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ABSTRACT In this paper, to address the problem of array sensors failure, we propose a covariance matrix
reconstruction method for direction-of-arrival (DOA) estimation. Firstly, we devise a diagnosis method
to detect and locate the positions of failure sensors. According to the robustness of the array, the sensor
failure scenarios are classified into redundant sensors failure and non-redundant sensors failure. Then,
the corresponding DOA estimation method is adopted for two failure scenarios. The former can be solved
using the virtual sensors in the difference coarray. As for the latter, the difference coarray has some holes,
resulting in the decrease of available continuous virtual sensors or degrees of freedom (DOFs). Based on
the matrix completion theory, the covariance matrix is extended to a high-dimensional Toeplitz matrix
with missing data, where some elements are zero. We employ the mapping matrix, further use trace norm
instead of the rank norm for convex relaxation to reconstruct the covariance matrix, thereby realizing the
filling of the virtual sensor holes in difference coarray and restoring the DOFs. Compared with the sparsity-
based methods, the proposed method can eliminate the effect of the discretization of the angle domain, and
avoid regularization parameter selection. Finally, the root-MUSIC method is given for DOA estimation.
Theoretical analysis and simulation results show that the proposed methods can alleviate the effect of array
sensors failure and improve the estimation performance.

INDEX TERMS Direction of arrival (DOA), sensor failure, difference coarray, matrix reconstruction,
redundant sensors.

I. INTRODUCTION
Direction of Arrival (DOA) estimation has a wide range of
applications in digital communication, signal processing, and
target detection, and is one of the core research contents in
the field of array signal processing [1]–[4]. A large number
of high-resolution methods have been proposed under the cir-
cumstances of array sensors intact, and somemethods [5]–[9]
even have strict requirements for the array configurations.
Recently, the research in [10], [11] reveal that the coarray
structures of sparse arrays are susceptible to sensors fail-
ure, which can result in a reduction of the degrees of free-
dom (DOFs) [12]–[15], and may also cause the failure of
the entire system. In real scenarios, the phased array has
large number of sensors, which are affected by harsh nat-
ural environment, electromagnetic interference, component
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aging, physical damage, etc., and consequently increase the
probability of sensors failure.

The numbers and positions of failure sensors have different
effects on DOA estimation performance, as proposed in [10],
[11]. In this case, it is crucial to detect and locate the positions
of the failure sensors and take remedial action to restore the
DOA estimation performance [16]–[19]. The authors in [10],
[11] propose a theory quantitatively analyze the robustness
of intact array by introducing the k-essentialness of sensors
and k-essential family of arrays. From the analysis for the
uniform linear array (ULA), it can be seen that the situation
is relatively complicated when k takes different values, but
it is necessary for robustness analysis. In this paper, we aim
to address the DOA estimation problem under the sensors
failure scenarios. After detecting and locating the failure
sensors, it is not necessary to classify the failure sensors
using the k-essentialness of sensors and k-essential family of
arrays. We classify failure sensors into redundant sensors and
non-redundant sensors based on the numbers and positions
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of failure scenarios. The impact of failure sensors on DOA
estimation is analyzed in a deterministic fashion. This classi-
fication is also applicable to redundant sensors such as ULA,
coprime array, nested array, etc.

For handling sensors failure, many modifications for con-
ventional methods are proposed. A neural network method
is used to train the data model through the neural algorithm
to recover the missing data of the covariance matrix under
the sensors failure [20]. However, this method relies entirely
on prior knowledge, thus limiting its application in practical
engineering. In [21], [22], the authors use an iterative method
for sensors failure diagnosis and consequently may converge
slowly, especially when the matrix is ill-conditioned. The
study in [23]–[25] restores the original antenna array by
reoptimizing the amplitude excitation of the remaining intact
sensors, thereby solving the practical problem of the linear
array sensors failure. However, this method only changes the
weight coefficient of the remaining intact sensors, and cannot
restore the original DOFs of the array. The covariance matrix
reconstruction method proposed in [26] recovers the corre-
sponding missing elements by the normal covariance matrix
elements. However, this method is only applicable to the
DOA estimation of multiple-input multiple-output (MIMO)
radar sensors failure when the transmission and reception
sensors spacing meets a specific relationship. In a recent
contribution [27], authors address problem of partial sensors
failure by replacing the failure sensors with the virtual sensors
in difference coarray. But the positions of failure sensors are
not considered.

In view of the above problems, we devise a diagnosis
method to detect and locate the positions of failure sensors
according to the distribution characteristics of the elements in
the covariance matrix. The sensor failure scenarios are classi-
fied into redundant sensors failure and non-redundant sensors
failure. Then, we propose two DOA estimation approaches
for the redundant and non-redundant sensors failure. The
former can be solved using the virtual sensors in difference
coarray to replace the failure sensors. As for the latter, the vir-
tual sensors in difference coarray will have holes [28], [29],
and the number of available continuous virtual sensors will
decrease, resulting in loss of DOFs. Based on the matrix com-
pletion theory [30]–[32], the covariance matrix is extended
to a high-dimensional Toeplitz matrix with missing data,
of which some elements are zero. We employ the mapping
matrix, further use trace norm instead of the rank norm for
convex relaxation to recover the matrix, thereby realizing the
filling of the holes in difference coarray and restoring the
DOFs. Compared with the sparsity-based method, the pro-
posed method can eliminate the effect of the off-grid without
discretization of the angle domain, and avoid regulariza-
tion parameter selection. Finally, the root-MUSIC method is
employed for the DOA estimation. The proposed method can
alleviate the effect of the decrease of the DOFs caused by the
array sensor failures. Therefore, the estimation accuracy is
improved.

