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ABSTRACT In recent years, inferring phylogenies has attracted lots of attention in both academic com-
munity and various application fields. Phylogenetic inference usually consists of a couple of evolutionary
relationships, which can be represented as a phylogenetic tree. The phylogenetic reconstruction problem
can be defined as an optimization problem, targeting at finding the most eligible tree among all possible
topologies according to a selected criterion. Since the combinatorial number of possible topologies exceeds
tolerance, various heuristic and metaheuristic methods have been proposed to find approximate solutions
according to the selected criterion. However, different criterions are based on different principle and conflict
with each other basically. In this line, scholars has proposed multi-objective evolutionary algorithm (MOEA)
based on diverse criteria. Nevertheless, MOEA has suffered unbearable time consumption due to its inherent
drawbacks of computational complexity and convergence. By studying the independence between the sub-
populations in each time-consuming step of MOEA, the steps without global information can be designed
to be executed in parallel, which can fundamentally address computational problems. Effective parallel
algorithms designed with the characteristics of modern multicore clusters can solve such problems. In this
sense, we propose a parallelized multi-objective evolutionary algorithm (MOEA-MC) by deploying on
Spark, which added consensus into evolutionary algorithm to improve the quality of convergence and used
membrane structure to keep equal solutions under different weights. In order to assess the performance
achieved by the proposal, we have performed comparison among different methods on three real-world
datasets separately. The results have certified that the solutions derived from MOEA-MC are superior to
traditional methods in all studied datasets. And parallelized MOEA-MC can get dominant position and
optimal Pareto-frontier simultaneously within minimal runtime.

INDEX TERMS Consensus, multi-objective evolutionary algorithm, membrane structure, phylogenetic
reconstruction, parallel algorithm.

I. INTRODUCTION

Biological research has gradually attracted the attention of
scholars with the explosive growth of the amount of genomic
data published in the past few decades. In particular, phylo-
genetic reconstruction is one of the main research areas of
bioinformatics. Phylogenetic inference consists of a series
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of evolutionary relationships, which usually be represented
as a phylogenetic tree. Phylogenetic reconstruction can be
used to describe the evolutionary relationships between
molecules, which can promote the research of biomedi-
cal, genetic prediction, and economical crop. For example,
Zhang [1] constructed Arabidopsis and rice AT-hook pro-
teins into phylogenetic trees which found that AT-hook genes
can be divided into five subfamilies with similar structures
and characteristics. The publication shows the evolutionary
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relationships among different organisms which can helps
predict the function of rice genes. In addition, the next-
generation sequencing revolution has brought unprecedented
growth in phylogenetic analysis data sets. And phylogenetic
reconstruction devoted to reconstruct a biological phylogen-
etic tree that explaining the evolutionary relationship among
a given biological sequence file.

The various bioinformatics issues involve complex opti-
mizations, and biologists are committed to finding accu-
rate explanations based on biological principles. This issue
motivated the development of effective algorithm design to
address current requirements. In this sense, using bio-inspired
meta-heuristics to overcome computational challenges [2]
have become an increasingly popular method. Phylogenetic
reconstruction based on evolutionary and bio-inspired algo-
rithms can be categorized as an optimization problem that
finds the best topology among all possible trees based on
the selected objective function or criteria. Huelsenbeck [3]
explained that the trees which reconstruct according to dif-
ferent criteria may conflict with others, even if they owned
the same input. Rokas er al. [4] also pointed out that the
selection of criteria has a great influence on the final results.
Accordingly, Handl et al. [5] proposed and recommended
the application of multi-objective optimization. As [6] men-
tioned, multi-objective optimization has follow ascendants
when compared with the single-objective method : 1) min-
imize the local minimum and the probability of stagnation
in the gradient-free region; 2) reduce the noise impact of the
data; 3) introduce multiple sources that conflict with each
other which can meet multiple standards concurrently. There-
fore, transform phylogeny inference into multi-objective opti-
mization problem (MOP) [7], [8] has taken the mainstream
stage. The development of MOP will bring dawn to biol-
ogists. Tree generated by MOP are not only supported by
different biological principles, but also have high-quality
topologies from the perspective of each objective function.
The complexity of evolutionary inference has been increased
with the new perspective, which has inspired researchers to
conduct original research based on heuristic algorithms [9].
Since the emergence of the multi-objective evolutionary algo-
rithms(MOEA), problems involving complex and diverse
optimization have transform into finding accurate solutions
according several biological principles [10].

