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ABSTRACT Multiple-target localization is extensively applied in wireless connected networks. However,
sensor location uncertainty is known to degrade significantly the target localization accuracy. Fortunately,
calibration emitters such as unmanned aerial vehicles (UAV) with known location can be used to reduce the
loss in localization accuracy due to sensor location errors. This paper is devoted to the use of UAV calibration
emitters for time differences of arrival (TDOA) and frequency differences of arrival (FDOA) positioning of
multiple targets. The study starts with deriving the Cramér–Rao bound (CRB) for TDOA/FDOA-based target
location estimate when several UAV calibration signals are available. Subsequently, the paper presents an
iterative constrained weighted least squares (ICWLS) estimator for multiple-target joint localization using
TDOA/FDOA measurements from both target sources and UAV calibration emitters. The newly proposed
method consists of two stages. In the first phase, the sensor locations are refined based on the calibration
measurements as well as the prior knowledge of sensor locations. The second step provides the estimate of
multiple-target locations by combining the measurements of target signals as well as the estimated values
in the first phase. An efficient ICWLS algorithm is presented at each stage. Both the two algorithms are
implemented by using matrix singular value decomposition (SVD), which is able to provide a closed-form
solution and update the weighting matrix at every iteration. Finally, the convergence behavior and estimation
mean-square-error (MSE) of the new estimator are deduced. Both theoretical analysis and simulation results
show that the developed method can improve the TDOA/FDOA localization accuracy obviously with the
help of UAV calibration emitters.

INDEX TERMS Target localization, unmanned aerial vehicle (UAV), time difference of arrival (TDOA),
frequency difference of arrival (FDOA), multiple targets, calibration emitters, constrained weighted least
squares (CWLS), Cramér–Rao bound (CRB), singular value decomposition (SVD).

I. INTRODUCTION
Determining the target locations from source signal measure-
ments collected by a wireless connected network (or an array)
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of sensors at a time instance has become a fundamental issue
during the past few decades [1]–[15]. It has inspired numer-
ous applications in wireless communications, unmanned sys-
tem, wireless connected robot swarms, object tracking and
many other areas. Unfortunately, target localization is a non-
trivial problem, mainly because the target positions and the
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signal measurements are generally nonlinearly related. The
localization task is usually accomplished using a two-step
approach. In the first step, certain signal parameters are
extracted from the radiated signal at the output of an array
of spatially distributed sensors. In the second step, the target
location is estimated by solving a set of non-linear equations
defined by the signal parameters obtained in the first step.
In this work, we restrict our attention to the second step.

Typical positioning parameters include time of arrival
(TOA) [16], time difference of arrival (TDOA) [17], angle of
arrival (AOA) [18], received signal strength (RSS) [19], and
a combination of them [20]. When there is relative motion
between the target and the sensors, frequency differences of
arrival (FDOA) can be exploited not only to further improve
the estimation accuracy of the target position, but also to
provide an estimate of the target velocity. Besides, combina-
tions of TDOA and FDOAmeasurements can facilitate local-
ization of the target source in a wide range of bandwidths.
As a consequence, FDOA is often combined with TDOA
for moving target localization. However, finding the target
position and velocity from TDOA and FDOA measurements
obtained at a single time instant is not easy to complete as
the equations are nonlinear. Another undesirable factor is that
there are often random errors in the positions and velocities
of the mobile sensors, which will result in obvious losses
in estimation accuracy. To limit the scope of this paper, we
concentrate on the TDOA/FDOA-based target localization
problem.

Over the years, a number of algorithms for TDOA and
FDOA positioning have been presented in the literature.
Among the existing methods, the two-stage weighted least
squares (TSWLS) algorithm [21] is very popular because it
has closed-form solution and asymptotic efficiency. However,
this classical TSWLS algorithm has poor localization accu-
racy when the target is located near any coordinate axis of the
reference sensor. To remove this shortcoming, an improved
version of the popular TSWLS algorithm is proposed in [22].
An alternative approach that can yield explicit solutions for
target position and velocity is based on multidimensional
scaling (MDS) analysis [23], which has been developed for
data analysis in fields such as physics, geography and biology.
This method is designed to minimize the cost function depen-
dent on the scalar product matrix in the MDS framework.
Theoretical analysis and simulation results demonstrate that
this method is more robust against high measurement noise
than the classical TSWLS method. Certainly, the closed-
form methods have low computational complexity and do
not suffer from local minima and divergence problems. How-
ever, the accuracy of these estimators can attain Cramér–
Rao bound (CRB) only when the noise level is sufficiently
low. To improve the estimation performance in the high noise
region, iterative localization approaches can be exploited.
The most common iterative technique is perhaps the Taylor-
series linearization algorithm [24], which can be applied to
almost any localization scenario. A point to note is that this
method requires a proper initial position and velocity guess