To be clear, the main contributions of this paper are given
as follows.
• We devise a diagnosis method to detect and locate the
positions of failure sensors, which can be employed for
suppressing the DOA estimation performance degrada-
tion as shown in [10], [11].

• We classify failure sensors into redundant sensors and
non-redundant sensors based on the positions of failure
scenarios. The impact of failure sensors on DOA estima-
tion is analyzed in a deterministic fashion. Additionally,
this classification is also applicable to redundant sensors
such as ULA, coprime array, nested array, etc.

• In the case of non-redundant sensors failure, based
on the matrix completion theory, we employ the map-
ping matrix, and further use trace norm instead of the
rank norm for convex relaxation to recover the matrix,
thereby realizing the filling of the holes in difference
coarray and restoring the DOFs.

The remainder of the paper is arranged as follows.
Section 2 deals with the diagnosis and classification of fail-
ures. In Section 3, a covariance matrix reconstruction DOA
estimation method is proposed in sensors failure scenarios.
In Section 4, numerical simulations and the corresponding
discussions are given to verify the effectiveness of the pro-
posed algorithm. Finally, Section 5 draws the conclusions for
this paper.

Notations used in this paper are as follows. The lower-case
and upper-case bold characters denote vectors and matrices.
(·)T , (·)∗ and (·)H represent transpose, conjugation, and con-
jugate transpose, respectively. · and ⊗ represent Hadamard
product and Kronecker product, respectively. tr(·), rank(·) are
the trace and rank operators, respectively. IN denotes N × N
identity matrix. diag(·) denotes the diagonal matrix operator.
|·| denotes the absolute value operator. ‖·‖2 denotes `2-norm.
E[·] and vec(·) denote expectation and vectorization operator,
respectively.

II. FAILURE SENSOR DIAGNOSIS AND CLASSIFICATION
In this paper, we mainly discuss the ULA failure scenarios,
which is the most common array configuration. In principle,
the theory in this paper can be used to analyze sensor failures
in other arraymodels, but the details will be very complicated.
Due to page limitations, the analysis of these array models
will be left for further study.

The ULA contains N physical sensors. The unit spacing
between two consecutive elements is d0 = λ/2, where λ
is the wavelength of carrier frequency. Assuming that K
coplanar far-field narrowband sources impinging on the array
from the directions θ = [θ1, θ2, · · · , θK ], the array output is
expressed as:

X(t) = AS(t)+ N(t) (1)

where X(t) = [x1(t), x2(t), · · · , xN (t)]T is the output of
array, S(t) = [s1(t), s2(t), · · · , sK (t)]T is the signal wave-
forms of each source, N(t) = [n1(t), n2(t), · · · , nN (t)]T
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denotes the white Gaussian noise vector, and A =

[a(θ1), a(θ2), · · · , a(θK )] is manifold matrix with a(θk ) =
[1, ej

2πd0
λ

sin θk , · · · , ej
2(N−1)πd0

λ
sin θk ]T being the steering

vector.
We assume that the impinging signals are independent and

uncorrelated, the covariance matrix of the output data can be
given as:

R = E
{
X(t)X(t)H

}

= A


σ 2
1
σ 2
2
. . .

σ 2
K

AH
+ σ 2

n I (2)

where σ 2
k is the power of the kth impinging signal, and σ 2

n
denotes the noise power.

If the array sensor fails, we assume it is completely faulty
and cannot get any useful information. If the ith sensor fails,
all elements on the ith row of the manifold matrix A are
replaced with 0. Therefore, the elements in the ith row and
the ith column of the covariance matrix R are all 0 except for
the diagonal elements.

Taking the ULA contains the N physical sensors as an
example. We assume that the second sensor fails and all
elements on the second row of the manifold matrix A1 are
replaced with 0. The manifold matrix A1 is expressed as:

A1 =



1 1 · · · 1
0 0 · · · 0

ej
4πd0
λ

sin θ1 ej
4πd0
λ

sin θ2 · · · ej
4πd0
λ

sin θK

...
...

. . .
...

ej
2(N−1)πd0

λ
sin θ1 ej

2(N−1)πd0
λ

sin θ2 · · · ej
2(N−1)πd0

λ
sin θK


(3)

Substituting (3) into to (2), we can formulate the covariance
matrix as:

R1 =



K∑
k=1

σ 2
k + σ

2
n 0

K∑
k=1

σ 2
k e
−jB
· · ·

K∑
k=1

σ 2
k e
−jF

0 σ 2
n 0 · · · 0

K∑
k=1

σ 2
k e

jB 0
K∑
k=1

σ 2
k + σ

2
n · · ·

K∑
k=1

σ 2
k e
−jG

...
...

...
. . .

