from node i
to node j and can also be considered as the weight of the
directed edge of node i to node j. Thus, the weight of the
directed edge from node i to node j is formulated as

ry = P < i) ©)

The traditional topological potential algorithm utilizes the
link relationship to construct the topological potential field
without considering the attribute relationship between the
nodules. The definition of a community is to transform a
node with a tight link into a community, but the attribute
relationship between the nodules also affects the quality of the
community partitioning and the application of the real scene.

Therefore, we need to use the attribute relationship and
the link relationship between the nodules to construct the
environmental impact factor r; of the topological poten-
tial between the nodules; that is, the topological potential
between the node i and the node j is affected by the envi-
ronmental impact factor. The formula for the enhanced topo-
logical potential is improved as follows:

- dij 1
o)=Y [m(vy) x ryj x e~ )] (10)
j=1

Since each node has attribute information and link infor-
mation, it cannot determine the topological potential of the
node and judge the impact on the neighbour node simply by
the number of links of the node. Thus, we will learn from
the thought of label propagation to calculate the probability
P(vj < v;) that the label propagates from node v; to node v;
and then the environmental impact factors r;; = P(v; < v;)
of nodes v; and nodes v;.
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r,=0.73487

FIGURE 3. Environmental Impact Factor for Node 1 of a Small Social
Network.

It can be calculated by the formula above that

rip = 51’2 X kz(;l X 5(1, 2)

1.57735 x 0.465892 x 1
= 0.73487,

ri3 = 0.66462,

ri4 = 0.66463.

Due to the topological potential formula of the node

n di;
_(ZUN2
o) =Y [m(v) x ryj x e~ )]

Jj=1
n dj;
—(Giy2
= [Zrij]xe (rr),
j=1

we can calculate )/ r;j of the node 37 ry; of v; first. As shown
in Figure 3, what we can know about node 1 is that

n
E Vlj
J

rp2 4 ri3+ris

0.73487 4 0.66462 4 0.66463
= 2.06412.

The transmission probability of the label of node 1 to node 2
determines the capability strength of node 1 to transmit infor-
mation to node 2, thereby also determining the attribute infor-
mation and topological potential changed after connection
information of node 1 to node 2.

As shown in Table 2, through the formula above, we can
calculate result of accumulating the environmental impact
factors of each node to its neighbour nodes.

Table 3 is a calculation of the topological potential value
of each node of the social network dataset of Figure 1 using
the improved topological potential formula 10. The node with
the highest local topological potential is marked with a red
five-pointed star as shown in Figure 4.

B. SUBGROUP COMMUNITY PARTITIONING

Through the calculation of the node topological potential,
the link structure of the network is transformed into the topo-
logical potential field of the mountain shape. The partitioning
of the community is similar to the partitioning of mountains.
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TABLE 2. The sum of the node environmental impact factors for small
social networks.

Node ID Z;ﬂ Tij Node ID Z;L Tij
1 2.06412 10 2.06413
2 2.63145 11 3.56152
3 3.43374 12 2.24358
4 3.47960 13 4.06151
5 0.86998 14 3.01314
6 1.05408 15 1.76751
7 0.91799 16 3.94008
8 2.42029 17 3.31787
9 3.27959 18 3.61137

TABLE 3. Node topological potential with link weightfor small social
networks.

Node ID %) Node ID ©
1 0.023236 10 0.023236
2 0.029622 11 0.040093
3 0.038654 12 0.025256
4 0.039170 13 0.045721
5 0.009783 14 0.033919
6 0.011866 15 0.019897
7 0.010334 16 0.044354
8 0.027246 17 0.037349
9 0.036918 18 0.040654

FIGURE 4. Topological potential local maximum node for a simple social
network.

Each mountain has peaks, valleys and slopes, corresponding
to the core nodes, overlapping nodes and internal nodes of the
community. The partitioning of the community is similar to
the partitioning of the mountain range, starting from the top
of the mountain.

Definition 6 (The Core Nodes): Assume that in a social
network G = (V, E), the topological potential field is G’ =
(V, E, ¢), and the neighbour node of node v; is N;. Vv; € N;,
and if ¢(v;) > ¢(v;), then node v; is the local highest point of
the topological domain.

From the definition above, it can be seen that the core node
is the local highest point, that is, the peak node. Because the
core node originates from the local maximum value of topo-
logical potential, the quality and quantity of community parti-
tion through the core node are easily affected. Therefore, the
community currently partitioned by the core node is called
the subgroup community and needs further processing later.
The node identified by the five-pointed star in Figure 4 is the
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local highest point of the topological potential, which is the
core node of the current subgroup community.

Definition 7 (The Overlapping Node): Assume that, in a
social network G = (V, E), the topological potential field
is G = (V, E, ¢), and the neighbour node of node v; is N;.
Vv; € N;, and if ¢(v;) < ¢(v;) and node v; is in the valley of
the community of two different core nodes, then node v; is the
overlapping node of the topological domain, that is, the valley
node.

