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ABSTRACT With the development of convolutional neural networks (CNNs) in recent years, the network
structure has become more and more complex and varied, and has achieved very good results in pattern
recognition, image classification, object detection and tracking. For CNNs used for image classification,
in addition to the network structure, more andmore researches focus on the improvement of the loss function,
so as to enlarge the inter-class feature differences, and reduce the intra-class feature variations as soon as
possible. Besides the traditional Softmax, typical loss functions include L-Softmax, AM-Softmax, ArcFace,
and Center loss, etc. Based on the concept of predefined evenly-distributed class centroids (PEDCC)
in CSAE network, this paper proposes a PEDCC-based loss function called PEDCC-Loss, which can
make the inter-class distance maximal and intra-class distance small enough in latent feature space.
Multiple experiments on image classification and face recognition have proved that our method achieve
the best recognition accuracy, and network training is stable and easy to converge. Code is available in
https://github.com/ZLeopard/PEDCC-Loss

INDEX TERMS Image classification, Softmax, PEDCC, loss function.

I. INTRODUCTION
In the past few years, convolutional neural networks (CNNs)
have brought excellent performance in many areas such as
image classification, object detection, and face recognition.
CNNs extract features from complex datasets through kinds
of convolutional layers and pooling layers, and then linear
layer is performed for classification. Due to the powerful
feature expression and learning ability of CNNs, we can solve
a variety of visual recognition tasks.

In order to address the drawbacks currently faced by
CNNs, many researchers have proposed very effective solu-
tions, such as data augmentation, regularization, dropout,
batch normalization and various activation functions. The
development of the network structure is also very rapid,
from the beginning of AlexNet [1] to VGGNet [2], and
to the deeper ResNet [3], ResNeXt [4], DenseNet [5] and
SEResNet [6], etc. The advantages of CNNs are constantly
expanded.

Recent research has gradually extended to the design of
loss function to obtain a more distinguishing feature distri-
bution, which means the compactness of intra-class and the
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discreteness of inter-class as soon as possible. Due to the
strong fitting ability of the CNNs, these methods can work
well and the accuracy of classification is improved.

Due to the advantages of clear theory, easy training, and
good performance, the traditional cross entropy loss func-
tion is widely used in image classification. But it is not
guaranteed to obtain the optimized feature distribution men-
tioned above. The contrastive loss [7] and triplet loss [8]
were proposed to increase the constraint on features. It can
easily train large-scale data sets without being limited by
display storage. But the disadvantage is that much attention
is paid to local feature, leading to training difficulties and
long convergence time. L-Softmax [9] introduces the mar-
gin parameter and modifies the original Softmax function
decision boundary, which increases the learning difficulty
by modifies ‖W‖ ‖x‖ cosθ to ‖W‖ ‖x‖ cosmθ , alleviating
the over-fitting problem, and producing the decision margin
to make the distribution more discriminative. AM-Softmax
[10] set ‖W‖ = ‖x‖ = 1, and normalize the last layer
weights and output features to reduce the impact of image’s
resolution difference and quantily difference in data set.
Then, the Euclidean feature space is converted into the cosine
feature space and cos(mθ ) is changed to cosθ − m, which
makes the backpropagation easier. For Center Loss [11],
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FIGURE 1. The PEDCC-Loss of CNN Classifier. x is output of FC1 layer, and y is output of FC2 layer.

in each batch, a class center is calculated, and the distance
between each sample and the class center is minimized. Then,
the mean square error combined with the Cross-Entropy loss
is proposed, in which the class centers are also trained by
stochastic gradient descent. However, the distances of famil-
iar classes are not guaranteed to be well separated. For exam-
ple, the class centers of class ‘‘0’’ and ‘‘6’’ inMNIST [12] are
relatively closer.

In this paper, PEDCC proposed by us in CSAE
(Zhu qiuyu et al., 2019) [13] is used to generate the class
centroids of the evenly distributed normalized weight, which
is called PEDCC weights. We replace the weight of the clas-
sification linear layer with PEDCC weights in CNNs, and the
PEDCC weights are solidified during training to maximize
the inter-class distance. In the same time, we add a constrain
similar to Center Loss [11] to calculate the mean square error
loss (MSE loss) between the sample feature and PEDCC
centroids. This can optimize the feature embedding to enforce
higher similarity for intra-class samples and the biggest diver-
sity for inter-class samples. Compared with Center loss [11],
the class centroid is fixed, evenly-distributed, and is applied
to AM-Softmax loss [10]. The method makes the feature
distribution optimal for the compactness of intra-class and
the discreteness of inter-class.