...
K∑
k=1

σ 2
k e
−jF 0

K∑
k=1

σ 2
k e

jG
· · ·

K∑
k=1

σ 2
k + σ

2
n


(4)

where B =
4πd0
λ

sin θk , F =
2(N−1)πd0

λ
sin θk , G =

2(N−3)πd0
λ

sin θk . Under ideal assumptions, if the row and
column elements of R1 have only unique non-zero elements,
we can determine that there is a failure sensor. However,
in real scenarios, the sampling noise is not the ideal Gaussian
white noise, and the noise covariance matrix is non-diagonal.
Signals and noise are not completely uncorrelated. If there are
sensor failures, there are no rows and columns in R1 whose
elements are all zero elements except for the diagonal ones.

Therefore, we propose a detection algorithm to diagnose the
failure sensors and their positions.

In the case of sensors failure, the covariancematrix R̂ of the
actual array output data is compared to the ideal covariance
matrix R. The zero elements on the rows and columns of R
corresponding to the failure sensor are replaced by the signal
and noise cross-correlation term and the cross-correlation
term of the noise received by different sensors. The sum of the
absolute values of the rows corresponding to the failure sen-
sors is significantly smaller than the mean of the sum of the
absolute values of the rows corresponding to the other non-
failure sensors, the columns are also the same. Therefore, the
sensors failure can be diagnosed by the following formula as:

r(i, :) ≤ γ
1
N

N∑
i=1

r(i, :)

r(:, j) ≤ γ
1
N

N∑
j=1

r(:, j)
(5)

where r(i, :) =
N∑
j=1

∣∣∣R̂(i, j)∣∣∣ is the sum of the absolute values of

the rows of R̂. r(:, j) =
N∑
i=1

∣∣∣R̂(i, j)∣∣∣ is the sum of the absolute

values of the columns of R̂. γ is the detection threshold
factor that ranges from 0 to 1. γ has to be chosen properly
since a smaller γ may discard the failure sensors while a
larger γ may bring in spurious failure sensors, both of which
can deteriorate the performance of failure sensor diagnosis.
In the experiment, we verified the diagnosis performance of
different γ values in steps of 0.1. In this paper, we give the

empirical value γ =
{
0.5, if− 15dB <SNR ≤ 0dB
0.4, ifSNR > 0dB

based

on the experimental results, which gives good performance
empirically. If r(i, :) and r(:, j) satisfy (5) at the same time,
and i = j, the ith sensor fails.
The different numbers and positions of failure sensors have

crucial effects on DOA estimation performance, and also
determine the choice of DOA estimation methods for sensors
failure scenarios. Therefore, we classify different cases of
array sensor failure. In this paper, we classify the failure
sensors into redundant sensors and non-redundant sensors
based on array redundancy.

To better understand, we briefly review the difference coar-
ray. The set is defined as:

D = {dn − dn′}, dn, dn′ ∈ C (6)

where C is the set of array sensor positions. dn, dn′ are the
positions of different physical sensors. D is the set of differ-
ences between the positions of physical sensors, where the
same elements exist, and the set of all the different position
differences du is defined as Du. The frequency of du in set D
is defined as the weight coefficient ωd (du). The (m, p) − th
element of the covariance matrix R may be interpreted as
an aggregated signal received from all sources observed at a
virtual element located at dm− dp. We regard virtual element
as virtual sensor.
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Algorithm 1 Proposed Algorithm for Failure Sensor Diagno-
sis and Classification
Step 1: Calculate the array output data covariance matrix
R̂.
Step 2:Calculate the sum of the absolute values of the rows

r(i, :) =
N∑
j=1

∣∣∣R̂(i, j)∣∣∣ and calculate the sum of the absolute

values of the columns r(:, j) =
N∑
i=1

∣∣∣R̂(i, j)∣∣∣.
Step 3:Determine whether r(i, :) and r(:, j) satisfy (5), and
i = j. If (5) is satisfied, the ith sensor fails, otherwise the
ith sensor does not fail.
Step 4: Calculate position difference set D = {dn−dn′} of
the intact sensors.
Step 5:Remove the same position differences to get the set
Du, and obtain the number of consecutive virtual sensorsQ.
Step 6: If Q = 2N − 1, the redundant sensors fail,
otherwise the non-redundant sensors fail.

The positions of the failure sensors are known, and the
positions difference set D are obtained from (6) for the
remaining intact sensors. Then, the same position differences
are removed to obtain the setDu, and the numbers of consecu-
tive virtual sensorsQ is obtained. The numbers of consecutive
virtual sensors in the intact array is 2N − 1. If Q = 2N − 1,
the redundant sensors fail, otherwise the non-redundant sen-
sors fail. For failure sensors diagnosis and classification,
We show the main steps of the proposed method as follows

For ULA with N sensors, the sensor location set is
{0, 1, · · · ,N − 1}. We classify the sensors into redundant
sensors and non-redundant sensors. To simplify the discus-
sion, we give non-redundant sensors expressions:

ψ1 =


{{0}} , if N = 1,
{{0} , {1}} , if N = 2,
{{0} , {1} , {2}} , if N = 3,
{{0} , {N − 1}} , if N > 3,

(7)

ψ2 =



∅, if 1 ≤ N ≤ 3,
{{1, 2}} , if N = 4,
{{1, 2} , {1, 3} , {2, 3}} if N = 5,
{{1, 4} , {2, 3}} , if N = 6,
{{1,N − 2}} , if N > 6,