Valley nodes are not necessarily overlapping nodes. If the
valley node is located just between the communities of the
same core node, the valley node is directly attributable to
the community in which its neighbour node is located. Thus,
if valley node i is between the communities of two different
core nodes, it can be called an overlapping node.

Definition 8 (The Internal Node): Assume that, in a social
network G = (V, E), the topological potential field is G’ =
(V,E, ¢), and the neighbour node of node v; is N;. If the
internal node satisfies any of the following conditions, then
it is tenable: (1) Av; € N, if ¢(v;) < ¢(vj) and Fv; € N;, and
if ¢(v;) > ¢(v;), then node v; is in the slope position, which
is the internal node of the topological potential domain. (2) If
Yv; € Ni, ¢(vi) < ¢(v;) and node v; is in the position of the
valley of two communities with the same core node, this node
is the internal node of the community.

There are two cases for the internal node. In the first
case, the node can be directly judged as an internal node
according to its slope position. The second case is more
complicated, and we need to judge the nodes of the valley.
Because the partitioning of the community is not a parallel
process, when the node at the valley location is encountered,
only after the neighbour node community of the node is
partitioned can we determine whether the node is an internal
node or an overlapping node. At the end of the community
partitioning, the nodes marked as a valley need to be judged
again.

Definition 9 (The Edge Node): Assume that, in a social
network G = (G, E), the topological potential field is G’ =
(V,E, ¢), and the neighbour node of node v; is N;. Coyeriap
is a set of overlapping nodes, and Cyo—oyeriap 1S a set of
non-overlapping nodes in the community. (1) If v; € Coyeriap,
then node v; is an edge node; (2)3v; € N;, if vi € Cro—overtap
but N; & Cro—overiap and Nj & Coyeriap, then node v; is an edge
node.

An edge node can be an internal node of a community or
an overlapping node of a community. Each node v; records
its shortest distance CND;; to the core node j of its home
community. In theory, most of the edge nodes are farthest
away from the core nodes, but it is a bridge of communication
between two neighbouring communities. That is, according to
the edge node, the core node distance of the two neighbouring
communities can be obtained.

The Pseudo code for subgroup community partitioning is
given as Algorithm 1. According to algorithm 1, the small
social network in Figure 1 is divided into sub group commu-
nities and the result is shown in Figure 5.
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FIGURE 5. Subgroup community partitioning.

Algorithm 1 The Subgroup Community Division

Input: G’ = (V, E, ¢), a core node vg,the neighbour node
of node vi is Ng.

Output: the community node set C; corresponding to core
node k, edge node set Cy_cgge, internal node Ci_jnrernal
and overlapping node set Cy_oyeriqp- CND; j-the distance
between the core node i and the node ;.

Cr < ¢, Ck—edge < &, Cr—internal < ¢, Ck—overlap <~ ¢

for all node v; € Ny do
if vi ¢ Ci—internal and v; ¢ Crk—overlap then
CNDy ; <1
CommunityExtensionFunction(v;,
Ck—overlap)
end if
end for
Ck <~ Ckfimernal U Ckfoverlup
for all node v; € C do
if v; satifies Definition 9 then
Ck—edge <~ Ck—edge U Vi
end if
end for
CommunityExtensionFunction(v;, Cy —internai> Ck—overiap)
if v; satifies Definition 7 then
Ck—overlap <~ Ck—overlap U Vi
else if v; satifies Definition 8 then
Cr—internal < U Vi
for all node v; € N; do
CNDy, j < min(CNDy ; + 1, CNDy ;)
CommunityExtensionFunction(v;,
Ck—uverlap)
end for
end if

Ck —internal »

Ck —internal »

C. SUBGROUP AMALGAMATION

In the subgroup community partitioning, nodes whose topo-
logical potential values are local maximums are consid-
ered as peak nodes, and one peak node corresponds to one
community. However, there are two situations in subgroup

3229



IEEE Access

R. Fei et al.: MIFCD Based on Topological Potential

community partitioning. The first case: If the nodes of the
social network dataset are sparse and the degree of nodes is
similar, it is easy to cause problems that too many communi-
ties will be divided, the community contains too few nodes
and so on, which will affect the quality of the community
partitioning and the application in reality. Thus, we will make
decisions based on the influence of the distance between the
peak nodes on the amalgamation of the subgroup. The second
case: The divided communities have no path to the others,
which means that isolated subgroup communities exist. These
isolated subgroup communities cannot be amalgamated by
the distance relationship between the core nodes, so we pro-
pose a specification to amalgamate isolated subgroup com-
munities to reduce the number of communities.