According to different selection mechanisms, MOEA
can be divided into the following categories: aggrega-
tion functions; population-based approaches; Pareto-based
approaches. Most of the current considerations are based
on Pareto, and the process of a multi-objective evolutionary
algorithm based on Pareto is as follows: First, generate an
initial population P, and then selected an evolutionary algo-
rithm (such as a genetic algorithm) to perform evolutionary
operations (such as crossover, mutation, and selection) on P
to obtain a new evolutionary group R. Then construct the non-
dominated set NDSet of P U R. If the current non-dominated
set NDSet is greater or less than the preset size of the
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non-dominated set N, it is necessary to adjust. On the other
hand, the NDSet also need meet the distribution requirement.
If met the termination condition, it ends, otherwise copied the
individuals in the NDSet to P and the next round of evolution
is continued. Pareto-based approaches are relies too much
on the selection of shared parameters and generate greater
selection pressure, which leads to immature convergence.
In addition, each iterations needs to calculate the fitness
values of all individuals in the current population, thereby
increasing the execution time of algorithm implementation.
The two key issues in the implementation of MOEA based
on Pareto are: 1) How to make the population search towards
the Pareto frontier as soon as possible, that is, the convergence
of the population. 2) How to obtain a non-inferior solution
with uniform distribution on the Pareto frontier, that is, the
diversity of the population. Such as NSGA-II [11] proposed a
fast non-dominated sorting, which uses the crowded distance
to measure the distribution of solutions and operate selection,
but it is complicated to calculate crowded distance. In addi-
tion, the computational complexity of NSGA-II is too high
in high-dimensional multi-objective problem. MOEA/D [12]
converts a multi-objective optimization problem into multiple
scalar quantum problems, and each sub-problem consists of
a uniformly distributed weight vector. Once a new solution
is generated, the solution near the sub-problem is replaced
based on the aggregate function. However, evenly distributed
weight vector on the unit hyperplane is unable to guarantee
uniform distribution of the final solution. These inherent
natures have caused the following defects. First, the diffi-
culty of solving the objective function greatly extended the
execution time. Second, the convergence of the evolutionary
algorithm is relatively poor, and the quality of the optimal
solution is low. There have two ways to shorten algorithm’s
time efficiency, design parallel algorithm and create efficient
algorithm which can reach convergence in fewer generations.
Our research focus encompasses all of the above.

In this paper, we propose multi-objective heuristics based
on consensus and membrane structure, called MOEA-MC,
to infer phylogeny with the principles of parsimony and
likelihood. And our work takes emphasis on achieving par-
allelism and convergence simultaneously, which parallelized
by deploying on Spark, achieve fine convergence by adding
consensus into each subpopulation in evolutionary algorithm.
Additionally, to ensure each work node is assigned equal
number of trees, we recommend using membrane structure
to limit the number of trees in each subpopulation. Mem-
brane structure can also restricted communication frequency
between phylogenetic trees under different weights. We have
compared MOEA-MC with other biological methods on three
nucleotide datasets, and performed multi-objective assess-
ment of biological properties by using several quality indi-
cators and statistical tests. Finally, the rationality of the
algorithm design will be verified by comparison with other
methods in the literature. The main contributions of this work
can be summarized as follows:
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1) To develop effective parallel designs, we analyze the
working process of multi-objective evolutionary algo-
rithms by identifying computationally intensive opera-
tions that do not require global information.

2) A discussion on the main factors that slow down the
convergence of that algorithm. We combining the con-
sensus to maintain the topology and achieve accelerated
convergence. In addition, a membrane structure is added
to each working node to ensure the equal solutions
under different weight and control the communication
frequency between parallel sub-nodes.

The rest of this paper is arranged as follows: Section 2 intro-
duced the materials and methods involved in MOEA-MC.
In Section 3, we analyzed how to combine consensus and
membrane structures in multi-objective evolutionary algo-
rithm, and showed the pseudo code of MOEA-MC. The
related process of parallel MOEA-MC is present in Section 4.
The experimental results are discussed in Section 5. Finally,
Section 6 summarizes our work and outlines future work.

Il. RELATED WORKS

In this section, we depict the intuition and technical details of
phylogenetic reconstruction, discuss the reasons why recon-
struction phylogenetic development reveals the NP-hard
nature [2], [13], and explore how to solve this NP-hard
problem [14].

The diversity of creatures in nature reflects the diversity
of evolutionary patterns, leading to different representations
of species. How to explain this evolutionary process is the
goal of evolutionary biologists. Analysis of biomolecular data
can account for mutations and replacement events observed
at the nucleotide level, which are the source of evolutionary
diversity. In phylogenetic analysis, an N x M aligned molec-
ular sequence (N is the number of organism and each one
contains M features or sites) is processed to reconstruct the
hypothesis of evolutionary events related to this sequence.
The evolutionary relationship is modeled by inferring the
system tree N x M where branch set E specifies the ancestor
relationship between the organisms in node set V. In evo-
lutionary biology, the leaf nodes of a phylogenetic tree are
species, or biomolecular sequences or biological entities, but
in this paper, the leaf nodes of the phylogenetic tree are all
biomolecular sequences, such as gene sequences or protein
sequences. Moreover, taxa on the leaf nodes are collectively
named Operational Taxonomic Units (OTUs). Correspond-
ingly, the internal node is called Hypothetical Taxonomic
Units(HTUs), which represents the possible ancestors of the
leaf nodes [15]. The relative distance between objects rep-
resents the evolutionary closeness between the objects. The
longer the branch length, the more likely it is to mutate.

Accordingly, it can be concluded that the purpose of
phylogenetic tree reconstruction is to find the phylogeny
T = (V, E) that meets certain biological quality standards.
In evolutionary biology, the leaf nodes of a phylogenetic tree
can be species, biomolecular sequences or biological entities,
but biological molecular sequences (such as gene sequences
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or protein sequences) are used herein. The leaf nodes on
the evolutionary tree are biological objects, the length of
branch indicate the kinship distance among leaves and the
topology of the evolutionary tree describes the evolutionary
relationship of these objects. Evolutionary tree can be divided
into rooted tree and unrooted tree according to whether it can
represent the evolutionary order. The root of rooted tree is the
closest common ancestor of all leaf nodes and the direction
of evolution is from root to leaf. The unrooted tree has no root
node and cannot represent the evolutionary order between
nodes. Reconstruct the possible evolution tree according to
a sequence file with n objects, the number of unrooted tree
U(n) and rooted tree R(n) can be computed as follows [16]:

Un)=1x3x5x---x2n—=5=2n-=5" (1)
Rn)=1x3x5%x---x2n—=-3)=2n=3)!! (2)

As the number of species grows, the reconstruction of phy-
logenetic trees (whether rooted or unrooted) has become an
NP-hard problem. For example, given a sequence with
50 objects, we can get 2.84 x 107* unrooted trees and
2.75 x 1076 rooted trees.