(8)

ψ3 =



∅, if N ≤ 6,
{{1, 2, 3} , {1, 2, 4} , {2, 3, 4} ,
{2, 4, 5} , {3, 4, 5}} , if N = 7,
{{1, 2, 5} , {2, 3, 4} ,
{2, 5, 6} , {3, 4, 5}} , if N = 8,
{{1, 2, 6} , {2, 6, 7} , {3, 4, 5}} if N = 9,
{{1, 2,N − 3} , {2,N − 3,N − 2}} if N > 9,

(9)

FIGURE 1. The positions of the physical sensors and the virtual sensors in
difference coarray of different failure scenarios. Physical sensors are
marked by solid circles and the virtual sensors are marked by hollow
circles, while the failure sensors and holes are depicted by crosses.
(a) the intact ULA array, (b) the 4th sensor failure, (c) the 2nd and 9th
sensors failure, (d) the 2nd, 4th, 5th, 7th, and 8th sensors failure and
(e) the 3rd, 4th, 5th, 8th, and 9th sensors failure.

where ψk represents the set of locations for k non-redundant
sensors. Note that for ψk1 and ψk2 , if k1 < k2, k1 non-
redundant sensors in ψk1 will not be repeated in ψk2 .
This is because k1 non-redundant sensors combined with
other k2 − k1 arbitrary position sensors are necessarily
non-redundant.

Note that the sensors at both ends of array are more
important than others. It was shown in [33] that for the
ULA with 6 sensors, the position set is {0,1,2,3,4,5},
the sensors at 0 and 5 are more important than sensors
at 1, 2, 3, and 4. According to the Theorem 2 in [11],
the sensors at 0 and N − 1 are the most essential ones
while the others are inessential. To simplify the discus-
sion, we make the following additional assumptions: If the
positions of failure sensors are at the ends of the array,
the maximum DOFs that can be recovered is the maximum
DOFs of the remaining ULA after removing the endpoint
sensors.

If there are multiple failure sensors, the influence on differ-
ence coarray becomes more complicated. Taking a uniform
linear array with 10 sensors as an example, if only one sensor
fails and its position is anywhere except for the two endpoints,
we can use the redundancy of the array to fill the position of
the failure sensor. If the two sensors fail, only when the 2nd
sensor and the 9th sensor fail simultaneously, the redundancy
of the remaining sensors cannot restore the original DOFs,
and any other two sensors failure can be addressed by redun-
dancy. The ULA with 10 sensors can recover the DOFs in
the case of a maximum of 5 failure sensors. For example, the
2nd, 4th, 5th, 7th, and 8th array sensors fail, and the remain-
ing intact sensors constitute the minimum redundant array,
and the difference coarray can restore the original DOFs.
Figure 1 shows the positions of the physical sensors and
the virtual sensors in difference coarray of different failure
scenarios.

Figure 1a shows intact ULA array. Figure 1b and 1d
shows redundant sensors failure. Figure 1c and 1e show non-
redundant sensors failure. It can be seen that the redundant
sensors failure does not change the difference coarray. While
the non-redundant sensors failure, the virtual sensors in the
difference coarray will have holes.
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FIGURE 2. The difference coarray structure in non-redundant sensors failure scenarios for the ULA
with N sensors. Virtual sensors are marked by hollow circles while the holes are depicted by
crosses.

III. DOA ESTIMATION METHOD IN SENSOR
FAILURE SCENARIO
Based on the previous analysis, the different numbers and
positions of failure sensors have crucial effects on DOA
estimation performance, and also determine the choice of
methods. In the case of redundant sensors failure, the miss-
ing elements in the covariance matrix can be recovered by
using the difference coarray. We can use the continuous vir-
tual sensors for DOA estimation by the MUSIC algorithm
(CO-MUSIC).

In the case of non-redundant sensors failure, the differ-
ence coarray will have holes, and the numbers of available
continuous virtual sensors will decrease, resulting in loss of
DOFs, which may affects the applicability of CO-MUSIC.
Even if the holes exist, there are other estimation methods,
such as sparsity-based methods [34], [35] and coarry interpo-
lation [36], that can be applied to the new difference coarray.
However, these methods are usually computationally inten-
sive, and the exact conditions and performance of themethods
under different failure scenarios remain to be explored.More-
over, the sparsity-based method needs to discretize the angle
domain, and there is a basis mismatch problem. We propose
a covariance matrix reconstruction algorithm for DOA esti-
mation in non-redundant sensors failure scenarios. The algo-
rithm can increase the DOFs and maximum resolvable signal
number by filling the virtual sensor holes in the discontinuous
part of the difference coarray. Compared with the sparsity-
based algorithms, this algorithm can eliminate the effect of
the off-grid without discretization of the angle domain, and
avoid regularization parameter selection. In addition, the pro-
posed algorithm is also applicable to redundant sensors fail-
ure. The virtual sensors of remaining intact sensors can fill
the positions of the failure sensors. Although the proposed
algorithm does not increase the number of virtual sensors
and DOFs, but by using Toeplitz covariance matrix recon-
struction, the noise is effectively suppressed, and the accuracy
is improved. Therefore, the proposed algorithm outperforms
CO-MUSIC algorithm.