1) CALCULATE THE DISTANCE BETWEEN

SUBGROUP COMMUNITIES

Since the number of nodes in the social network dataset is
large, if the distance between the core nodes is calculated by
the method of depth-first traversal, then the calculation com-
plexity is high and the time consumption is large; therefore,
to obtain the distance between the upper peak nodes quickly,
while we partition the sub-group community, we calculate
the distance between each node to its community peak node,
and finally we analyse three cases to calculate the distance
between the subgroup communities.

a: THE TWO SUBGROUP COMMUNITIES DO NOT OVERLAP,
BUT THE EDGE NODES ARE CONNECTED(CALCULATE
ACCORDING TO EDGE NODES)

As shown in Figure 6, although there are no overlapping
nodes in the two subgroup communities, their edge nodes
are connected to each other. In this case, since each edge
node stores the shortest distance CND reaching the subgroup
community to which it belongs, we can use the edge nodes
to perform information interaction to obtain the distance
between the core nodes of the two subgroup communities.
However, the distance between the core nodes of the subgroup
community to which the edge node belongs is not necessarily
the same, and the shortest distance is selected as the distance
CCD that the two subgroup communities do not overlap but
the edge nodes are connected.

K

FIGURE 6. Subgroup community is adjacent.
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b: SUBGROUP COMMUNITIES DO NOT OVERLAP AND
EDGE NODES ARE NOT CONNECTED.(CALCULATE
ACCORDING TO EDGE NODES)

The subgroup community is partitioned according to the
topological potential value of the node from high to low,
but once it hits the current node whose top potential is the
local lowest point, that is, when it is partitioned until the val-
ley nodes, the partitioning of current subgroup communities
ends. The subgroup community partitioned by this method
will actually exhibit the situation shown in Figure 7; that
is, the distance between the two sub-group communities is
very close, but the topological potential values of the nodes
in the middle of their valley nodes are the same, that is,
the valley area between the two subgroup communities is
a ““small plain.” The subgroup community partitioning has
only reached the nodes on the edge of this “small plain,” so
the two sub-community communities that do not overlap and
the edge nodes that are not connected may have very close
distances between their core nodes.

Sis

FIGURE 7. Subgroup community is not adjacent.

To calculate the distance between the core nodes of two
subgroup communities that do not overlap and edge nodes
that are not connected, we use the edge node detection
method. The edge node detection method uses the edge nodes
of the current subgroup community to jump to the outside
of the subgroup community according to the set step size.
Whenever the next node is skipped, it is first determined
whether the current node belongs to other subgroup commu-
nities. If the answer is yes, we calculate the distance between
the two communities according to the set step size of the
jump and the information of the initial node and the current
node; if the answer is no, we jump to the next node. Due to
the large number of nodes in the dataset and the complex
node relationship, it is impossible to predict whether the
closest subgroup community can be found. Therefore, when
performing edge detection, the step size of the set is set,
and the value of the step size is set to 1/2 of the Euclidean
distance of the current edge node reaching the core node of
the subgroup community.

¢: SUBGROUP COMMUNITIES OVERLAP (CALCULATE
ACCORDING TO OVERLAPPING NODES)

As shown in Figure 8, there are overlapping nodes between
subgroup communities, indicating that there is a certain rela-
tionship between the two communities. We only need to
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FIGURE 8. Subgroup community overlap.

accumulate the distance from the overlapping nodes of the
subgroup community to the core node and finally take the
shortest path length.

For the calculation of the distance between subgroup com-
munities in algorithm 2, we first process and calculate the
three cases above and obtain the shortest distance of the
community. Then, we compare the results of the three cases
to take the minimum value. Finally, we obtain the shortest
distance between the two neighbouring communities.

2) SUBGROUP COMMUNITY AMALGAMATION

Through the analysis and calculation of the three cases above,
we obtain the shortest path of the core nodes between two
communities. According to the distance of the core nodes,
similar communities can be amalgamated, but in fact, many
data sets have a sparse link relationship between nodes, that
is, there are many isolated nodes and very small “isolated”
communities, as shown in Figure 9.

FIGURE 9. Node distribution of the citeseer dataset.

Figure 9 shows the data node distribution of the citeseer
data set. From the figure, we can see that the nodes at
the top left of the figure have a close relationship, but the
nodes below the figure are very sparse. The sparseness of
nodes tends to cause the number of partitioned communi-
ties to be determined by these sparsely distributed nodes,
making the range of community partitioning too small, thus
losing the meaning of the community. Therefore, after the
subgroup community partitioning, the subgroup community
needs to be amalgamated according to the sparse distribution.
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Algorithm 2 The Shortest Distance Between Current Core

Nodes

Input: the topological potential field G = (V,E, ¢),
the core node set Ceyre, the community node set Cy cor-
responding to core node k, edge node set Ci_qge, internal
node Cy_internai and overlapping node set Cy_overiap. CND
is the distance between the node and arriving core node,
the neighbour node of node vy is N.