A. OBJECTIVE FUNCTION

Reconstruction can be basically divided into four steps.
Firstly, get the biomolecular sequence. Thanks to the devel-
opment of sequencing technology, this can be obtained from
major gene banks or biological information databases, such as
GenBank, European Molecular Biology Laboratory (EMBL).
Secondly, perform data preprocessing such as site alignment.
Thirdly, choose one evolutionary reconstruction model which
has already emerged in biological, namely the speculation
or hypothesis of the evolutionary laws of species. Finally,
reconstructed phylogenetic tree by an algorithm based on
the evolutionary reconstruction model. Originally, we list all
possible evolutionary trees according to the given sequence,
and then recommend the best one. With the rapid develop-
ment of bioinformatics and larger reconstruction sequences,
it is inadvisable yet to enumerate all possible trees. Under
the optimal standard requirements, the huge amount of com-
putation leads search mechanism to use heuristic technol-
ogy [17], which can find the appropriate solution for large
or even datasets within reasonable runtime. Of course, for
affordable small datasets, we can still consider using exhaus-
tive or precise search techniques. The methods to finish the
fourth step can be divided into: based on optimal principle
and based on no-optimal principle. The former reconstructs
a tree with comparable evaluation values, so the best tree
can be found. The latter obtains a phylogenetic tree based
on algorithmic steps and cannot be compared. Maximum
Parsimony Method(MP) [18], [19] and Maximum Likelihood
Method (ML) [20] are the two most classic algorithms based
on the optimal principle. The latter category usually classified
as distance-based methods which uses the difference of the
sequence to construct the distance matrix, and then recon-
structs the evolution tree, such as neighbor joining (NJ) [21],
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and Bayesian Inference (BI). Because the former have exact
comparable values, most multi-objective optimization meth-
ods infer phylogeny by maximizing parsimony and likelihood
in literature. In this paper, we consider phylogenetic recon-
struction as a dual objective optimization problem involv-
ing two widely used biological objective functions: parsi-
mony and likelihood, as reported in the literature. And the
parsimony value is obtained using Fitch’s algorithm [22],
the likelihood score is calculated using the Felsenstein algo-
rithm [23].

1) MAXIMUM PARSIMONY

Using maximum parsimony method to reconstruct phylo-
genetic trees is first proposed by Camin(1965) [24] and
Hein(1990,1993) [25]. The principle of the maximum par-
simony method is based on the Ockham’s razor, which is
a philosophical statement that tends to choose simpler than
a complex competitive process. In other words, maximum
parsimony method follows the principle of minimal change,
that is, the fewer mutations or replacement events required
for the evolutionary process, the closer to the fact. Given
a dataset that have n aligned sequences and each sequence
has m features, we can inferring a tree T = (V, E). The
parsimony calculation needs to set the ancestor sequence
of each node in advance, which can be solved by adopting
the bottom-up approach [22]. After assigning the ancestor
sequence, the calculation formula for the parsimony score
P(T) of the tree T is defined as [26]:

P(Ty=Y" Y Ciu,v) 3)

i=1 (u,v)eE

where u, v € V and there have branch (u, v) € E to link them,
Ci(u,v) is an integer value used to quantify the observed
mutation events between u and v, and C is the cost matrix,
like C;(u, v) indicates the difference between u and v at the i
site, and calculated as follows:

Lo if ui # vi,

Ci(u,v) =
i(w. v) 0, otherwise.

“
u; and v; are the sequence state values of the ith character of
u and v, After getting the maximum parsimony value of the
branch, the next step is to calculate the maximum parsimony
value of tree.

2) MAXIMUM LIKELIHOOD

The entry point of the maximum likelihood method is the
branch length of the phylogenetic tree. There is a positive
correlation between the length of the branch of the phylo-
genetic tree and the evolution time between the leaf nodes.
And it is obvious that evolution time is closely related to
the probability of variation. The maximum likelihood method
was originally used to obtain parameters of probability mod-
els in statistics. Joseph Felsenstein (1980) first proposed the
application of the maximum likelihood method to phyloge-
netic inference. In phylogeny, for a series of phylogenetic
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trees reconstructed from a given sequence, the one with the
largest likelihood value is the closest to the real phylogenetic
tree. Therefore, the likelihood-based phylogenetic tree recon-
struction scheme first reconstructs the possible phylogenetic
trees, calculates the likelihood values of each phylogenetic
tree one by one, and finally considers the phylogenetic tree
with the largest likelihood as the optimal. Let D be a collec-
tion of n aligned sequences with N characters per sequence
(characters can concluded as ¥ = {A,C,G,T}). M is an
evolutionary model used to describe evolutionary hypotheses,
which provides a mutation probability at the nucleotide level
and determined the ancestral sequences in advance(such as
JC69 [27], HKY85 [28], GTR [29], TN93 [30], K80 [31]).
The phylogenetic topology T = (V,E) is a description
of the evolutionary hypothesis. The likelihood of T can be
calculated as:

N
L(T) = P(DIT, M) = [ | L/(T) 5)
j=1

where Li(T) = P(D;j|T, M) is the likelihood at character
state j and the detailed formula is:

L) =) Cjr)-m, ©)

where . represents the stationary probability for the state
r € V appears, when character state r; is defined from
alphabet . And Cj(r;, r) is the partial conditional likelihood
at site j with rooted at node r, and r; € X represents all
possible state at site j. Let » € V be a HTU which have
descendants u and v, then the calculation for Cj(r;, r) is:

G031 = (X, 6.0+ Py .10

. (Zv Cj(Vj, V) - P(l’j7 Vi, trv)) (7

where u; and v; represents character state of the node u and
v at site j. t,,, and ¢, are the branch lengths of connecting
node u and v to the node r respectively which are given by
(r,u) € E and (r,v) € E. P(r}, uj, t,) indicate the probabil-
ity of transfer r; of the node r to u; of the node u during the
evolution time #,,, and P(r;, vj, 1) have the same definition.
In addition, the value of P(rj, u;, t,,,) and P(7}, vj, t,,) are all
provided by the evolution model M.

B. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

A single optimization problem considers only the maximiza-
tion (or minimization) of an objective function. Differently,
multi-objective optimization problems involve multiple tar-
gets, and usually conflict with each other. The application
of multi-objective optimization in phylogeny represents a
hopeful solution to deal with main source of inconsistency
that may affect the reliability of phylogenetic reasoning.
According to [32], the study of phylogenetic reconstruction
can be divided into two aspects. On the one hand, a series
of multi-objective evolutionary algorithms have been suc-
cessfully proposed to solve conflict information in different
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data sets. On the other hand, other studies focus on solving
inconsistencies caused by phylogenetic analysis using differ-
ent optimal criteria. The most controversial of these is the
conflict between parsimony and likelihood. Studies [33], [34]
have shown that these two standards may lead to conflicting
evolutionary hypotheses.

Hence the need to address potential conflict between dif-
ferent optimal criteria [34], which turn into the main source
of inconsistency in phylogenetic research. A way to address
this issue involves introduce a multi-objective formulation of
the problem. In real world, it is often encountered problems
are usually composed of multiple goals or several evaluation
indexes that conflict and affect each other. While optimization
target exceed one and need meet them simultaneously, called
it as multi-objective optimization problem(MOP) [7], [8], can
be formulated as follows:

maximise F(x) = (fi(x), ... ,fm(x))T
subject to x € Q. (8)

where Q is the search domain, x is the decision variable,
m indicate the number of objective functions, and F' : Q —
R™, R™ denote the solution space [35]. When m = 1, the opti-
mization problem is single-objective optimization problem,
if m > 2 called it as multi-objective optimization prob-
lem. In general, there are multiple objectives or evaluation
criteria for MOP, and each target is mutually constrained.
While optimizing one goal, it is at the cost of reducing the
performance of other targets. Generally, the multi-objective
optimization problem does not have a single optimal solution,
but a set of approximate optimal compromise solutions. The
traditional optimization algorithm can only obtain a com-
promise solution in one operation, so the solution efficiency
for multi-objective optimization problems is too low to meet
the actual application requirements. The evolutionary algo-
rithm(EA) takes the population as the evolution unit which
can obtain a set of approximate optimal solutions in one
effective iteration [36]. Multiple individuals in EA evolved
at the same time, which can reduce the importance of indi-
vidual that result in reduce the probability of falling into the
local optimal “trap™ [37]. At present, many multi-objective
evolutionary algorithms have been proposed, such as rep-
resentative dominance-based approach NSGA-II [11] and
decomposition-based MOEA/D [12] and PhyloMOEA [38].
These classic algorithms were performed significant in this
field and usually acted as reference when proposed new work
to solve MOP [39].

In multi-objective optimization, there is usually no viable
solution that can minimize all objective functions at the same
time. In other words, there is no way to improve the solution
in any target without lowering any other goals. Therefore,
our goal is to search for the Pareto optimal solutions which
one have no other solution can dominate it in all objectives.
For example, f with different suffixes represents different
maximization functions, xj, xo € €2, a feasible solution x;
is dominated by x», if:
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1. fi(x1) < fi(xp) for all functions i = {1, 2, ..., m}
2. fi(x1) < fj(x2) for at least one objective j = {1,2, ..., m}

The points in the objective space corresponding to the
Pareto-optimal are non-dominated, and all of them formed
Pareto-frontier.

C. CONSENSUS

The concept of consensus have been mentioned in [40],
which has introduced that consensus tree can summarizes the
topological features of multiple trees and integrates them into
single tree. The consensus tree can be divided into several cat-
egories (such as strict consensus tree, majority rule consensus
tree, loose consensus tree, and greedy consensus tree) [40]
according to the integration method. MOEA-RC [41] using
the majority rule consensus to retain branch features dur-
ing evolution, which have certificated consensus can help
MOEAs converge in less generations.

Our paper is also picked the majority rule consensus.
As MOEA/D [12] depicted that neighbors are likely to have
similar search directions. So the number of solutions required
to calculate consensus should be greater than 2. In addition,
if select all solutions to calculate consensus, the results will
be completely homogeneous. It also can result in few elites
in the solution and lose the correct consensus. In summary,
we chose the suitable number: 3, which can reduce calcu-
lation and ensure the reliability of the consensus. In our
work, consensus can accelerate convergence when act on
crossover and mutation. The consensus branches under differ-
ent weights are considered as correct branches in the current
population, so evolutionary algorithm will protect the topol-
ogy of consensus in crossover and mutation. This retention
can reduce the overall execution of evolutionary algorithm
and also speed up searching operation.