The covariance matrix of difference coarray shown
in Figure 2 can be expressed as:

R =



K∑
k=1

σ 2
k

K∑
k=1

σ 2
k e
−jO
· · ·

K∑
k=1

σ 2
k e
−jP

K∑
k=1

σ 2
k e

jO
K∑
k=1

σ 2
k · · ·

K∑
k=1

σ 2
k e
−jQ

...
...

. . .
...

K∑
k=1

σ 2
k e

jP
K∑
k=1

σ 2
k e

jQ
· · ·

K∑
k=1

σ 2
k


+ σ 2

n I

=

 R(0) R(−1) · · · R(−(N − 1))
R(1) R(0) · · · R(−(N − 2))
...

...
. . .

...
R(N − 1) R(N − 2) · · · R(0)

+ σ 2
n I

(10)

where O = π sin θk ,P = π (N − 1) sin θk ,Q = π

(N−2) sin θk , {R(du) |du = −(N − 1), · · · , (N−1)} denotes
the 2N−1 different wave path differences. Note that du is not
continuous in the case of non-redundant sensors failure.

The difference coarray set according to the definition
becomes:

Du = { − (N − 1)d0, · · · , (N − 1)d0} (11)

According to (11) and (10), the elements in difference
coarray denote the positions difference of each array sensor,
corresponding to the wave path difference obtained by the
covariance matrix. Note that, the elements in Du are not
contiguous, which is caused by the holes in the difference
coarray under non-redundant sensors failure scenarios.

Considering the influence of the signal-to-noise ratio
(SNR) and the number of snapshots on the covariance matrix
of the output data, the elements in the covariance matrix
corresponding to the wave path difference in (10) are not
completely equal, so the averaging operation is performed as:

R̂(du) =
1

ωd (du)

ωd (du)∑
i=1

Ri(du) (12)

where Ri(du) is the matrix element corresponding to the same
wave path difference.

Based on the correspondence between the difference coar-
ray and the wave path difference, the covariance matrix R is
extended to a N ×N Toeplitz covariance matrix with missing
data, where some elements are zero,

RT =
{
R̂(du), if i− j = du,

0, otherwise,
(13)

RT can be equivalent to an output covariance matrix of an
intact ULA, in which some elements are zero. We can fill
the zero elements to get a virtual extended ULA covariance
matrix.

Taking the 2nd, 4th, 5th, 7th, and 8th sensors failure
of Fig. 1(e) as an example:

R =


R(0) R(−1) R(−5) R(−6) R(−9)
R(1) R(0) R(−4) R(−5) R(−8)
R(5) R(4) R(0) R(−1) R(−4)
R(6) R(5) R(1) R(0) R(−3)
R(9) R(8) R(4) R(3) R(0)

+ σ 2
n I

(14)
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We extend the covariance matrix R to a 10×10 Toeplitz
covariance matrix RT, as shown in (15), as shown at the
bottom of this page.

In practical applications, the covariance matrix R is esti-
mated with L snapshots:

R̂ =
1
L

L∑
l=1

X(tl)XH(tl) (16)

From (13), the estimate of R̂T can be derived from the R̂
extension. Since the signal is sparse, RT is low rank. Using
the matrix completion theory, the real RT can be obtained by
solving the optimization problem. Under the limited snapshot
condition, we achieve the fit between Rc and R̂T through the
second-order statistical properties. The covariance matrix can
be recovered by the following formulation as:

min rank(Rc), s.t.
∥∥∥∥R̂− 1

2
T

(
R̂T − Rc

)
R̂
−

1
2

T

∥∥∥∥2
F
≤ η,Rc ≥ 0

(17)

where Rc represents the target matrix that needs to be recon-
structed. η is the predefined threshold.

It can be deduced that:∥∥∥∥R̂− 1
2

T

(
R̂T − Rc

)
R̂
−

1
2

T

∥∥∥∥2
F

= vecH
(
R̂T − Rc

) (
R̂
−T
T ⊗ R̂

−1
T

)
vec

(
R̂T − Rc

)
=

∥∥∥∥Ŵ− 1
2 vec

(
R̂T − Rc

)∥∥∥∥2
2

(18)

where Ŵ = 1
L R̂

T
T ⊗ R̂T.

Replacing the first constraint of (17) by (18), we can get:

min rank(Rc), s.t.
∥∥∥∥Ŵ− 1

2 vec
(
R̂T − Rc

)∥∥∥∥2
2
≤ η,Rc ≥ 0

(19)

R̂T is derived from the R̂ extension, and sensor failures
cause multiple zero values in R̂T. The positions of the zero
value provide none useful information. So we introduce the
mapping matrix P:

min rank(Rc), s.t.
∥∥∥∥Ŵ− 1

2 vec(P · (R̂T − Rc))
∥∥∥∥2
2
≤ η,Rc ≥ 0

(20)

where P is the mapping matrix, and once the difference
coarray is determined, the mapping matrix is constructed
accordingly, which can be expressed as:

P(i, j) =
{
1, if i− j = du,
0, otherwise,

(21)

According to the definition of the projection matrix P, the
position of the zero element in P is the same as that in R̂T.
By introducing the matrix P, the influence of the original zero
element positions in (R̂T − Rc) is avoided.
In the model of (20), due to the non-convexity of the

rank function, this problem is non-deterministic polynomial
(NP-hard) problem and therefore difficult to solve. To avoid
the non-convexity, we utilize convex relaxation to replace
the rank norm with the nuclear norm. Since Rc is a positive
semidefinite Hermitian matrix, the nuclear norm of Rc is
equivalent to the trace norm of Rc, that is, tr(Rc) is used
instead of rank(Rc). Then the convex relaxation form of (20)
is expressed as:

min tr(Rc), s.t.
∥∥∥∥Ŵ− 1

2 vec(P · (R̂T − Rc))
∥∥∥∥2
2
≤ η,Rc ≥ 0

(22)

TheE = R̂T−Rc satisfies the following asymptotic normal
distribution.