The overall system diagram is shown in Fig. 1. Details of
the proposed method are given in Section 3.

Our main contributions are as follows:
1) The PEDCC proposed by us in CSAE for Auto-

Encoder [13] is applied to image classification and
metric learning, and used as weight parameter to solid-
ify the classification layer in the convolutional neural
network. By PEDCC the distribution of class centers is
optimized, that is, inter-class distance is maximized for
class balanced samples.

2) PEDCC weights are applied to AM-Softmax [10]
loss, and the improved MSE loss between the fea-
ture vector and the predefined class centroid is calcu-
lated. The weighted sum of the two losses forms the
PEDCC-Loss. In view of the imbalance of the sam-
ple number of different classes, an optional finetuning
trick is adopted to further improve the accuracy of
classification.

3) For the image recognition and face recognition tasks,
multiple datasets (EMNIST [14], CIFAR100 [15],
FaceScrub [16] and LFW [17]) are evaluated. Com-
pared with the latest research work, our method
achieves the optimal recognition accuracy, and network
training is stable and easy to converge.

II. RELATED WORK
There are various loss functions in CNNs. Traditional loss
functions include Hinge loss, Contrastive loss [7], Triplet loss
[8], and the most commonly used Softmax loss function. But
the Softmax loss is not good at reducing the intra-class vari-
ation. To address this problem, L-Softmax (9) introduce the
margin parameter to multiply the angle between the classes
in order to increase learning difficulty. However, due to the
cos(mθ ), the training is difficult to converge. A-Softmax [18]
introduced an conceptually appealing angular margin to push
the classification boundary closer to the weight vector of each
class. AM-Softmax [10] and CosFace [19] are also directly
adds cosine margin penalty to the target logit, which obtains
better performance compared to A-Softmax [18], and easier
to implement and converge. ArcFace [20] moved cosine mar-
gin to the angular margin by changing cosθ−m to cos(θ+m),
and also discuss the impact of different decision boundaries.
But it is found by our experiments that there is no good
universality to apply to different classification tasks. Center
loss [11] innovatively discussed the distance between each
sample and the class center. The mean square error combined
with the cross entropy was added to compress the intra-class
distance. however, the center of each class is continuously
optimized during the training process.

Let us review the Softmax loss, which can be expressed as
follows:

Lsoftmax =
1
N

∑
i

Li =
1
N

∑
i

− log

(
efyi∑
j e
fj

)
(1)

where fj is the jth element of the class output vector of the
final fully connected layer, and N is the number of training
samples. Since fyi is expressed as fyi = WT

yixi, where xi
is the ith input feature, yi is its label, and WT

yi is the cor-
responding network weight. The final loss function can be
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written as:

Li = − log

(
e
∥∥W yi

∥∥‖xi‖ cos(θyi )∑
j e
‖W j‖|xi‖ cos(θj)

)
(2)

For two-classes classification, the purpose of the initial Soft-
max is to make WT

1 x > WT
2 x, that is ‖W1‖ ‖x‖ cos(θ1) >

‖W2‖ ‖x‖ cos(θ2), which gives the correct classification
result for sample x (from class 1). The motivation of
L-Softmax loss [9] is to generate a decision margin by adding
a positive integer variable m, which can constrain the above
inequalities more strictly. As following:

‖W1‖ ‖x‖ cos θ1 ≥ ‖W1‖ ‖x‖ cosmθ1 > ‖W2‖ ‖x‖ cos θ2
(3)

where 0 ≤ θ1 ≤ π
m .

AM-Softmax [10] rewrites the equation of cos(θ ) to:
ψ(θ ) = cos(θ ) − m. The above formula is simpler
than the ψ(θ ) of L-Softmax [9] in form and calculation.
In addition, based on L-Softmax [9], a constraint is added:
b = 0, ‖W‖ = 1. Compared with L-Softmax loss [9], the dif-
ference between the classes is only related to the angle of
θ , and m is angular margin. So, after the normalization of
weights and input features, the loss function is expressed as:

LAM = −
1
N

∑
i

log
es·
(
cos θyi−m

)
es·
(
cos θyi−m

)
+
∑c

j=1,j 6=yi e
s·cos θj

(4)

Center loss [11] calculates the class center of several sam-
ples of each class in each batch, and then calculates the MSE
loss between each sample and the class center.