D. MEMBRANE STRUCTURE

In 2004, Zhang [12] proposed a multi-objective evolu-
tion algorithm MOEA/D based on decomposition. However,
Zhang [42] found that the Pareto front lacked diversity. Take
researches on MOEA/D found that some (not all) solutions
are selected among sub-problems, and there may be many
sub-problems corresponding to the same non-dominated
solution, which leads to the loss of solution diversity. In order
to solve this problem, Zhang [42] designed a multi-objective
evolutionary algorithm combining membrane structure to
reduce the number of sub-problems and improve the proba-
bility that each sub-problem has different solution. In biology,
membrane plays a vital role in the structure and function
of living cells. Membrane structure can help ensure that a
sub-problem will have multiple solutions, where the mem-
brane structure refers to the structure of the membrane com-
puting model. Membrane computing is a branch of natural
computing. It is a computational model that is inspired by the
structure and function of cells and tissues or organs composed
of cells. In the ten years since the concept of ‘“membrane
computing” was put forward, the computing theory, models,
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algorithms, and applications of membrane computing have
developed rapidly. Membrane computing provides new dis-
tributed parallel information processing methods and tech-
nologies for computer science, promotes the development of
new high-performance computing technologies, and provides
a new way to solve computationally difficult problems.
Evolutionary evolution within the membrane eliminates
solutions with the worst performance. Therefore, in a sub,
the best solution to choose is relatively more. Through multi-
ple iterations, each membrane structure solution is considered
to be the best solution to the sub-problems of the membrane
structure. Conversely, evolutionary algorithm hold potential
capability to be parallelized which have been designed as
parallel genetic algorithms(PGAs) [43]. The membrane struc-
ture can well complete the evolution inside, and divide all the
current individuals into multiple subpopulations. Through the
evolution of the subpopulation in the membrane structure,
the local optimal solution and the exchange between adjacent
membrane structures are used to seek the global optimal
solution. Membrane structure can divide the population into
specified sizes. Similar to the biological membrane structure,
by defining a closed space, the interior can maintain a dif-
ferent biochemical environment than the outside world. Each
subgroup is regarded as an cell with unique membrane which
can restrict the account of trees in one ‘cell’ and limit the
timing when to exchange maximum, minimum and updates
optimal solutions. The specific implementation steps are:

1) Initialization: Divided the object space into multiple
membrane structures and the solution for each mem-
brane structure is initialized.

2) Each subpopulation is independent and concurrent,
to completes genetic manipulation and evaluates indi-
viduals. Determine whether the iteration meets the
exchange requirement by the timer which is set by the
membrane structure. If reach, replace the worst solution
with the excellent solution in the neighbor subgroup
through membrane.

3) Iterate through the second and third steps until the appro-
priate individual is found or the specified number of
iterations is completed.

Ill. MOEA-MC

After above detailing depiction the superiority about con-
sensus and membrane structure, we designed a novel
MOEA which integrate membrane structure and consensus.
Lemmon [44] have concluded that four trees can generate
the optimal consensus. Therefore, we apply every membrane
divided into four subpopulations directly, and the consensus
is calculated from the optimal solution of the four parts.
Each subpopulation develops independently which has own
development direction and consensus. Thus they evolves
alone with protect consensus through the genetic operators
of evolutionary algorithm. The independence of membrane
structure, which are suit to decompose, lead us to employ
the weighted sum method [45] and decomposed the multi-
objective optimization problem into multiple single-objective
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optimization problems by their weight [46]. Thus, each mem-
brane corresponds to a weight vector. With the previous
uniform setting of weight vector, the better distribution of
the final non-dominated solution set. Based on the above
analysis, we adapted the MOEA/D algorithm by integrating
consensus and membrane structure to tackle the phylogenetic
inference problem. Algorithm 1 shows the pseudo-code of
the MOEA-MC, where D corresponds to a sequence-aligned
biomolecule file in PHYLIP format, m is the number of
membrane structure, mp and mo are the mutation rates and
mutation operator respectively, pc is the probability of per-
form crossover, ei is the exchange interval and It corresponds
to the number of search iterations which are pre-set. The
following subsections describe details of the algorithm.

Algorithm 1 MOEA-MC Pseudo Code
1. Input: D, m, S, It, mo, pc, ei
2. Output: A P population of trees (non-dominated solu-
tions found by the algorithm).
. Phylogenetic trees T < initialize (D, N, 4, S)
. Generate weight vector W,,, with well distributed.
while stop condition is not reached do
for each tree tr € T do
MP[tr] < Fitch’s algorithm
ML[tr] < Felsenstein’s algorithm
Membrane[N] <« Redistribution
10.  Consensus[N] <« the majority rule consensus
11. for eachp € Pdo
12.  [try, trp] < binary_tournament_selection(p)
13.  Plp] < crossover(try, tra, pc)
14.  Plp] < mutation(T, mo, mp)
15.  P[p] < exchange(T, ei)
16. end while
17. Return P

© N LW

e

1) Initialization:
Transform file D into N * 4 * S phylogenetic trees by using
a rearrangement method, and generates a well distributed
weight vector W, = {w1, wa, ..., wy}.

2) Calculate MP and ML:
Different objective functions have different values. In order
to better measure the pros and cons of the solution on the
objective function, each value is standardized as follows.

_ ﬁ_Z;'k

fi= &)

Z:zad - Z;'k
f; is the normalized result of the i-th objective function among
the m objective functions, z* = (z’l‘, ...,z,) and Zad  —
(Z'l'“d, el z%ld) are the optimal and worst of the m objective
functions.
3) Redistribution and Calculate consensus:

Then calculate the fitness value of each solution according to
the following formula.

G (xlw) = Y Wi (10)

J=1
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where G"(x|w;) is the fitness value for solution x under
the weight w;, f; is the value of the jth objective function.
Its value is the sum of the product of the weight and the
corresponding value of each dimension of the objective.
And call equation 10 as the weighted sum method which
decomposing multi-objective optimization problems into n
subs which correspond to w. The population is divided into
several subs, and the trees in each sub-population are sorted
according to fitness value. According to previous definition,
we can computed N the majority consensus and broadcasted
to each working node later.