Proof: Please see Appendix A.

vec(E) ∼ AsN(0,W ) (23)

where W =
1
LR

T
c ⊗ Rc, W can be approximated by

Ŵ = 1
L R̂

T
T ⊗ R̂T.

From (23) we can deduce the following formula:

W−
1
2 vec(E) ∼ AsN(0, IN 2 ) (24)

then ∥∥∥W− 1
2 vec(E)

∥∥∥2
2
∼ Asχ2(N 2) (25)

where Asχ2(N 2) is the chi-square distribution and the DOFs
is N 2. Here, the parameter µ is introduced as follows:∥∥∥W− 1

2 vec(E)
∥∥∥2
2
≤ µ2 (26)

The probability that the true solution falls into the confi-
dence interval [0,µ] is ρ, where ρ is usually set to a very

RT =



R(0) R(−1) 0 R(−3) R(−4) R(−5) R(−6) 0 R(−8) R(−9)
R(1) R(0) R(−1) 0 R(−3) R(−4) R(−5) R(−6) 0 R(−8)
0 R(1) R(0) R(−1) 0 R(−3) R(−4) R(−5) R(−6) 0

R(3) 0 R(1) R(0) R(−1) 0 R(−3) R(−4) R(−5) R(−6)
R(4) R(3) 0 R(1) R(0) R(−1) 0 R(−3) R(−4) R(−5)
R(5) R(4) R(3) 0 R(1) R(0) R(−1) 0 R(−3) R(−4)
R(6) R(5) R(4) R(3) 0 R(1) R(0) R(−1) 0 R(−3)
0 R(6) R(5) R(4) R(3) 0 R(1) R(0) R(−1) 0

R(8) 0 R(6) R(5) R(4) R(3) 0 R(1) R(0) R(−1)
R(9) R(8) 0 R(6) R(5) R(4) R(3) 0 R(1) R(0)


+ σ 2

n I (15)
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FIGURE 3. In the case of redundant sensors failure, the normalized
spectrum of CO-MUSIC algorithm, CO-Lasso algorithm, CO-OGSBI
algorithm and proposed algorithm for 3 sources and 8 sources
respectively: (a) Normalized spectrum for 3 sources; (b) Normalized
spectrum for 8 sources.

large value such as 0.999. µ can be calculated by the function
chi2inv(ρ,N 2) which solves the chi-squared arrangement
interval in Matlab.

We replace the constraint in (22) with (26), and then solve
the following problem to recover the covariance matrix,

min tr(Rc), s.t.
∥∥∥W− 1

2 vec(P · (R̂T − Rc))
∥∥∥2
2
≤ µ2,Rc ≥ 0

(27)

The constraint minimization problem in (27) can be solved
by optimization toolbox. The DOAs can be estimated from
the optimal solution Rc by using the root-MUSIC algorithm.
In terms of computational complexity, the computational

complexity of the proposed algorithm is approximately
O
(
N 3
+ LN 2

1 + N
2
)
. The computational complexity of

the CO-MUSIC is approximately O
(
LN 2

1 + N
3
2

)
. For the

CO-Lasso algorithm [34], the computational complexity
is approximately O

(
J3 +max

(
LN 2

1K ,LN1K 2
))
. For the

OGSBI algorithm [37] combined with the difference coar-
ray (CO-OGSBI), the computational complexity is approxi-
mately O

(
max

(
N1J2,LN1J

))
. J is the number of grids. N

is the number of sensors in intact ULA. N1 is the number
of sensors that have not failed. N2 denotes the number of

FIGURE 4. In the case of non-redundant sensors failure, the normalized
spectrum of CO-Lasso algorithm, CO-OGSBI algorithm and proposed
algorithm for 3 sources and 8 sources respectively: (a) Normalized
spectrum for 3 sources; (b) Normalized spectrum for 8 sources.

consecutive virtual sensors. In general, J � N > K . It can
be seen that CO-MUSIC has the lowest computations, and the
computational complexity of the proposed algorithm is lower
than that of CO-Lasso and CO-OGSBI.

IV. SIMULATION RESULTS
In this section, we use numerical simulations to verify the
effectiveness of the proposed algorithm in scenarios where
the numbers and positions of failure sensors are different.
The performance of the proposed algorithm is compared
with several DOA estimation algorithms in both overdeter-
mined and underdetermined cases, including CO-MUSIC
algorithm, CO-Lasso algorithm and CO-OGSBI algorithm.
The intact ULA consists of 10 physical sensors. The angle
search interval for setting the CO-MUSIC is 0.1◦, and the
sampling interval for the predefined spatial grid of the
CO-Lasso and CO-OGSBI is set as 1◦.