LC =
1
2

M∑
i=1

∥∥xi − cyi∥∥2 (5)

where cyi represents the center calculated by the yi class, and
M is sample number. Finally, the joint loss function is L =
Lsoftmax + λLC .

In this paper, PEDCC is used to generate an evenly dis-
tributed class centroids, replacing the center calculated in
Center loss [11], and MSE loss is used to further reduce the
distance between the sample and the class center. Secondly,
the fixed and evenly distributed PEDCC weights are directly
used as the classification layer weights, and are not updated
during training. Finally, the two losses are combined and opti-
mized simultaneously, thus achieving the theoretical optimal
distribution. For subsequent comparision, the four main loss
functions is drawn as block diagrams as shown in Fig. 2.

We performed the visulization of features x after FC1 for
the MNIST [12] dataset, and compare various loss func-
tions in Pytorch 1.0 [21] to show the feature distribution of
two-dimensional space and three-dimensional space, respec-
tively, with epochs of 30, as shown in Fig. 3.

It can be seen that, in the Euclidean space, the PEDCC-loss
is distributed on the 2-D or 3-D spherical surface, and each
cluster is evenly distributed and compact. Comparatively,
Center loss [11] randomly clustered in the feature space,

FIGURE 2. Block diagrams of network structures for four losses.

which reduces the inter-class distance, and AM-Softmax [10]
has similar result. In the cosine space, PEDCC-loss can not
only use margin to separate the inter-class space, but also
make the clusters more evenly-distributed, and the sample is
closer to the predefined class center.

III. PROPOSED METHOD
A. THE DISTANCE OF INTRA-CLASS AND INTER-CLASS
From the perspective of statistical pattern recognition and
image classification, the original image is understood
as high-dimensional features. Through some traditional
machine learning methods, dimensionality reduction is per-
formed on high-dimensional features. The main goal of
dimensionality reduction is to generate low-dimensional
expressions with higher similarity for intra-class samples and
high diversity for inter-class samples, such as the classic LDA
method. Finally, we usually use the Euclidean distance for
image recognition, or the cosine distance for face recognition
to classify the samples.

Suppose that the sample class in the data set is wi (i =
1, 2, 3 . . . c) and c is the total number of classes. xi represents
the sample feature vectors in the class wi. So we can get
the mean µi of class wi and the mean µ of all samples as
following:

The distance of inter-class is

Dinter =
c∑
i=1

Pi(µi − µ)T (µi − µ) (6)

Thus, for the distance of inter-class, if the number of
samples is class balanced and the features are nomalized,
the distance of inter-class is maximized only if all of the µi
are evenly distributed on the feature supersphere.

The distance of intra-class is

Dintra =
c∑
i=1

PiEi(x− µi)
T (x− µi) (7)

where c is the number of classes, Pi is the prior probability of
classwi,µi is the mean of samples of classwi andµi = Ei[x].
µ is the mean of all samples and µ = E[x].
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FIGURE 3. Visualization of features x after FC1 for different methods in 2-D and 3-D space.

L-Softmax [9] introduces the concept of margin to increase
the difficulty of learning, which is more concerned with
inter-class distances than traditional Cross Entropy loss. After
addingmargin, the distribution of each class becomes slender,
which improves the gap between classes. In some visual
tasks, such as image classification, it also improves the recog-
nition accuracy, but the intra-class distance is not minimal.

Center Loss [11] learns a center for deep features of each
class and penalizes the distances between the deep features
and their corresponding class centers. Increasing the degree
of aggregation within a class is not difficult for a neural
network with powerful learning ability. However, Increasing
the inter-class distance is a difficult problem. Different clas-
sification tasks may have different distances, and the distance
between classes is relatively close. If the intra-class distance
is large, there will be overlap between class samples. This
leads to misclassification, and there is currently no effective
way to avoid this problem.

This paper creatively makes use of predefined evenly
distribution class centroids, which makes the distance of
inter-class fixed and separated from each other maximally,
and simultaneously forces the samples to close to the prede-
fined center as soon as possible.