4) Generate descendants:
Take binary_tournament_selection on subpopulations to
ensure each one have two phylogenetic trees. Perform
crossover and mutation on them and generated descendants.

5) Selection:
Merge the parent and child. Sort them inside of membrane
and eliminate half of the phylogenetic tree with low fitness
value.

6) Exchange:
Judges whether reach the migration conditions ei. If iteration
intervals have arrived, take the migration operation: replace
the four optimal solutions on the adjacent with the eight worst
solutions on the target. Otherwise, pass.

7) Stop or continue:
Determine if the stop condition is met. If it is satisfied that
stop algorithm, otherwise returns to step2 and continue the
execution.

IV. PARALLEL DESIGN
At present, solving the computationally demanding optimiza-
tion problems in bioinformatics mainly relies on the combina-
tion of biological heuristic algorithms and parallelism. After
detailing the main features of genetic algorithm MOEA-MC
that can effectively overcome the premature convergence
problem of standard genetic algorithm and has strong global
search ability, we need to design a reasonable and effi-
cient parallel frame which fit in implement MOEA-MC.
In this sense, using parallel platforms or parallel development
kits [47] allows us to take advantage of the division of labor
and high-speed communication to leverage this architecture
in an efficient manner. At present, we have the popular paral-
lel platforms such as OpenMP, MPI [48], Hadoop [49]-[52]
and Spark [53]-[56]. With the rapid development of computer
technology, the coordination between the subtasks of paral-
lel algorithms has been undertaken by third-party programs.
Developers just need to note the parallel mechanism, instead
of how to coordinate the work of the cluster. These third-party
programs are usually presented in the form of development
kits or in the form of a platform. Compared with parallel
implementations based on development kits [47], platform
such as Hadoop and Spark is more simple to implement and
more scalable.

Spark [57] which developed by AMP Labs at the Univer-
sity of California at Berkeley have outstanding features such
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as high availability, high processing speed and fault tolerance.
First, Spark uses an efficient DAG execution engine that
can quickly process data streams based on memory. Second,
Spark has strong fusibility and can be easily integrated with
other technologies. Spark also has its own resource man-
ager and schedulers, such as standalone mode which imple-
ments a built-in resource manager and scheduling framework.
In addition, compared to the temporary files in Hadoop’s
local hard disk storage process, Spark uses memory as a
temporary storage have greatly speed up the data processing
capabilities. Therefore, Spark’s parallel and iterative structure
is very suitable for information mining of biological data and
can confirm to parallel and improve MOEA-MC. Therefore,
we will design a parallel algorithm based on Spark, because
this combination represents one of the most effective choices
for dividing the computer CPU core into multiple working
nodes and performing time-consuming objective function
calculations in parallel. Follows is the modified and paral-
lelized MOEA-MC.

In order to develop an efficient parallel approach, the first
step we must perform is to identify operations that do
not require global information. The initialization operation
requires the entire sequence file information which is not
suitable to parallel. Calculate fitness value can be parallelized
because the calculation of likelihood and parsimony do not
show a dependency between the phylogenetic trees. Con-
sensus is also only related to the trees inside the membrane
structure, so it can be operated in parallel. Generate descen-
dants need parents and the corresponding consensus which
not related to other working nodes, so can be carried out
in parallel. Merge child and the parent into entirety abso-
lutely can be directly executed by the shuffle operation in
Spark. Determining whether to exchange the optimal solution
is depends on the iteration interval designed by membrane
structure which can also control the information diffusion
between subgroups. After theoretical analysis, the most time-
consuming operations in the MOEA-MC can be executed in
parallel. Next, using the Spark parallel structure, we can use
"parallelize’ in Spark to create RDD which is parallel data
corresponding to each step and can be used to set parallel
processing operation. In summary, parallelized MOEA-MC
is a parallel algorithm which fit in deploying on Spark.

V. EXPERIMENTS AND ANALYSIS

In this section, we conducted a series of experiments to
evaluate the performance of parallel MOEA-MC. In addition,
we also presented and analyzed the experimental results of
MOEA-MC on parallel performance and biological quality.

A. CONFIGURATION

For experimentation purposes, we have used three real-world
biological datasets whose details of the sequences and their
corresponding sources have been showed in TABLE1. Our
experimental platform is one PowerEdge R730 computer
with 2.40GHz (32 core) and operating on Ubuntu 5.4.0-6.
General Time Reversible evolutionary model (GTR) is used
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TABLE 1. Real nucledotide datasets.

Data Sequ.ence Nucl.e otide Description
size size
rbel_55 55 1314 rbel. plastid
- gene
Human
mORA- 186 16,608  mitochondrial
DNA
500 rbcL
ZILLA sequences
500 500 759 from plant
plastids
TABLE 2. Common algoriyhm configurations.
Parameter Value
Population size 100
Number of iteration 100

Selection operator Binary tournament[28]

Hybrid operator Prune-Delete-Graft [29]
Hybrid probability 0.8
Mutation probability 0.2
Mutation operator NNI

Evolutionary model GTR[30]

to implement the ancestor sequence in advance. In addition,
experimental comparison of various parameter variables of
the evolutionary algorithm to find out what input parameter
configuration can better improve the quality. TABLE2 lists
the common algorithm configurations. And the aggregation
function used by MOEA/D in our work is Tchebycheff.