A. SPATIAL SPECTRUM
We take 3 sources and 8 sources as examples, and assume that
sources are far-field narrowband signals with equal power
impinging on the array. In the case of 3 sources, the incident
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FIGURE 5. In the case of redundant sensors failure, the root mean square error (RMSE) of CO-MUSIC algorithm, CO-Lasso algorithm, CO-OGSBI
algorithm and proposed algorithm for 3 sources and 8 sources respectively: (a) RMSE versus SNR for 3 sources, L = 200; (b) RMSE versus
snapshots for 3 sources, SNR = 0dB; (c) RMSE versus SNR for 8 sources, L = 200; (d) RMSE versus snapshots for 8 sources, SNR = 0dB.

angle is −33.43◦, −10.19◦, 11.57 ◦, and in the case of 8
sources, the incident angle is -65.12◦, −50.34◦, −33.43◦,
−10.25◦, 11.65◦, 30.46◦, 49.07◦, 65.24◦. The redundant
sensors fail, taking the 2nd, 4th, 5th, 7th, and 8th sen-
sors failure as an example. The remaining intact sensors
are at {0d0, 2d0, 5d0, 8d0, 9d0}. The CO-MUSIC, CO-Lasso,
CO-OGSBI and the proposed algorithm are used to estimate
DOA of 3 sources and 8 sources. The SNR is set to be 0
dB, and the number of snapshots is 300. The experimental
results are shown in Figure 3. It can be seen that in the case
of redundant sensors failure, all these algorithms can provide
satisfactory DOA performance for 3 sources. When we per-
form DOA estimation on 8 sources, CO-MUSIC has poor
performance and almost fails. CO-Lasso and CO-OGSBI are
able to estimate the DOAs of a part of the sources, while the
other part cannot be estimated. The proposed algorithm can
still perform DOA estimation for each source.

The non-redundant sensors fail, taking the 3rd, 4th, 5th,
8th, and 9th sensors failure as an example. The remaining
intact sensors are at {0d0, 1d0, 5d0, 6d0, 9d0}. The SNR is set
to be 0 dB, and the number of snapshots is 300. In this case,
CO-MUSIC is completely invalid. The experimental results
of CO-Lasso, CO-OGSBI and the proposed algorithm are

shown in Figure 4. It indicates that CO-Lasso, CO-OGSBI
and the proposed algorithm can give good estimation results
of 3 sources.Whenwe performDOA estimation on 8 sources,
CO-Lasso and CO-OGSBI can perform DOA estimation on
a part of the sources, and another part of the sources cannot
be estimated, while the proposed algorithm can still detect all
the sources.

B. RMSE VERSUS SNR AND SNAPSHOTS
We simulate the 3 sources and 8 sources in the case of
redundant sensors failure and non-redundant sensors failure,
and compare the RMSE performance of the four algorithms
versus SNR and snapshots, performing 300 Monte Carlo
experiments. In the case of 3 sources, the incident angle is -
33.43◦+1θ , -10.19◦+1θ , 11.57 ◦+1θ , and in the case of 8
sources, the incident angle is -65.12◦ +1θ , −50.34◦ +1θ ,
−33.43◦ +1θ , −10.25◦ +1θ , 11.65◦ +1θ , 30.46◦ +1θ ,
49.21◦ + 1θ , 65.24◦ + 1θ , where 1θ is chosen randomly
from the interval [−3◦, 3◦] in each trial to remove the possi-
ble prior information contained in the predefined direction
set. The Cramér-Rao Lower Bound (CRLB) for the array
geometry is also given as a benchmark. Figure 5 shows the
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FIGURE 6. In the case of non-redundant sensors failure, the root mean square error (RMSE) of CO-Lasso algorithm, CO-OGSBI algorithm and proposed
algorithm for 3 sources and 8 sources respectively: (a) RMSE versus SNR for 3 sources, L = 200; (b) RMSE versus snapshots for 3 sources, SNR = 0dB;
(c) RMSE versus SNR for 8 sources, L = 200; (d) RMSE versus snapshots for 8 sources, SNR = 0dB.

RMSE performance of the four algorithms versus SNR and
snapshots in the case of redundant sensors failure scenarios.
As shown in Figure 5, when we perform DOA estimation in
case of overdetermined, estimation errors of the four algo-
rithms are small, and the proposed algorithm is much better.
In the underdetermined condition, CO-MUSIC has poor per-
formance and almost fails. CO-Lasso and CO-OGSBI have
low RMSE when the SNR is high, and almost fails when
the SNR is low, while the proposed algorithm can still obtain
higher accuracy. The reason is that in the case of redundant
sensors failure, the virtual sensors of remaining intact sensors
can fill the positions of the failure sensors. Although the
proposed algorithm does not increase the number of virtual
sensors andDOFs, but by using covariancematrix reconstruc-
tion, the noise is effectively suppressed, and the estimation
accuracy is improved. Therefore, the proposed algorithm out-
performs CO-MUSIC, CO-Lasso and CO-OGSBI.