QOutput: the shortest distance between current core nodes
CCD.
for all node v; € C¢p do

for all node v, € Cr_overiap do
if v, € Ci_oyeriap and i # k then

CCDy; < CCDijx <« min(CNDy, +
CND; ,, CCDy ;)
end if
end for
end for

for all node v; € Cgpre do
for all node v, € Cy_cqg. do
for all node v,, € N, do
if v, € Ci_eqge and n # k then
CCDy,; < CCD; y < min(CNDy .+ CND; , +
1, CCDy i)
elseif v, ¢ Ci_.4 and n # k then
d < max(CCD)/2
step < d — CNDy
NonOverlapCommunitiesDistanceFunction(vy,
Vi, d, step)
end if
end for
end for
end for
NonOverlapCommunitiesDistanceFunction(vy,
step)
if step > 0 then
for all node v; € N,, do
if v; € Ci_¢qge and t # k then
CCDy ;s < CCDy < min(d — step + CND; ; +
1, CCDy ;)
else
Function(vg, v;, d, step — 1)
end if
end for
end if

Vns d’

Thus, subgroup community amalgamations are divided into
two kinds: (1) adjacent subgroup community amalgamations
and (2) sparse subgroup community amalgamations.

a: ADJACENT SUBGROUP COMMUNITY AMALGAMATION

The shortest path of the core node between two adjacent
communities is stored in the CCD; calculate d = max(CCD),
set ¢ as the amalgamation parameter to take the value 0 — 1,
and ¢d is the amalgamation distance. While CCD;; < ¢d,
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we perform the community amalgamation, and one core node
in the two subgroup communities is randomly set as the core
node of the merged community.

b: SPARSE SUBGROUP COMMUNITY AMALGAMATION

Definition 10 (The  Sparse Subgroup  Community):
Assume that, in a social network G = (V, E), Cye is the
community core node set, C_,qg. is the community edge
node set of core node k, maxNum is the maximum number of
nodes in an isolated community. If 3v; € Ceope, if Yv; € Cj,
VYv; € Ni, vy € Cjand C; < maxNum, them the community
whose core node j is sparse community.

Since there is no connection between the sparse sub-
group community and other communities, it is stipulated
that these sparse subgroup communities are amalgamated
through the information attributes of their core nodes. That is,
the sparse subgroup communities with the same information
attributes of the core node points amalgamate into one large
community.

Since the nodes of a social network have multiple
attributes, there is at least one common attribute between
the core nodes of two isolated communities when merging
isolated communities.

Algorithm 3 is the pseudo code of sub group community
merging, which includes neighborhood community merging
and sparse sub group community merging.

IV. EXPERIMENT

A. EXPERIMENTAL DATASET

To prove the improved experiment effective, three com-
munity network datasets with links and attributes and five
non-attribute social network datasets were selected for the
experiment. The specific information is shown in Table 4:

TABLE 4. Dataset information.

Nodes Edges .

Dataset Number | Number Attribute
citeseer 3312 4732 6
cora 2708 5429 5
WebKB 877 1608 5
facebook-combined 4039 88234 -
email-Eu-core 1005 25571 -
p2p-Gnutella06 8717 31525 -
CA-GrQc 5242 28980 -
hep-th 8361 15751 -

B. METHOD OF EVALUATION CRITERIA

To evaluate the improved algorithm, the experiment used
the improved modular degree QF, [34], information entropy
Entropy [19], community overlap degree Overlap and com-
prehensive index F as evaluation indexes to observe the
quality of community partitioning according to the algorithm.

1) IMPROVED MODULAR DEGREE ng
Since the main content of this paper is community parti-
tioning of overlapping communities, the evaluation criterion
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Algorithm 3 The Subgroup Community Amalgamation

Input: the topological potential field G = (V,E,¢),
the core node set C,ye, the community node set Cy corre-
sponding to core node k, ¢ as the amalgamation parameter
to take the value 0 — 1, maxNum is the maximum number
of nodes in an isolated community, z is the total number of
internal attributes .

Output: the Core node set of sparse community Cgparse,
the subgroup community amalgamation result.

/* Adjacent subgroup community amalgamation®/
d = max(CCD)
for all node vi; € Cepre do
for all node vy € Cepre do
if CCDy1.x2 < @d then
Ceore < Ceore — Vi2
Cr1 < Cri U Cr2
end if
end for
end for
/*Sparse subgroup community amalgamation*/
for all node vi; € Cepre do
if Cx < minNum and the community Cy satisfy Defini-
tion 10 then
Csparse <~ Csparse U Vk
end if
end for
for all node vy1 € Cypgrge do
for all node vy € Cyparge do
if Ing1 0 > % then
Ceore < Ceore — V52
Csl <~ Csl U Cs2
end if
end for
end for

for modular degree is based on the method of introduc-
ing an optimization formula of the membership coefficient
and simultaneously discovering overlapping and hierarchical
community structures. The membership coefficient of the
node is redefined as the number of the community to which
the node belongs. The higher the improved module value is,
the closer the internal links of the community are shown. The
specific formula is as follows:

e_ L o kiky 1
05 =5- 2 > I 510, (11)

ceCijec

where O; denotes the number of communities to which node
i belongs, and the rest and non-overlapping communities find
that the evaluation index module degree Q is similar.