close to the true solution, and such a good guess may not
be easy to obtain because the pseudo-linear equations are
not available in this algorithm. Additionally, the semidefinite
relaxation technique has been employed to relax the maxi-
mum likelihood (ML) estimator to semidefinite programming
(SDP) [25]. The advantage of the SDP-based method lies in
the fact that the cost function has no local minima or saddle
points and thus the iterative sequence always convergence to
the global minimum. However, this kind of method generally
has a complex mathematical model and requires high com-
putational complexity for reasonable localization accuracy.
An efficient constrained total least squares (CTLS) algorithm
for estimating the position and velocity of a moving target is
developed in [26], and a constrained weighted least squares
(CWLS) algorithm for TDOA and FDOA positioning is pre-
sented in [27]. These two estimators show superior perfor-
mance and can reach CRB accuracy under moderate noise
level conditions. However, both methods are implemented
based on Newton’s iteration. Hence, global convergence can-
not be ensured unless the initial guess is close enough to
the optimal solution. In [28], a polynomial root-finding-
based CWLS algorithm is developed for TDOA/FDOA-based
emitter locations. It makes use of the altitude constraint to
reduce the localization errors. Unfortunately, the altitude of
the emitter may not be accurately known or measured in
practice. Recently, an iterative constrained weighted least
squares (ICWLS) algorithm has been presented in [29]. It iter-
atively performs a linearization procedure on the quadratic
equality constraints to get approximate programming with
linear constraints. As a consequence, a closed-form solution
is available at every iteration. Both theoretical analysis and
simulation studies reveal that this novel method has better
convergence properties and is able to delay the thresholding
effect where the performance drops suddenly.

In addition to the estimation errors in TDOA/FDOA mea-
surements, the uncertainties in sensor position and velocity
can also cause the location performance to deteriorate dra-
matically, regardless of the approaches used to determine the
solution. Indeed, a slight error in sensor location may lead to
a large error in the target location estimate. It must be pointed
out that sensor position and velocity errors often occur in
real scenarios [30]–[37]. Recently, an emitter localization
problem that accounts for uncertainties in sensor location has
attracted considerable attention. In [30], [31], the increase in
the mean-square error (MSE) in the target location estimate is
derived when the sensor positions and velocities are assumed
correct, but in fact they are not accurate due to random
errors. To obtain the asymptotic optimum performance for
this localization scenario, TSWLS and the CWLS estimators
are proposed in [30] and [33], respectively. Both methods can
achieve CRB accuracy over a small noise region. On the other
hand, the problem of locating multiple disjoint sources using
TDOAs and FDOAs is also studied in the literature, especially
for intelligent robot swarms. Note that the positioning param-
eters (e.g., TDOA and FDOA) of the disjoint sources can
be estimated separately because of the disjointness in time,
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frequency or both. An important observation about multiple
disjoint sources is that they are subject to the same sensor
location displacements. Thus it is possible to reduce the
performance loss resulting from sensor location uncertainties
by joint localization. This procedure can be interpreted as
multiple-target cooperative positioning. In [34], a closed-
form solution is proposed to locate multiple disjoint sources
in the presence of random sensor location errors. This solu-
tion has been proven analytically to reach CRB performance
when the amount of noise is small. However, this estimator
cannot provide optimum accuracy for sensor positions and
velocities. Following the work of [34], an improved closed-
form solution for simultaneously locating multiple disjoint
sources and refining erroneous sensor positions and velocities
is proposed in [35], [36], where the source and the receiver
location estimates can asymptotically attain CRB. In addi-
tion, an ICWLS estimator for TDOA/FDOA positioning of
multiple disjoint sources is developed in [37]. This method
can also yield solutions for both target and sensor locations,
and moreover, it can tolerate higher noise levels before the
thresholding effect starts to happen.

To further optimize the localization performance in the
presence of erroneous sensor locations, we can exploit a set
of calibration emitters whose positions and/or velocities are
known to an estimator in advance. Extensive studies have
shown that the use of calibration emitters can significantly
reduce the loss in target localization accuracy when the
available sensor locations have random errors. In [38], the
use of a single calibration emitter with known position is
investigated to mitigate the TDOA-based localization errors
caused by sensor position uncertainties. The gain in localiza-
tion accuracy resulting from a calibration signal is evaluated
based on the CRB analysis results. Additionally, a closed-
form solution is presented for target localization using TDOA
measurements from both the target source and the calibration
emitter. Reference [39] extends the work in [38] to a more
practical scenario where the position of a calibration emitter
is not known accurately. An asymptotically efficient solution
is developed by incorporating statistical knowledge of the
calibration position errors. It can be easily observed that the
performance gain from a calibration emitter depends on its
position. Consequently, the calibration position is optimized
in [40] by improving the Fisher information matrix of the tar-
get location estimate. The use and geometric effects of multi-
ple calibration emitters are studied in [41], which presents the
analytical conditions under which sensor position errors can
be completely eliminated in target localization through the
use of multiple calibration emitters. A Taylor-series TDOA
localization method with calibration emitters in the presence
of synchronization clock bias and sensor location errors is
proposed in [42]. Note that the above-mentioned approaches
only consider a stationary source location using TDOA mea-
surements. For a moving target localization, some efficient
methods with calibration signal are also developed in the lit-
erature. Specifically, reference [43] develops an explicit solu-
tion for moving target location using TDOA and FDOA from