In the case of non-redundant sensors failure, CO-MUSIC is
completely invalid. From Figure 6, in case of overdetermined,
CO-Lasso, CO-OGSBI and the proposed algorithm can
give good estimation accuracy, and the proposed algorithm
performs better. The proposed algorithm has a significant
advantage over CO-Lasso and CO-OGSBI in estimating
accuracy in the underdetermined scenario. The reason is

that the proposed algorithm can fill and utilize the virtual
sensor holes, thus obtain more sensors and higher DOFs.
Besides, the performance of CO-Lasso is degenerated as there
is a basis mismatch caused by discretization of the angle
domain. As a result, the proposed algorithm achieves the
best performance.

C. CPU TIME
The CPU time is defined as the runtime of each algorithm.
We compare the CPU time of the four algorithms for 3 sources
with the SNR varying from −15dB to 30dB. The simula-
tion environment is Matlab 2014a, Intel Xeon E3 processor,
16 GB memory. The other parameter settings are the same as
the redundant sensors failure in Simulation 1. Figure 7 shows
the simulation results.

It can be concluded from Figure 7 that under the same
simulation conditions, the CPU time required by the proposed
algorithm is obviously less than CO-Lasso and CO-OGSBI,
but more than CO-MUSIC. Nevertheless, it should be noted
that, the increased computational cost of the proposed algo-
rithm can be regard as a sacrifice for accuracy improvement.

Considering the analysis of the estimation accuracy, we can
get a general conclusion: In the case of redundant sensors
failure, the DOA estimation errors of the three algorithms are
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FIGURE 7. CPU time comparison of CO-MUSIC algorithm, CO-Lasso
algorithm, CO-OGSBI algorithm and proposed algorithm.

small in the overdetermined condition, and CO-MUSIC with
the fastest operation speed can be used when the accuracy is
not strictly required. However, under the condition of under-
determined, CO-MUSIC has poor performance and basically
invalid. The proposed algorithm is superior to CO-Lasso
and CO-OGSBI in estimation accuracy and operation speed.
Therefore, the proposed algorithm can be chosen. In the case
of non-redundant sensors failure, CO-MUSIC is invalid, and
the estimated performance of CO-Lasso and CO-OGSBI is
significantly degraded. The proposed algorithm outperforms
CO-Lasso and CO-OGSBI in estimation accuracy and oper-
ation speed. Therefore, the proposed algorithm is the optimal
choice for non-redundant sensors failure.

V. CONCLUSION
Array sensors failure can significantly deteriorate the perfor-
mance of DOA estimation. To address this problem, we pro-
pose a covariance matrix reconstruction algorithm for DOA
estimation. In the first stage, we devise a diagnosis method
to detect the failure sensors. Then we classify the failure
sensors into redundant sensors and non-redundant sensors.
In the second stage, the former can be solved by using the
virtual sensors to occupy the positions of failure sensors.
As for the latter, the covariance matrix is extended to a high-
dimensional Toeplitz matrix with missing data. We employ
the mapping matrix, further use trace norm instead of the
rank norm for convex relaxation to reconstruct the covariance
matrix, thereby realizing the filling of the virtual sensor holes
in the difference coarray and restoring the DOFs. Numeri-
cal experiments demonstrate the superiority of the proposed
algorithm as compared to some of the existing algorithm,
especially in the case of non-redundant sensors failure.

APPENDIX A
Proof: E = R̂T − Rc, Let 8 = vec(E). Prove that 8

satisfies the following asymptotic normal distribution.

8 ∼ AsN(0,
1
L
RT
c ⊗ Rc) (28)

We assume that the (m, p) − th element of the sample
covariance matrix R̂T is r̂m,p. The (m, p) − th element of the
target matrix Rc is rm,p, we have:

r̂m,p =
1
L

L∑
t=1

xm(t)x∗p (t)

=
1
L

L∑
t=1

(A[m, :]S(t)+ nm(t))(A[p, :]S(t)+ np(t))∗

(29)

Also assuming that both the source signals and the noises
are uncorrelated, we can get:

E
{
r̂m,p

}
= A[m, :]RSA[p, :]+ δm,pσ 2

n = rm,p (30)

and

E
{
(r̂m,p − rm,p)(r̂k,l − rk,l)∗

}
=

1
L2

L∑
t1=1

L∑
t2=1

E {(A[m, :]S(t1)+ nm(t1))

×
(
A[p, :]S(t1)+ np(t1)

)∗
· (A[k, :]S(t2)+ nk (t2))∗ (A[l, :]S(t2)+ nl(t2))

}
− rm,pr∗k,l

=
1
L2

L∑
t1=1

L∑
t2=1

t1 6=t2

E {· · · } +
1
L2

L∑
t1=t2=1

E {· · · } − rm,pr∗k,l

(31)

The ellipsis ofE {· · · } represents the expected part after the
first equal sign in (31).
where

1
L2

L∑
t1=1

L∑
t2=1

t1 6=t2

E {· · · } =
L2 − L
L2

rm,pr∗k,l (32)

and

1
L2

L∑
t1=t2=1

E {· · · } =
1
L
(rm,pr∗k,l + rm,krl,p) (33)

We thus get:

E
{
(r̂m,p − rm,p)(r̂k,l − rk,l)∗

}
=
rm,krl,p
L

(34)

then

E
{
88H

}
=

1
L
RT
c ⊗ Rc (35)

This completes the proof.
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