2) INFORMATION ENTROPY

Information entropy uses the formula of the internal nodes of
the community to magnify situations of different attributes
so as to judge the rationality of the community for
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TABLE 5. Parameter ¢ experiments.

P Number of Improved Information Comprehensive
arameter Data set o Overlap .

communities modular degree entropy index F’
citeseer 160 1.053442 0.634315 0.730994 0.935933
0.2 cora 74 1.143279 0.922984 0.624642 1.212798
WebKB 22 1.080957 0.839338 1.72429 1.292081
citeseer 132 1.056159 0.612224 0.714449 0.909849
0.5 cora 45 1.138847 0.563148 0.832312 0.876022
WebKB 20 1.079817 0.854107 1.72246 1.309186
citeseer 126 1.055253 0.609915 0.707751 0.906295
0.8 cora 43 1.139217 0.559642 0.830639 0.871646
WebKB 19 1.091220 0.800012 1.64698 1.238248
citeseer 125 1.065519 0.567909 0.734484 0.863408
1.0 cora 43 1.139217 0.559642 0.830639 0.871646
WebKB 19 1.091220 0.800012 1.64698 1.238248

attribute partitioning. The larger the information entropy
value is, the more situations in which the internal nodes of the
partitioned communities have different attributes there are.
The analysis of the community partitioning is unreasonable
from the perspective of attributes, and thus one hopes that the
information entropy value is small. The formula of informa-
tion entropy is as follows:

Z

k .
Entropy = Z Z %entropy(ai, c) 12)
i=1 j=1

where entropy(a;, ¢j) = —pjjlog, p;j, and p;; denotes the pro-
portion of nodes in community j that have attribute values a;.

3) COMMUNITY OVERLAP DEGREE OVERLAP

The number of overlapping nodes of the community deter-
mines the value of the community overlap degree Overlap.
This value embodies the degree of network coupling and is
calculated as follows:

1
Overlap = — Z Ic| (13)
ceC

where |c| represents the number of nodes of the community
¢ and m represents the number of network nodes.

4) COMPREHENSIVE INDEX F

In general, networks with high overlap have relatively low
modular degree, and they present negative correlation. For
experimental results, the greater the modular degree is,
the smaller the information entropy and overlap degree are,
and the better the quality of community mining. Therefore,
integrating the above situation to output more appropriate
community results, the F value is defined as a comprehensive
evaluation index.

Fo va X (Entropy + Overlap) x 2
~ QE + Entropy + Overlap

(14)

C. EXPERIMENT

1) PARAMETER EXPERIMENT

In the MIFCD algorithm proposed in this paper, the parameter
¢ determine the results of the community partitioning of the
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subgroup community. Therefore, it is necessary to experiment
with the parameter ¢ to determine the value of the param-
eter. As shown in Table 5, in this experiment, the values
of the parameter were set as 0.2, 0.5, 0.8, and 1. Through
the experimental results of the parameter of Table 5 and
from the perspective of the number of communities, as the
parameter increased, the number of communities decreased.
However, in the cora dataset and in the WebKB dataset, when
the parameter is changed from 0.8 to 1, the number of com-
munities does not change because the complicated distance
@d is taken as integer rounding. In terms of the overlap
degree, the overlap degree is highest when the parameter
in the citeseer dataset is set to 0.2, but the overlap degree
is highest when the parameter in the cora dataset and the
WebKB dataset is set to 0.5. In terms of improved modular
degree, the improved module degree is highest when the
parameter in the citeseer dataset and the cora dataset is set
to 0.2, but the improved module degree is highest when
the parameter in the WebKB dataset is set to 0.5. In terms
of information entropy, the improved information entropy
is highest when the parameter are set to 0.5 in the citeseer
dataset and the WebKB dataset, and the information entropy
is highest when the parameter in the cora dataset is set to 0.2.
Finally, from the comprehensive index analysis, it is found
that the comprehensive index is highest when the parameter
of the citeseer dataset and the cora dataset are set to 0.2, but
the comprehensive index is highest when the parameter in the
WebKB data set is set to 0.5. Therefore, it can be seen that
the value of the parameter ¢ used in this algorithm is most
suitable between [0.2, 0.5].

2) EXPERIMENTAL COMPARISON OF ATTRIBUTE DATASETS

In the experiment of attribute datasets, the subgroup com-
munity partitioning and amalgamation have been analysed
in detail. To better demonstrate the superiority of the algo-
rithm proposed in this paper, the proposed algorithm is
compared with the DOCET algorithm, LANMF algorithm,
LPPB algorithm, Louvain algorithm, SCD algorithm and
DEMON algorithm by way of experiment. The DOCET
algorithm, the Louvain algorithm, the SCD algorithm and
the DEMON algorithm only consider the link information of
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TABLE 6. Subgroup community partitioning of attribute datasets.