B. PEDCC
In this paper, by pre-defined the optimal clustering cen-
ter, the clustering centers of the classes are artificially
set, and these clustering centers are evenly distributed on

the hypersphere surface of the feature space, so that the
inter-class distance is maximized.

PEDCC[13] is actually a class center µi in formula 6,7.
Because PEDCC is optimal uniformly distributed, the mean
of the class center is 0, as µ = 0. So PEDCC-Loss makes
Dintra smaller and Dinter maximal by adding constraints.
In this way, we learn a mapping function through CNNs,

and map different classes samples to the center of these
predefined classes, then to cluster them. So that the distances
between different classes can be separated maximally.

The method of generating the predefined class center
is based on the physical model with the lowest isotropic
charge energy on the sphere, that is, it is assumed that the
n charge points on the hypersphere have repulsive force with
each other, and the repulsive force decreases as the distance
between the points increases. At the end of the movement,
the point on the hypersphere stops moving. Due to the repul-
sive force, the n points will be evenly distributed on the
hypersphere. When the equilibrium state is reached, the n
points on the hypersphere are farthest apart. The detail of
algorithm implementation is visible in [13].

In [13], the sample distribution of PEDCC is visualized
in 3D space.

Since PEDCC is randomly generated, does different
PEDCC affect the final results of network training?Assuming
that there are two arbitrary PEDCC matrices, P1 and P2,
whose size is MN , where M is the input dimension and
N is the output dimension (class number), the relationship
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between them is expressed as P1 = RTP2, where R is a
rotation matrix and T is a permutation matrix. In theory,
this rotation and permutation matrix are absorbed into the
first linear layer FC1 during the network training. Therefore,
consistent results are obtained for the same latent features.
Our experiments also prove that different PEDCC does not
affect the final network recognition results.

C. PEDCC-LOSS
The previous section gives the concept of inter-class distance
and intra-class distance in pattern recognition, which is very
important in traditional machine learning and deep convolu-
tional neural networks. The essence of machine learning is
to learn good feature distribution, and PEDCC gives the the-
oretically optimal distribution of cluster centers. Therefore,
based on the above two concepts, this section will give a new
loss function called PEDCC-Loss for CNNs.

The classification layer parameters in the traditional CNNs
are trained with the overall network, and the weights are
updated using back propagation byminimalize the loss. In the
Euclidean space, the score of each sample is calculated by the
formula syi =

∥∥W yi

∥∥ ‖xi‖ cos (θyi). Then we convert scores
to probabilities by Softmax function, and obtain the result of
classification.

Because the sample numbers of each class and the qual-
ity of the image samples may be different in the dataset,
the weight vectorW is different too. the visualization ofW is
the vector from origin to the class center, and the visualization
of x is the vector from origin to the point with each different
color (corresponding to different classes, see Softmax 2D
in Fig. 2). Then, the classification layer weight is actually the
vector trained by CNNs with sufficient discriminative ability.

The PEDCC is artificially given a plurality of evenly
distributed class centers, which are evenly distributed sam-
ple points on the unit hypersphere, or a plurality of evenly
scattered vectors. Therefore, the global optimal solution of
the objective function of the classification layer of CNNs
is essentially to obtain a plurality of scattered vectors with
sufficient discrimination. We replace the last linear layer’s
weight of the convolutional neural network with the pre-
defined class-centered (PEDCC weight), and during the
training phase, only the weights of previous layers are
updated.

At the end of training phase, in order to obtain better recog-
nition performance, depending on different dataset, a fine-
tuning processing of the PEDCC weight of the last linear
classification layer are adopted optionally. PEDCC-loss are
given as following:

LPEDCC-AM = −
1
N

∑
i

log
es·
(
cos θyi−m

)
es·
(
cos θyi−m

)
+
∑c

j=1,j6=yi e
s·cosθj

(8)

LPEDCC−MSE =
1
2

N∑
i=1

∥∥xi − pedccyi∥∥2

=
1
2

N∑
i=1

(‖xi‖2 +
∥∥pedccyi∥∥2 − 2xi · pedccyi )

=

N∑
i=1

(1− cos θyi ) (9)

LPEDCC−Loss = LPEDCC-AM + λ
n
√
LPEDCC-MSE (10)

where s andm follow the setting of [20], N is sample number,
λ is a weighted coefficient and n ≥ 1 is a constrain factor
of the LPEDCC−MSE . On the unit hypersphere, the distance
from the sample to the predefined class center is less than 1.
A constraint factor n is added to the MSE to increase the
difficulty of reducing the intra-class distance, which can
increase the recognition performance on certain values for
some experiments.