both the target source and the calibration emitter. The work
in [44] focuses on the use of calibration sensors for locating
a moving target based on TDOA/FDOA measurements. The
calibration sensors can broadcast calibration signals to other
sensors and can also receive signals from the target source and
other calibration sensors. It presents a closed-form estimator
with low complexity. It must be emphasized, however, that
the solutions in [43], [44] are designed for the localization of a
single source only. Moreover, their noise thresholds could be
further improved because they directly follow the idea behind
the classical TSWLS estimator.

This paper focuses on developing a novel estimator for the
TDOA/FDOA multiple-target positioning for wireless con-
nected network in the presence of calibration emitters. In the
localization scenario studied here, the calibration emitters are
stalled on the cooperative unmanned aerial vehicles (UAVs),
whose locations can be known accurately. In addition, the tar-
get sources may be placed on any mobile vehicles, such as
aircrafts or mobile robots. The study starts by deriving the
CRB for the TDOA/FDOA-based target location estimate
when some UAV calibration emitters with known locations
are available. The insight gained from the CRB illustrates
that UAV calibration emitters are very useful in reducing
the effects of sensor position and velocity errors. More-
over, the cooperative gain is considerable when the multiple
moving targets are located simultaneously in the presence
of UAV calibration emitters, even if the target sources are
disjoint. To achieve the optimum estimation accuracy, this
work proceeds to develop an ICWLS localization approach
using TDOA/FDOA measurements from both target sources
and calibration emitters. Similar to [29], the estimator pre-
sented here also uses a set of linear equality constraints
instead of the quadratic constraints to yield an explicit solu-
tion in each iteration. The difference lies in the fact that
our method has two stages and can utilizes the calibration
measurements to locate multiple targets in the presence of
sensor position and velocity errors. Specifically, the first stage
uses the calibration TDOA/FDOA measurements as well as
the statistical characteristics of the noisy sensor locations
to refine the sensor locations. The second stage provides
estimates of the multiple-target locations by combining the
measurements of target signals and the values estimated in the
first step. An efficient ICWLS algorithm is designed at each
stage. Both algorithms are implemented usingmatrix singular
value decomposition (SVD), which can be achieved through
some simple and efficient numerical techniques. Moreover,
in the proposed iterative algorithms, a closed-form solution
is available at every iteration and the weighting matrix can
be updated recursively. The theoretical performance of the
proposed ICWLS estimator is also studied. The performance
analysis covers convergence property and MSE of the esti-
mation. The results indicate that the proposed method, if it
converges, can yield the optimal solution to the formulated
non-convex CWLS problem. Besides, its estimationMSE can
achieve CRBwithUAV calibration emitters at moderate noise
levels. Numerical experiments are conducted to confirm the
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TABLE 1. Notational conventions.

effectiveness of the theoretical analysis and demonstrate the
advantages of the proposed ICWLS method.

The remainder of this paper is organized as follows.
In Section II, the localization scenario is described and the
measurement model is formulated. The CRB expressions for
parameter estimation are derived in Section III. Section IV
deduces the pseudo-linear equations. The quadratic equation
constraints are presented in Section V. Section VI develops a
novel ICWLS localization method by the use of UAV calibra-
tion emitters. The theoretical analysis of the proposed estima-
tor is derived in Section VII. Simulation results are reported
in Section VIII. The conclusions are drawn in Section IX, and
the proofs of the main results are given in the Appendices.

In this paper, lowercase and uppercase boldface letters are
used to denote vectors and matrices, respectively. In addition,
the notational conventions and matrix identities that are used
throughout this paper are listed in Tables 1 and 2, respectively.

II. MEASUREMENT MODEL AND PROBLEM
FORMULATION
A. MEASUREMENT MODEL FOR TARGET SOURCE
This paper considers a three-dimension (3D) localization sce-
nario based on wireless connected network as shown in Fig.1.
It consists of a total of Dmoving targets whose positions and
velocities are to be determined. The target sources may be
stalled on any mobile vehicles, such as aircrafts or mobile
robots. The calibration emitters can be placed on the cooper-
ative UAVs, whose locations are obtained accurately. In addi-
tion, the sensors are also moving, and their locations can not
be known accurately.

FIGURE 1. Localization scenario based on wireless connected network.