The number of The. number of Improved Information Comprehensive
Data set isolated Overlap .
subgroups modular degree entropy index F’
subgroups
citeseer 498 262 1.082125 0.684279 0.743478 0.995442
cora 233 54 1.180206 0.654599 0.885536 0.994164
WebKB 35 4 1.095781 0.819825 1.62086 1.259545
TABLE 7. Subgroup community amalgamation results.

Algorithm Data set The numb.e'r of Overlap Improved Information Con'lprehensive
communities modular degree entropy index F’
citeseer 160 1.0534420 0.634315 0.730994 0.9359330
MIFCD cora 74 1.1432791 0.922984 0.624642 1.2127985
WebKB 22 1.0809578 0.839338 1.72429 1.2920815
citeseer 646 1.116243 0.613582 0.708683 0.855256
DOCET cora 242 1.245199 0.492039 0.788351 0.732308
WebKB 42 1.140250 0.721182 1.76545 1.122611
citeseer 10 1.2118 0.125659 1.75542 0.241107
LPPB cora 5 1.11041 0.180929 1.3465 0.337038
WebKB 5 1.05245 0.14025 0.815319 0.260908
citeseer 12 1.84662 0.361819 2.42329 0.667109
LANMF cora 10 1.5096 0.442293 1.42948 0.768879
WebKB 10 1.7252 0.240839 1.79639 0.450845
citeseer 462 1.00000 0.891144 0.853853 1.179787
Louvain cora 105 1.00000 0.820324 0.587519 1.036625
WebKB 10 1.00000 0.643728 1.50871 0.991060
citeseer 2006 1.00000 0.422828 0.231667 0.6295375
SCD cora 1708 1.00000 0.313575 0.0753262 0.4855571
WebKB 156 1.00000 0.631668 0.50389 0.8896590
citeseer 94 0.295592 0.229837 0.17723 0.3093164
DEMON cora 125 0.647341 0.300628 0.307422 0.4572735
WebKB 20 0.508552 0.178078 0.896538 0.3160948

the nodes in the social network dataset, while the LANMF
algorithm and the LPPB algorithm use the link information
and attribute information of the nodes in the social net-
work dataset to perform community partitioning. In these
four datasets, the DOCET algorithm, the LANMF algo-
rithm, the LPPB algorithm, the SCD algorithm [35] and
the DEMON algorithm [36] can partition the overlapping
communities, while the Louvain algorithm is mainly for the
partitioning of non-overlapping nodes.

a: SUBGROUP COMMUNITY PARTITIONING
This paper performs the subgroup community partitioning
on three attribute datasets. First, the core node is determined
based on the local highest point of the node topological poten-
tial value. Then, the core node is used to partition the sub-
group community. Finally, as shown in Table 6, the subgroup
community division results are calculated and summarized.
As shown in Table 6, there are 489 subgroup communi-
ties in the citeseer dataset in which there are 262 isolated
subgroup communities, that is, half of the communities are
isolated subgroup communities. The number of nodes in the
isolated subgroup community is less than 10, so the number
of nodes in half of the subgroup community of the citeseer
dataset is too small. The number of subgroup communi-
ties in the cora dataset is 233 in which one quarter of the
subgroup communities are isolated subgroup communities.
The number of the subgroup community in the WebKB
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dataset whose number of subgroup communities is the small-
est compared to the other two attribute datasets but whose
comprehensive index is the highest is 35. According to the
number of subgroup communities and comprehensive index
in the table, the current subgroup partitioning effect of the
WebKB dataset is good, while the number of subgroups in the
citeseer datasets and the cora dataset is large. The proportion
of isolated subgroup communities in subgroup communities
is large, and these datasets need to be further amalgamated to
ensure the comprehensive quality of community division.

b: SUBGROUP COMMUNITY AMALGAMATION

In the last experiment, the subgroup community of three
attribute datasets has been partitioned, and then the commu-
nity is amalgamated according to the distance CCD between
the subgroup communities and the complicated distance ¢d.
The value of ¢ is 0.2, and the result is shown in Table 7.