B. PARALLEL PERFORMANCE
First, we have executed MOEA-MC at different parallelism
to observe the relationship between the execution time and
parallelism. Figl shows the runtime of MOEA-MC with
100 iterations on rbcL_55 dataset. By experimenting with
the increase and decrease of the degree of parallelism of
MOEA-MC on three data sets, we found that the most suitable
parallelism is different on different datasets. On ZILLA_500,
the optimal degree is achieved when the degree of parallelism
is preset as 24, and the best performance in mtDNA_186 was
achieved at 32. Therefore, MOEA-MC can get less time
with the appropriate parallelism which have proved the effect
after deployed MOEA-MC on Spark, and with the paral-
lelism increases that MOEA-MC'’s execution time gradually
decreases until reach its balance.

MOEA-MC was designed to resolve tree reconstruction,
so we need take comparison to judge if MOEA-MC can
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FIGURE 1. Evolution of runtime for MOEA-MC performed on rbcl_55
dataset.

improve the objective values. In order to testify the per-
formance, we tested the maximum parsimony and maxi-
mum likelihood of MOEA-MC in three real-world datasets
and compared with several classic multi-objective evolution-
ary algorithms (MOEA/D [12], NSGA-II [11] and Phylo-
MOEA [38]). Take experiments on MO-Phylogenetics [59]
(which is a tool to infer phylogenetic trees) to got the
final maximum parsimony and maximum likelihood value
of MOEA/D [12], NSGA-II [11] and PhyloMOEA [38].
In TABLE3, we reports comparisons of the maximum
likelihood (ML) with the reference several multi-objective
algorithms (MOEA/D [12], NSGA-II [11] and Phylo-
MOEA [38]). These maximum likelihood values are all mul-
tiplied by —1 in order to make goal become research the
minimum of two functions in uniform standard. The other
objective MP experiment is show in Table4. Incidentally,
the value in each table is all take the best during all iterations.
The purpose of MOEA-MC algorithm is to decompose the
reconstruction task into multiple workers and calculate the
objective function in parallel. Farther, reserved consensus to
speed up evolution, and set the membrane structure to ensure
that the number of solutions in the working node is not out of
balance. But these settings can’t achieve more earnings since
the various more complex calculations and MOEA-MC in
the machine is still running in serial mode. The meaningless
results are showed in TABLE3 and TABLE4, which have

TABLE 3. The maximum likelihood score for MOEA/D, NSGA-II,
PhyloMOEA and MOEA-MC.

Algorithm rbcl 55  mtDNA 186  ZILLA 500

MOEA/D 22,169.6 39,937.5 84,7159

NSGA-II 22,1933 39,942.5 84,719.4
PhyloMOEA  22,200.1 39,938.2 84,704.6
MOEA-MC  22,155.0 39945 84,744
(1[\)/51(1')5;: l-izMeg) 22,145 39,931.95 84,674
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TABLE 4. Maximum parsimony score for MOEA/D, NSGA-1I, PhyloMOEA
and MOEA-MC.

Algorithm  rbcl 55 mtDNA_186  ZILLA 500

MOEA/D 4979 2461 17,194

NSGA-II 4979 2463 17,192
PhyloMOEA 4982 2461 17,191

MOEA-MC 4980 2462 17,192
&?ﬁf;&% 4978 2459 17,164

certified that only add consensus and membrane can’t achieve
better performance but parallel design can change this mode.
This can also be understood as the reason why parallel algo-
rithms are getting more and more attention on multi-objective
problems.

TABLE 5. Runtime (seconds) for MOEA/D, NSGA-II, PhyloMOEA and
MOEA-MC.

Algorithm  rbel 55 mtDNA_186  ZILLA_ 500
MOEAD P00 6562020 1308254
NsGAdl PO aol004 1281262

PhyloMOEA 21603'4 24 h 24 h

MOEA-MC 47170  >24h 44,640

(Zi?&ﬁ;:;izMeg) 84032)  14760(32)  6480(24)

The design concept of the MOEA-MC is to achieve the
purpose of shorten runtime by using modern multi-core
cluster technology. In the TABLES, it have represents
that MOEA/D [12], NSGA-II [11], PhyloMOEA [38] and
MOEA-MC run at different datasets have showed a great
different execution time. The most outstanding results have
been highlighted in bold. Farther, we have annotated the
parallelism of MOEA-MC, it have better performance with
24 cores in ZILLA_500 rather than 32 cores in other datasets.
Obviously, MOEA-MC is bold in all data sets. Basically,
MOEA-MC'’s execution time is reduced by 50% compared
to other classic algorithms. Table 3-5 have also shows the
performance of non-parallel MOEA-MC in MP, ML and
runtime. It is obvious that the overall performance of the
non-parallel MOEA-MC is slightly inferior, even if the
ML value obtained in rbcl_55 is less than NSGA-II and
MOEA/D, and got the similar output with them on MP. It can
be concluded that non-parallel MOEA-MC is worse than
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parallelized MOEA-MC on all datasets. It is worth mentioned
that we have taken all experiments under same environment,
and picked the best one as final.

Convergence

— MOEA/D
_s500004 —— NSGA-II
—— MOEA-MC

—49500 4

—50500

—51000 +

—51500 A

Likelihood

—52000 1

—52500

—53000 1

—53500 1

T T T T T
0 2000 4000 6000 8000 10000
Evaluation

FIGURE 2. Convergence for MOEA-MC performed on mtDNA_186.
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FIGURE 3. Convergence for MOEA-MC performed on mtDNA_186.