Let ud and u̇d be the true position and velocity of
the d th target, respectively. Then, the location vector for
the d th target source is denoted as ūd = [uTd u̇Td ]

T.
In order to implement multiple-target cooperative position-
ing, we need to define a high-dimensional location vector
as ū = [ūT1 ūT2 · · · ūTD]

T, which is found through the
use of M moving sensors. The actual position and velocity
of the mth sensor are denoted by sm and ṡm, respectively.
So, the location vector of the mth sensor is represented as
s̄m = [sTm ṡTm]

T, and the composite sensor location vector
can be written as s̄ = [s̄T1 s̄T2 · · · s̄

T
M ]T. The TDOAs and

FDOAs are exacted from the received signals to locate the
multiple targets simultaneously. Notice that this work focuses
on the case where the target sources are disjoint so that for
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TABLE 2. Matrix identities.

each emitting source, a separate set of TDOA and FDOA
measurements can be obtained. The disjointness may be in
time, frequency or both.

It is worthy to point out that TDOA and FDOA can be
replaced by range difference of arrival (RDOA) and range dif-
ference rate of arrival (RDROA), respectively, in a constant-
velocity propagation medium. In the sequel, we use RDOA
and RDROA to describe the proposed estimator and conduct
the performance analysis for easy of presentation. Without
loss of generality, let the first sensor be the reference. Then,
the RDOA measurement between sensor pair m and 1 from
the d th target is given by

r̂dm=rdm+εp,dm= fp,m(ūd , s̄)+εp,dm

(
2≤m≤M
1≤d≤D

)
(1)

where εp,dm is the RDOA error; rdm is the true RDOA;
fp,m(ūd , s̄) = ||ud − sm||2 − ||ud − s1||2 is a function with
respect to ūd and s̄. The collection of RDOA measurements
from the d th target yields

r̂d = [r̂d2 r̂d3 · · · r̂dM ]T = rd + εp,d
= fp(ūd , s̄)+ εp,d (1 ≤ d ≤ D) (2)

where
rd = [rd2 rd3 · · · rdM ]T ;
εp,d = [εp,d2 εp,d3 · · · εp,dM ]T

fp(ūd , s̄) = [fp,2(ūd , s̄) fp,3(ūd , s̄) · · · fp,M (ūd , s̄)]T

(3)

Taking time derivative of (1), the RDROA measurement
between sensor pairm and 1 from the d th target can be written
as

ˆ̇rdm= ṙdm+εv,dm= fv,m(ūd , s̄)+εv,dm

(
2≤m≤M
1≤d≤D

)
(4)

where εv,dm is the RDROA noise; ṙdm is the true RDROA;
fv,m(ūd , s̄) =

(ud−sm)T(u̇d−ṡm)
||ud−sm||2

−
(ud−s1)T(u̇d−ṡ1)
||ud−s1||2

is a function
of both ūd and. Combining all the RDROA measurements
from the d th target produces

ˆ̇rd = [ ˆ̇rd2 ˆ̇rd3 · · · ˆ̇rdM ]T = ṙd + εv,d
= fv(ūd , s̄)+ εv,d (1 ≤ d ≤ D) (5)

where
ṙd = [ṙd2 ṙd3 · · · ṙdM ]T ;
εv,d = [εv,d2 εv,d3 · · · εv,dM ]T

fv(ūd , s̄) = [fv,2(ūd , s̄) fv,3(ūd , s̄) · · · fv,M (ūd , s̄)]T
(6)

Putting (2) and (5) together, we have the total measurement
vector for target d as follows:

ˆ̄rd= [r̂
T
d
ˆ̇rTd ]

T
= r̄d+εd= f(ūd , s̄)+εd (1≤d≤D) (7)

where r̄d = [rTd ṙ
T
d ]

T; f(ūd , s̄) = [(fp(ūd , s̄))
T (fv(ūd , s̄))

T]T;
εd = [εTp,d ε

T
v,d ]

T is the composite noise vector that follows
zero-mean Gaussian distribution with covariance matrix

Ed =

[
Ep,d Epv,d

ET
pv,d Ev,d

]
(1 ≤ d ≤ D) (8)

It must be emphasized that Epv,d characterizes the cross-
correlation between the RDOA and RDROA measurements.
Collecting the RDOAs and RDROAs from all the target
sources produces

ˆ̄r = [ˆ̄rT1 ˆ̄r
T
2 · · ·

ˆ̄rTD]
T
= r̄+ ε̄ = f̄(ū, s̄)+ ε̄ (9)

where{
r̄ = [r̄T1 r̄

T
2 · · · r̄

T
D]

T
; ε̄ = [εT1 ε

T
2 · · · ε

T
D]

T

f̄(ū, s̄) = [(f(ū1, s̄))T (f(ū2, s̄))T · · · (f(ūD, s̄))T]T
(10)

It is easy to see that the high-dimensional error ε̄ obeys the
Gaussian distribution with zero mean and covariance matrix
ĒA = blkdiag[E1 E2 · · · ED], which is block-diagonal due
to the disjointness of the received signals.