As shown in Tables 6 and 7, in the citeseer dataset, 498 sub-
group communities are amalgamated into 132 communities,
which is 1/4 of the number of subgroup communities before
amalgamation; in the cora dataset, 423 subgroup communi-
ties are amalgamated into 45 communities, which is 1/5 of
the number of subgroup communities before amalgamation;
in the WebKB dataset, because of the small amount of data,
there are 20 communities after the amalgamation, which is
4/7 of the number of subgroup communities before amalga-
mation. Therefore, as for the algorithm proposed in this paper,
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FIGURE 10. Experimental comparison of three evaluation criteria.

after the community amalgamation, the number of commu-
nities in three attribute datasets has decreased. A compara-
tive analysis of the composite index with a parameter value
of 0.5 in Table 5 and the composite index in Table 6 found
that, in the citeseer dataset, it decreases from 0.959442 to
0.909849 after the amalgamation, while in the cora dataset,
it is reduced from 0.994164 to 0.876022 after the amalga-
mation. The gap between the comprehensive index after and
before the amalgamation is approximately 0.1 in the citeseer
dataset and the cora dataset. However, the reason for the
decrease in the comprehensive index of the two datasets
after amalgamation is that the improved module degree of
the subgroup communities after amalgamation has decreased.
The improved module degree of the citeseer dataset decreases
from 0.684279 to 0.612224 after the amalgamation, while
the changes in overlap degree and information entropy are
not obvious. Likewise, the improved module degree of the
cora dataset is also reduced from 0.654599 to 0.563148 after
the amalgamation, and the changes in overlap degree and
information entropy are not obvious. In contrast, the com-
prehensive index of the WebKB dataset is higher than the
comprehensive index after the amalgamation, rising from
1.255945 to 1.309186, and the difference is approximately
0.05. In the process of the subgroup community amalgama-
tion, the comprehensive index fluctuates approximately 0.1,
but the number of communities decreases significantly.

In Table 7, the algorithm proposed in this paper is com-
pared with the algorithm discovered from three other com-
munities. By comparison, it can be seen that, in the citeseer
data set, the comprehensive index of the Louvain algorithm
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is the highest, and the next is the algorithm proposed in
this paper. The reason for this is that the Louvain algo-
rithm uses the module degree optimal method to divide the
community. Therefore, compared with the improved module
degree of the other four algorithms, the Louvain algorithm
has the highest improved module degree. Although this paper
uses the improved module degree as the evaluation crite-
ria, when the community is a non-overlapping community,
the improved module degree formula is actually the module
degree formula. Therefore, the improved module degree of
the Louvain algorithm is higher than other algorithms, and
thus the comprehensive index is also high. However, in the
cora dataset and the WebKB dataset, the proposed algorithm
is highest in terms of improved module degree and compre-
hensive index compared with the algorithms found in the
other six communities. In this paper, the improved module
degree is 0.922984 in the cora dataset, and the improved
module degree of the other four algorithms is as low as
0.1; the comprehensive index is 1.2127985, which is at least
higher than 0.2 the comprehensive index of the other six
algorithms. In this paper, the improved module degree of
the WebKB dataset is 0.839338, and the improved module
degree of the other six algorithms is at least higher than 0.1;
the comprehensive index is 1.2920815, which is also higher
than the comprehensive index of the other six algorithms by
at least 0.2. Therefore, through the above analysis, the pro-
posed algorithm has certain advantages over the other six
algorithms.

Figure 10 shows the improved module degree value, over-
lap value and information entropy obtained by comparing the
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TABLE 8. Number of community data with non-attribute data.

Data sot Algorithm MIFCD DOCET LANMF LPPB Louvain SCD DEMON
ata se
facebook-combined 5 5 5 2 13 695 60
email-Eu-core 2 20 10 5 49 285 3
p2p-Gnutella06 2 112 5 5 62 7919 62
CA-GrQc 33 458 10 5 395 2466 302
hep-th 38 778 5 5 1376 3746 426

—=—MIFCD

facebook CA hep-th facebook  email

(a) Improved modular degree

FIGURE 11. Experiment of the non-attribute dataset.

proposed algorithm with the six algorithms in the form of
a bar chart. It can be intuitively seen from Fig. 12 that the
improved module degree values of the proposed algorithm
are higher than 0.5 and that the improved module degrees of
the LPPB algorithm, the LANMF algorithm and the DEMON
algorithm are all lower than 0.5. In terms of overlap degree,
the algorithm proposed in this paper has a similar overlap
value to that of the DOCET algorithm, the LPPB algorithm,
the Louvain algorithm and the SCD algorithm. The overlap
degree of the LANMF algorithm is slightly higher than that
of the other six algorithms, and the overlap degree of the
DEMON algorithm is the lowest. In terms of information
entropy, the information entropy of the proposed algorithm
is similar to that of the DOCET algorithm and the Louvain
algorithm, while the information entropy of the LANMEF is
slightly higher than that of other algorithms, and the infor-
mation entropy of the SCD is the lowest.