In order to assess that combine consensus and MOEA can
improve convergence like [41], we include a comparison with
other approaches from literature. Fig 2-5 have clarified that
MOEA-MC can achieve better convergence. Figures 2 and 3
have showed the changes of MP and ML on the mtDNA_186
dataset as the iteration progresses. It can be found that the
convergence performance of MOEA-MC on ML is better
than others, and always been in a dominant position during
the iteration process. Although the convergence performance
on MP is slightly worse than NSGA-II, it can still maintain
the NSGA-II after the iteration on. Figures 4 and 5 show
the MP and ML changes of the three algorithms on the
rbcl_55 dataset as the iteration progresses. It can be found that
the convergence performance of MOEA-MC is better than
the other algorithms. Although the convergence speed at the
beginning is slightly worse than NSGA-II, MOEA-MC can
achieve convergence earlier than NSGA-II.

6185



IEEE Access

Q. Zhang et al.: Parallel MOEA Based on Consensus and Membrane Structure for Inferring Phylogenetic Reconstruction

Convergence
—23000
— MOEA/D
_23500 1 — NSGAI
—— MOEA-MC
—24000
g —24500 A
[=]
=
@ —25000 4
S
X
—25500
—26000
—26500
0 2000 4000 6000 8000 10000
Evaluation

FIGURE 4. Convergence for MOEA-MC performed on rbcl_55.

After assessing biological performance, we now focus on
verifying the multi-objective performance of the inferred
solutions. The main purpose of this section is to check
whether the use of hybrid parallel design results in poor
quality of multi-objective solutions. In order to evaluate
multi-objective performance, we used the widely used Pareto
front indicator. As depicted in section 2.2, there is no
optimal solution for multi-objective problems, the goal of
multi-objective evolutionary algorithm is to find all feasible
solutions in the search space, and then find solutions which
are not dominated by another solutions. We can got the opti-
mal Pareto solutions that have no other solutions is better than
them through multi-objective evolutionary algorithms.

Convergence
7500 - —— MOEA/D
—— NSGA-II
—— MOEA-MC
7000 A
>
=
[=]
E 6500
4
&
6000
5500
0 2000 4000 6000 8000 10000
Evaluation

FIGURE 5. Convergence for MOEA-MC performed on rbcl_55.

In order to verify MOEA-MC not only have power to speed
up in parallel but also have superiority in search, we also made
experiments about the Pareto frontier. The Pareto frontier
of MOEA-MC and NSGA-II, MOEA/D on three datasets
is shown in Figure3 to 5, in which we have got results via
100 iterations. Evidently, the results show that MOEA-MC
is locate at upper left which remain that MOEA-MC got
the lower parsimony and higher likelihood meanwhile. The
coverage relationship demonstrates that solutions obtained
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FIGURE 6. Pareto fronts generated from MOEA-MC, NSGA-Il and MOEA/D
over the rbcl_55 dataset.
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over the ZILLA 500 dataset.
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FIGURE 8. Pareto fronts generated from MOEA-MC, NSGA-1l and MOEA/D
over the mtDNA_186 dataset.

by MOEA-MC are non-dominated by solutions from other
methods in all the data sets. In this case, MOEA-MC and
NSGA-II, MOEA/D also have non-dominated solutions.
Also, MOEA-MC is the method that most contributes to the
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global Pareto-frontier for all data sets. Until now, MOEA-MC
has proved it can reduce runtime by parallel and got smaller
ML and MP values by unique algorithm components. Also,
MOEA-MC got non-dominated Pareto fronts with only
100 iterations. Most importantly, our proposed MOEA-MC
outperform on all indicators, indicating apply parallel pro-
cessing for multi-objective evolutionary algorithms, which
can achieve faster, more accurate to referring phylogeny
history.

VI. CONCLUSION AND FUTURE LINES

In this paper, we have proposed parallelized multi-objective
evolutionary algorithm based on consensus and membrane
structure (MOEA-MC). Consensus in each subpopulations
can reserve the best topologies that resulted evolution-
ary algorithm get converged in shorter runtime. By study-
ing the independence between the sub-populations in each
time-consuming step of the evolutionary algorithm, the steps
without global information can be designed to be executed
in parallel, which can fundamentally reduce the execution
time. In order to eliminate the imbalance between parallel
working nodes, we have used membrane structure to con-
trol the solutions number under different weights. In paral-
lel design section, a comparative analysis was carried out
between the existing parallel approaches. With the design
of the parallel algorithm, MOEA-MC has chosen Spark as
parallel tool. Parallelized MOEA-MC also can control the
communication frequency between each work node by setting
migration interval. With the standalone cluster mode of the
Spark, the degree of parallelism is controlled with set CPU
cores. Speedup analysis on different system sizes allows us to
determine the main factors controlling parallel performance
and the appropriate parallelism for different data sets.

Moreover, the analysis of multi-objective results has
pointed out that MOEA-MC preserves the search capa-
bilities of the original evolutionary algorithm, giving rise
to high-quality sets of Pareto solutions in reduced execu-
tion time. By locating the Pareto optimal solution obtained
in 100 iterations in the objective function graph, it is obvious
that the Pareto front obtained by MOEA-MC can dominate
other solutions. In conclusion, our research shows that apply-
ing parallel methods can better cope with this huge computing
challenge.

Although the results shown in this work are promising,
there still are important issues to improve in the algorithm
see, e.g. [60]-[63]. As future work lines, we aim to study
new parallel approaches such as machine learning [64]-[66]
and deep learning [67]-[69] for phylogeny. We will address
the development of asynchronous algorithms for pure shared
memory environments involving a large number of process-
ing cores. And reduce the shuffle operation in Spark as much
as possible.
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