On the other hand, the accurate sensor location vectors
{s̄m}1≤m≤M are not known and only noisy versions of them,
denoted by {ˆ̄sm}1≤m≤M , are available. They can be modeled
as

ˆ̄sm = s̄m + ξm (1 ≤ m ≤ M ) (11)

where ξm is the error in ˆ̄sm. For convenience purpose, let us
collect {ˆ̄sm}1≤m≤M to form the 6M ×1 sensor location vector
as follows:

ˆ̄s = [ˆ̄sT1 ˆ̄s
T
2 · · ·

ˆ̄sTM ]T = s̄+ ξ̄ (12)

where ξ̄ = [ξT1 ξ
T
2 · · · ξ

T
M ]T is the sensor location error vec-

tor, which is zero-mean Gaussian distributed with covariance
matrix ĒB.
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B. MEASUREMENT MODEL FOR CALIBRATION EMITTER
It is well known that sensor location uncertainties can degrade
the target localization accuracy considerably. To reduce the
effects of sensor location errors, it is desirable to use some
UAV calibration emitters, whose locations are known to an
estimator in advance. The number of calibration emitters is
set to N and the position and velocity of the nth calibration
emitter are assumed to be wd and ẇd , respectively. Moreover,
the calibration emitters are also uncorrelated with each other.
Similar to (2), the noisy RDOA measurement vector for the
nth calibration signal can be written as

r̂(c)n = r(c)n + ε
(c)
p,n = f (c)p,n(s̄)+ ε

(c)
p,n (1 ≤ n ≤ N ) (13)

where ε(c)p,n is the error vector; r
(c)
n = [r (c)n2 r (c)n3 · · · r

(c)
nM ]T is

the noiseless RDOA vector; f (c)p,n(s̄) = [f (c)p,n2(s̄) f
(c)
p,n3(s̄) · · ·

f (c)p,nM (s̄)]T, in which

f (c)p,nm(s̄)=||wn−sm||2−||wn−s1||2 (2 ≤ m ≤ M ) (14)

Following (5), the RDROA measurement vector for the nth
calibration signal is given by

ˆ̇r(c)n = ṙ(c)n + ε
(c)
v,n = f (c)v,n(s̄)+ ε

(c)
v,n (1 ≤ n ≤ N ) (15)

where ε(c)v,n is the error vector; ṙ
(c)
n = [ṙ (c)n2 ṙ (c)n3 · · · ṙ

(c)
nM ]T is

the noiseless RDROA vector; f (c)v,n(s̄) = [f (c)v,n2(s̄) f
(c)
v,n3(s̄) · · ·

f (c)v,nM (s̄)]T, in which

f (c)v,nm(s̄) =
(wn − sm)T(ẇn − ṡm)
||wn − sm||2

−
(wn − s1)T(ẇn − ṡ1)
||wn − s1||2
(2 ≤ m ≤ M ) (16)

Combining (13) and (15) produces

ˆ̄r(c)n = [r̂(c)Tn
ˆ̇r(c)Tn ]T = r̄(c)n + ε

(c)
n

= f (c)n (s̄)+ ε(c)n (1 ≤ n ≤ N ) (17)

where r̄(c)n = [r(c)Tn ṙ(c)Tn ]T; f (c)n (s̄) = [(f (c)p,n(s̄))T (f (c)v,n(s̄))T]T;
ε
(c)
n = [ε(c)Tp,n ε

(c)T
v,n ]T, which is modeled as a zero-mean

Gaussian random vector with covariance matrix

E(c)
n =

[
E(c)
p,n E(c)

pv,n

E(c)T
pv,n E(c)

v,n

]
(1 ≤ n ≤ N ) (18)

Putting all the N equations in (17) together yields

ˆ̄r(c) = [ˆ̄r(c)T1
ˆ̄r(c)T2 · · · ˆ̄r(c)TN ]T = r̄(c) + ε̄(c)

= f̄
(c)
(s̄)+ ε̄(c) (19)

where
r̄(c) = [r̄(c)T1 r̄(c)T2 · · · r̄(c)TN ]T

ε̄(c) = [ε(c)T1 ε
(c)T
2 · · · ε

(c)T
N ]T

f̄
(c)
(s̄) = [(f (c)1 (s̄))T (f (c)2 (s̄))T · · · (f (c)N (s̄))T]T

(20)

Clearly, ε̄(c) is a zero-mean Gaussian random vector with
covariance matrix Ē

(c)
A = blkdiag[E(c)

1 E(c)
2 · · · E

(c)
N ].