It is noted that the normalized weights in LPEDCC-AM are
PEDCC weights, while the normalized weights of LAM are
gradually obtained by training. Although the formulas are the
same, they represent different meanings. LPEDCC−MSE is also
different from Center-Loss. The class centers in LPEDCC−MSE
are PEDCC whose distribution is predefined and optimal,
while those in Center-Loss are gradually updated in each
minibatch.

D. CHARACTERISTIC ANALYSIS
In addition to the analysis from the perspective of intra-class
distance and inter-class distance, in order to explain the func-
tion of PEDCC-Loss further, we explore it from the perspec-
tive of the back propagation gradient. Although theoretically
analysis of AM-Softmax and the gradient ofMSE is relatively
simple, we can’t directly compare the back propagation gradi-
ent at FC2 output due to the different networkweight. In order
to compare different losses, we separate feature extraction
layer and loss function layer, and obtain gradient in feature
extraction layer FC1 using Pytorch hook function. For any
loss, the network of CNNs and FC1 layer is the same. The
network structures of Softmax, AM-Softmax, Center-Loss
and PEDCC-Loss are shown in Fig. 2.

Although the network performance is not completely
related to the magnitude of the gradients, it can still explain
the performance of the network to some extent. In the compar-
ative experiments tested on CIFAR100 dataset, the gradients
of four different loss functions, Softmax-Loss, Center-Loss
with λ = 1, PEDCC-AM with s = 15 and m = 0.5 and
PEDCC-AM-MSE with s = 15, m = 0.5, and λ = 10, are
obtained at the output of FC1, and the curves are drawn as
Fig. 4. As we see in the Fig. 4(b), the gradient of FC1 output
x is much larger than that of FC2 output y, which indicates
that FC2 magnifies the gradient of backward propogation for
Softmax.

For these functions, Softmax is used mainly to increase
inter-class distance, and also can reduce intra-class dis-
tance to a centain extent. While MSE loss is used to
decrease intra-class distance. Compared with simple Soft-
max, Center-Loss with λ = 1 greatly increase the gradient
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FIGURE 4. (a): The gradients curve of Gx in Softmax, Center-Loss, PEDCC-AM, PEDCC-AM-MSE. (b): The gradinets curve of Gx and Gy in Softmax.

of back propagation in Fig. 4. The curve shows that MSE
accounts for the majority of the total gradient, and the per-
formance improvement depends mainly on MSE. This is
because the Loss value of MSE is proportional to the square
of feature y, and the norm of feature y usually is relatively
large. In our experiments, it is about 6 at the beginning of
network training for Center-Loss.

In order to further reduce the distance of intra-classes,
AM-Softmax improves the role of Softmax through feature
normalization, scaling factor s and additive margin m. s is
designed to compensate for the small feature values caused
by feature normalization. Therefore, the role of reducing
intra-class distance is mainly realized by m. As can be seen
from figure, the gradient of AM-Softmax is much larger than
that of Softmax, which is a main reason for the performance
improvement of AM-Softmax.

In view of the above analysis, we propose to combine
PEDCC, AM-Softmax, and MSE in our PEDCC-Loss. Since
PEDCC weights correspond to the optimal clustering centers
of samples, we regard PEDCC weights as the weights of
FC2. Therefore, we use the MSE of samples and PEDCC
weights, AM-Softmax loss to further optimize the design,
which greatly reduces the intra-class distance. Thus, the clas-
sification accuracy can be further improved. From the gra-
dient point of view, when MSE component is added to
PEDCC-AM loss, the gradient range changes greatly, that is
to say, the ability of back propagation is enhanced.

In practical experiments, we find that the optimal weight
of MSE is 10, so that AM-Softmax and MSE have similar
effects on the back-propagation gradient and achieve the best
recognition accuracy.