3) EXPERIMENTAL COMPARISON OF

NON-ATTRIBUTE DATASETS

The algorithm proposed in this paper is based on use of
the link information and attribute information to perform the
community partition on the social network dataset. However,
many studies are based on node-based link information for
community partitioning, so we also bring the algorithm into
the dataset without attributes for experimentation. Before the
experiment, we set the node’s attribute type to 1, and the node
information is set to the same attribute. In the non-attribute
dataset experiment, five datasets were shared and com-
pared with the DOCET algorithm, the LANMF algorithm,
the LPPB algorithm and the Louvain algorithm. Table 8
shows the number of community partitions of non-attribute
datasets.
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p2p

(b) Overlap

email CA hep-th

facebook

(c) Comprehensive index

Figure 11 shows the result of the improved module
degree, overlap degree, and comprehensive index of the non-
attribute community partition. According to the improved
module degree experiment in Figure 11.a, the proposed
algorithm is lower than the DOCET algorithm and the
Louvain algorithm in the CA-GrQc dataset and hep-th
dataset and only lower than the DOCET algorithm in the
p2p-Gnutella06 dataset, while it is higher than the other five
algorithms. Finally, the proposed algorithm is higher than
the other six algorithms in the facebook-combined dataset
and the email-Eu-core dataset. Moreover, as shown in the
overlap degree of Figure 11.b, it can be seen that the over-
lap of the nodes in the DOCET algorithm and the Louvain
algorithm is not high, all of which are approximately 1, and
the overlap degree value of the DEMON algorithm fluctuates
significantly. From the number of communities, the first is
in the CA-GrQc dataset, and the number of communities
proposed in this paper is 33, which is 1/20 times that of
the number of communities of the DOCET algorithm and
1/36 times that of the community of the Louvain algorithm.
In the CA-GrQc dataset, the community partitioned by the
DOCET algorithm and the Louvain algorithm is approxi-
mately 6 nodes on average. Therefore, using the improved
module degree to calculate, it will be found that, due to the
large number of community partitions, the number of overlap-
ping nodes is small, the improved module degree algorithm
is relatively high, and the final evaluation criteria are also the
highest. Figure 11.c is a calculation of the comprehensive
index, although in Fig, 11.c, the comprehensive index of
the proposed algorithm is lower than that of the DOCET
algorithm and the Louvain algorithm in the CA-GrQc dataset
and the hep-th dataset. The reason for this situation is that
the algorithm proposed in this paper has a larger module
degree than that of the DOCET algorithm and the Louvain
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FIGURE 12. Experimental comparison of two evaluation criteria.

algorithm in the CA-GrQc dataset and the hep-th dataset, and
the overlap degree is smaller. However, among the remain-
ing three data sets, the proposed algorithm is better than
the DOCET algorithm, the LANMF algorithm, the LPPB
algorithm, the Louvain algorithm, the SCD algorithm and
the DEMON algorithm. Therefore, through the experiment of
non-attribute datasets, it is found that the proposed algorithm
has certain advantages in the non-attribute datasets. It is also
found that the algorithm proposed in this paper is used to
experiment on the non-attribute datasets.

Figure 12 is a bar chart of two evaluation criteria for a
contrast experiment of seven algorithms in five non-attribute
datasets. First, it can be seen from the improved modular
degree of the blue bar that the algorithm proposed in this
paper makes the improved modular value in the other four
datasets higher than 0.5 and an improved modular value lower
than 0.5 in the help-th dataset. The other algorithms except
the Louvain algorithm with the optimal modular degree
whose improved modular degree is higher than 0.5 in the
five datasets, and the improved modular degree of the other
five algorithms all have the problem with less than 0.5. The
improved modular degree of the 5 datasets of the LANMF
algorithm is lower than 0.5, and the improved modular degree
of the SCD algorithm and the DEMON algorithm in the
p2p-Gnutella06 dataset is lower than 0.1. Second, it can be
seen from the overlap degree of the red bar that the overlap
degree of the algorithm proposed in this paper is similar to
that of the DOCET algorithm, the Louvain algorithm and
the SCD algorithm, and the overlap degree of the LANMF
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algorithm and the LPPB algorithm is generally the highest.
The overlap degree of the DEMON algorithm is significantly
different in the five datasets.

V. CONCLUSION

This paper proposes a Multi-dimensional Information Fusion
Community Discovery(MIFCD) method. The algorithm uses
the label propagation method to construct the link weights
between nodes, so that the nodes in the divided community
have close links and the internal attribute characteristics are
also highly the same. Because of the characteristics of the
actual network data, such as redundant relationship, a large
number of data storage, discrete data distribution and so
on, the algorithm of community division using local nodes
with the highest topological potential as the core nodes of
the community is easy to cause high degree of community
overlap and large number of communities.Therefore, after
the sub-group community is divided, the community merging
using the distance between the sub-group nodes and the
attribute features solves the above problems while ensuring
the tightness of the links between the nodes in the community
and the relevance of the attributes.

In order to evaluate the performance of the proposed
algorithm, we tested on three attributed data sets and five
non-attribute data sets, and and used four evaluation indexes
to compare and analyze the DOCET method, the LANMF
method LPPB method, the Louvain method, the SCD method
and The DEMON method. The experimental results show that
the algorithm proposed in this paper has high performance for
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the data set with attributes and is also effective for the data set
without attributes.
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