C. PROBLEM FORMULATION
The multiple-target cooperative localization problem in this
work can be stated as follows: Given the available erroneous
sensor locations and the RDOA/RDROAmeasurements from
both target sources and UAV calibration emitters, identify the
composite location vector of themultiple targets as accurately
as possible.

III. CRB DERIVATION AND ANALYSIS
This section is devoted to the derivation of the CRB on the
estimation of the parameters of interest. The obtained results
can provide some valuable insights into the performance gain
for target localization through the use of UAV calibration
emitters. In addition, we also compare the obtained CRBwith
the one when the target locations are identified separately.
The comparison of these two CRBs can indicate the improve-
ment in localization accuracy resulted from multiple-target
cooperative positioning.

A. CRB DERIVATION AND ANALYSIS BASED ON ALL THE
TDOA/FDOA MEASUREMENTS
In this subsection, the CRB on the covariance matrix of
parameter estimation are deduced based on the TDOA/FDOA
measurements from both target sources and calibration emit-
ters. In this situation, the observations consist of ˆ̄r, ˆ̄r(c) and
ˆ̄s, and the unknowns include ū and s̄. Applying the result
in [38], the CRB matrix for joint estimation of ū and s̄ is
given in (21), as shown at the bottom of the next page, where

F̄1(ū, s̄) =
∂ f̄(ū,s̄)
∂ūT

, F̄2(ū, s̄) =
∂ f̄(ū,s̄)
∂ s̄T

and F̄
(c)
(s̄) = ∂ f̄ (c)(s̄)

∂ s̄T
.

Then, using matrix identities (I)-(III) in Table 2 yields

CRB(ū) = ((F̄1(ū, s̄))T(ĒA + F̄2(ū, s̄)(Ē
−1
B

+ (F̄
(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1(F̄2(ū, s̄))T)−1

× F̄1(ū, s̄))−1 (22)

CRB(s̄) = (Ē
−1
B + (F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄)

+ (F̄2(ū, s̄))TĒ
−1/2
A 5⊥[Ē

−1/2
A F̄1(ū, s̄)]Ē

−1/2
A

× F̄2(ū, s̄))−1 (23)

Before proceeding, three remarks are made.
Remark 1: According to the result in [34], the CRB of ū

without calibration emitters can be written as

CRBn(ū)

=

(
(F̄1(ū, s̄))T

(
ĒA + F̄2(ū, s̄)
×ĒB(F̄2(ū, s̄))T

)−1
F̄1(ū, s̄)

)−1
(24)

where the subscript ‘‘n’’ is used to indicate that this CRB
corresponds to the case of no calibration signals. Since
(Ē
−1
B +(F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1 ≤ ĒB, it can be seen from

(22) and (24) that CRB(ū) ≤ CRBn(ū), which means that
improving the best localization accuracy is possible by the
use of calibration emitters. In fact, the improvement could be
significant at typical measurement noise level, as is illustrated
in simulation section.
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Remark 2: Applying the result of [35], the CRB for the
estimate of s̄ in the absence of calibration emitters is given by

CRBn(s̄) =

(
Ē
−1
B + (F̄2(ū, s̄))TĒ

−1/2
A

×5⊥[Ē
−1/2
A F̄1(ū, s̄)]Ē

−1/2
A F̄2(ū, s̄)

)−1
(25)

Since (F̄
(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄) ≥ O, comparing (23) with

(25) immediately results in CRB(s̄) ≤ CRBn(s̄). Therefore,
the best achievable estimation accuracy for sensor locations
can also be improved with the help of calibration emitters.
Remark 3: It can be readily seen from (22) that the CRB

for the estimate of the d th target location is given in (26), as
shown at the bottom of this page. It is noteworthy that this
CRB corresponds to the scenario of multiple-target cooper-
ative localization. If each target source is located separately,
the CRB of ud becomes

CRBi(ūd ) = ((F1(ūd , s̄))T(Ed + F2(ūd , s̄)(Ē
−1
B

+ (F̄
(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1(F2(ūd , s̄))T)−1

×F1(ūd , s̄))−1 (1 ≤ d ≤ D) (27)

where F1(ūd , s̄) =
∂f(ūd ,s̄)
∂ūTd

and F2(ūd , s̄) =
∂f(ūd ,s̄)
∂ s̄T

. The

subscript ‘‘i’’ is used to indicate that these CRB matrices
are obtained for the case of non-cooperative localization.
Appendix A proves that CRB(ūd ) ≤ CRBi(ūd ) (1 ≤
d ≤ D). This result reveals that, compared with the non-
cooperative positioning, the joint localization of multiple
targets can achieve higher estimation accuracy.