IV. EXPERIMENT RESULT
A. IMPLEMENTATION DETAILS
Our experiment is implemented using Pytorch 1.0 [21],
which performs image classification and face recognition

tasks respectively. Different PEDCC normalized weights are
generated according to the number of dataset classes. The
network structure of the image classification is the same as
[9] where VGG [2] is used, and the batchsize is 256. The
network structure of face recognition is the same as [20]
where ResNet18 (IRBlock) [3] with 512 features is used, and
the batchsize is 128. During the training phase, the initial
learning rate is 0.1, the weight decay is 0.0005, and the
momentum is 0.9. The SGD training algorithm is used for
both models for parameters in PEDCC-Loss, s = 15 and
λ = 10 in all experiments.

Since the number of samples in each class in different
datasets may be unbalanced, and different classes may have
a slightly different clustering propertied, resulting in that a
fixed PEDCC weight will not reach the globally optimal
state. We allow PEDCC weights to be fine-tuned within a
certain range, that is, a PEDCC weight is set with a very
small learning rate to fine-tune the class center after a certain
training epoch. In this paper, the training epochs are 120,
so we begin to finetune the PEDCC weight with learning rate
1e-3 at epoch 70 to obtain an globally optimal distribution.

B. IMAGE CLASSIFICATION TASKS
In the image classification task, the EMNIST [14] dataset is
firstly used. The data set has six division methods: ByClass,
ByMerge, Balanced, Letters, Digits, and MNIST. We use
the Balanced data set for training. The data set has a total
of 131,600 characters pictures, and are evenly divided into
47 classes, each class with 2800 characters. The experimental
results are shown in Table 1.

Then, we used the more representative CIFAR100 [15]
dataset for test, which has 100 natural images, 500 training
sets, and 100 test sets. For this dataset, standard data aug-
mentation [9] is performed, that is, the training set image is
padding 4 pixels, and then be randomly clipped to 32 × 32.
The 0.5 probability horizontal flip is also performed, while
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TABLE 1. Accuracy with various loss function in EMNIST.

TABLE 2. Accuracy with various loss function in CIFAR100.

the test set is not processed. The test results are shown
in Table 2. Experimental results show that PEDCC-Loss has
the similar convergence speed as other loss functions, but the
recognition accuracy is higher.

In CIFAR100 [15], our method predefines 100 classes
of 512-dimensional class centers distributed on the hyper-
sphere. After the parameters are solidified, the loss of the
training set is also lower than the AM-Softmax [10] of
the same parameter. This shows the effectiveness of our
method, and the addition of PEDCC-MSE further compresses
intra-class distance, and in terms of accuracy, PEDCC-loss
also obtains the best results in the classification.

C. FACE RECOGNITION TASKS
In the test phase of face recognition, we only use the net-
work to generate face features and calculate cosine distance
between two faces. If the distance is small enough, they are
belong to the same person, otherwise, the different persons.
In other words, PEDCC-Loss will enable the network to learn
how to identify the similarity between two faces. The distance
between the sample and fixed class center is only considered
in training phase.

TABLE 3. Accuracy with various loss function in LFW.

After L-Softamx [9], many studies have focused on the loss
function of face recognition, because face recognition pays
more attention to the validity of the feature vector, and the
increase of the number of classes can better reflect the validity
of the loss function. Here we train ResNet18 for the Face-
Scrub [16] dataset, which contains more than 100,000 face-
aligned images for 530 people, with 265 for men and women.
After training the model, the 512-dimensional feature vector
extracted are used to test the LFW [17] dataset. The training
picture size is 144 × 144, which is randomly clipped to
128×128, and flipped by the same 0.5 probability level. The
number of test faces for LFW [15] is 6000 pairs.

Through the above experiments, we can know that, com-
pared with the weight of random initialization, the PEDCC
weight proposed can get a better weight distribution result and
make the model more precise, and a nonlinearity factor added
to the MSE also can increase the accuracy. Due to the imbal-
ance in the number of samples of various classes, the fixed
PEDCC weights are not usually optimal. So, by using the
finetuning strategy, we can see that its accuracy has been
effectively improved.

V. CONCLUSION
We propose a new loss function based on predefined evenly
distributed class centroids for convolutional neural networks.
The fixed PEDCC weights are substituted for the parameters
of the classification layer in the network, and the improved
cross entropy loss is combined with the mean square error
of the predefined class center, where a nonlinearity factor
is also added to the MSE to increase the learning difficulty.
Experimental results show that PEDCC-Loss achieves the
best results in image classification and face recognition tasks,
and network training is stable and easy to converge.
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