B. CRB DERIVATION AND ANALYSIS BASED ON THE
TDOA/FDOA MEASUREMENTS FORM CALIBRATION
EMITTERS ONLY
The subsection presents the CRB on the estimation of param-
eter s̄ based on the TDOA/FDOA measurements from the
calibration emitters only. In this case, the observations are
composed of ˆ̄r(c) and ˆ̄s, and the unknown is s̄. The CRBmatrix
for s̄ is denoted as CRBo(s̄). Then, the CRB matrix is given
by

CRBo(s̄) = (Ē
−1
B + (F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1 (28)

Remark 4: Since (F̄2(ū, s̄))TĒ
−1/2
A 5⊥[Ē

−1/2
A F̄1(ū, s̄)]

Ē
−1/2
A F̄2(ū, s̄) ≥ O, it follows from (23) and (28) that

CRBo(s̄) ≥ CRB(s̄). Hence, the TDOA/FDOA measure-
ments from target sources can be exploited to improve the
optimum accuracy of sensor location estimates.

IV. PSEUDO-LINEAR EQUATIONS FOR TDOA/FDOA
MEASUREMENTS
The aim of this section is to derive the pseudo-linear
equations for TDOA/FDOA measurements from both target
sources and UAV calibration emitters.

A. PSEUDO-LINEAR EQUATIONS ASSOCIATED WITH
TARGET SOURCES
From (1), the RDOA equation of the d th target source can be
transformed into

2(s1 − sm)T(ud − s1)− 2rdm||ud − s1||2

= r2dm − ||s1 − sm||
2
2

(
2 ≤ m ≤ M
1 ≤ d ≤ D

)
(29)

The matrix form of (29) can be described as

Ap(r̄d , s̄)td=Ap(r̄d , s̄)h(ūd , s̄)=bp(r̄d , s̄) (1≤d≤D)

(30)

where

Ap(r̄d , s̄) =


2(s1 − s2)T O1×3 −2rd2 0
2(s1 − s3)T O1×3 −2rd3 0

...
...

...
...

2(s1 − sM )T O1×3 −2rdM 0



bp(r̄d , s̄) =


r2d2 − ||s1 − s2||

2
2

r2d3 − ||s1 − s3||
2
2

...

r2dM − ||s1 − sM ||
2
2

;

h(ūd , s̄) =

 ūd −4s̄
β1(ūd , s̄)
β2(ūd , s̄)


(31)

CRB
([

ū
s̄

])
=

 (F̄1(ū, s̄))TĒ
−1
A F̄1(ū, s̄) (F̄1(ū, s̄))TĒ

−1
A F̄2(ū, s̄)

(F̄2(ū, s̄))TĒ
−1
A F̄1(ū, s̄)

Ē
−1
B + (F̄2(ū, s̄))TĒ

−1
A F̄2(ū, s̄)

+(F̄
(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄)


−1

(21)

CRB(ūd ) = (i(d)TD ⊗ I6)CRB(ū)(i
(d)
D ⊗ I6)

= (i(d)TD ⊗ I6)

(F̄1(ū, s̄))T

ĒA + F̄2(ū, s̄)

(
Ē
−1
B + (F̄

(c)
(s̄))T

×(Ē
(c)
A )−1F̄

(c)
(s̄)

)−1
(F̄2(ū, s̄))T

−1 F̄1(ū, s̄)


−1

(i(d)D ⊗ I6)

(1 ≤ d ≤ D) (26)
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in which4 = [I6 O6×6(M−1)] ; β1(ūd , s̄) = ||ud − s1||2

β2(ūd , s̄) =
(ud − s1)T(u̇d − ṡ1)
||ud − s1||2

(32)

Here, β1(ūd , s̄) and β2(ūd , s̄) should be considered as auxil-
iary variables, which plays a very crucial role in ensuing the
equations are linear. Subsequently, to get the pseudo-linear
equations with respect to the RDROAmeasurements, we take
the time derivative of (29), leading to

(ṡ1 − ṡm)T(ud − s1)+ (s1 − sm)T(u̇d − ṡ1)

− ṙdm||ud − s1||2 − rdm
(ud − s1)T(u̇d − ṡ1)
||ud − s1||2

= rdmṙdm − (s1 − sm)T(ṡ1 − ṡm)
(
2 ≤ m ≤ M
1 ≤ d ≤ D

)
(33)

Similarly, the matrix form of (33) can be expressed as

Av(r̄d , s̄)td = Av(r̄d , s̄)h(ūd , s̄) = bv(r̄d , s̄) (1 ≤ d ≤ D)

(34)

where

Av(r̄d , s̄) =


(ṡ1 − ṡ2)T (s1 − s2)T −ṙd2 −rd2
(ṡ1 − ṡ3)T (s1 − s3)T −ṙd3 −rd3

...
...

...
...

(ṡ1 − ṡM )T (s1 − sM )T −ṙdM −rdM



bv(r̄d , s̄) =


rd2ṙd2 − (s1 − s2)T(ṡ1 − ṡ2)
rd3ṙd3 − (s1 − s3)T(ṡ1 − ṡ3)

...

rdM ṙdM − (s1 − sM )T(ṡ1 − ṡM )


(35)

Stacking (30) and (34) yields the following composite matrix
equation for the d th target from both RDOA and RDROA
measurements

A(r̄d , s̄)td=A(r̄d , s̄)h(ūd , s̄)=b(r̄d , s̄) (1≤d≤D) (36)

where

A(r̄d , s̄) =
[
Ap(r̄d , s̄)
Av(r̄d , s̄)

]
; b(r̄d , s̄) =

[
bp(r̄d , s̄)
bv(r̄d , s̄)

]
(37)

To achieve multiple-target cooperative localization,
we need to collect all theD equations in (36) together to form
the high-dimensional pseudo-linear equation:

Ā(r̄, s̄)t̄ = Ā(r̄, s̄)h̄(ū, s̄) = b̄(r̄, s̄) (38)

where
Ā(r̄, s̄) = blkdiag[A(r̄1, s̄) A(r̄2, s̄) · · · A(r̄D, s̄)]
b̄(r̄, s̄) = [(b(r̄1, s̄))T (b(r̄2, s̄))T · · · (b(r̄D, s̄))T]T

t̄ = h̄(ū, s̄) = [tT1 t
T
2 · · · t

T
D]

T

= [(h(ū1, s̄))T (h(ū2, s̄))T · · · (h(ūD, s̄))T]T

(39)

B. PSEUDO-LINEAR EQUATIONS ASSOCIATED WITH
CALIBRATION EMITTERS
Using (14), we can transform the RDOA equation of the nth
calibration emitter into

2wT
n s1 − 2wT

n sm − ||s1||
2
2 + ||sm||

2
2

− 2r (c)nm||s1 − wn||2 = (r (c)nm)
2
(
2 ≤ m ≤ M
1 ≤ n ≤ N

)
(40)

Eq.(40) can be restated in a matrix form as (41) [see (42), as
shown at the bottom of the next page].

A(c)
p,n(r̄

(c)
n )η=A(c)

p,n(r̄
(c)
n )ψ(s̄)=b(c)p (r̄(c)n ) (1≤n≤N ) (41)

in which

ψ1(s̄) =


||s1||22
||s2||22
...

||sM ||22

; ψ2(s̄) =


sT1 ṡ1
sT2 ṡ2
...

sTM ṡM



ψ3(s̄) =


||s1 − w1||2

||s1 − w2||2
...

||s1 − wN ||2

;

ψ4(s̄) =



(s1 − w1)T(ṡ1 − ẇ1)
||s1 − w1||2

(s1 − w2)T(ṡ1 − ẇ2)
||s1 − w2||2

...

(s1 − wN )T(ṡ1 − ẇN )
||s1 − wN ||2



(43)

Taking the time derivative of (40) leads to the following
equations related to the RDROA measurements

ẇT
n s1 + w

T
n ṡ1 − ẇ

T
n sm − w

T
n ṡm − s

T
1 ṡ1 + s

T
mṡm

− ṙ (c)nm||s1 − wn||2 − r
(c)
nm

(s1 − wn)T(ṡ1 − ẇn)
||s1 − wn||2

= r (c)nmṙ
(c)
nm

(
2 ≤ m ≤ M
1 ≤ n ≤ N

)
(44)

whose matrix form is given in (45) and (46), as shown at the
bottom of the next page.

A(c)
v,n(r̄

(c)
n )η = A(c)

v,n(r̄
(c)
n )ψ(s̄) = b(c)v (r̄(c)n ) (1 ≤ n ≤ N )

(45)

Combining (41) and (45), we get the following composite
matrix equation for the nth calibration emitter

A(c)
n (r̄(c)n )η = A(c)

n (r̄(c)n )ψ(s̄) = b(c)(r̄(c)n ) (1 ≤ n ≤ N )

(47)

where

A(c)
n (r̄(c)n )=

[
A(c)
p,n(r̄

(c)
n )

A(c)
v,n(r̄

(c)
n )

]
; b(c)(r̄(c)n )=

[
b(c)p (r̄(c)n )
b(c)v (r̄(c)n )

]
(48)
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Stacking (47) for n = 1, 2, · · · ,N yields the entire matrix
equation with respect to the composite unknown vector as
follows:

Ā
(c)
(r̄(c))η = Ā

(c)
(r̄(c))ψ(s̄) = b̄

(c)
(r̄(c)) (49)

where b̄
(c)
(r̄(c)) = [(b(c)(r̄(c)1 ))T(b(c)(r̄(c)2 ))T · · · (b(c)(r̄(c)N ))T]T

and Ā
(c)
(r̄(c)) = [(A(c)

1 (r̄(c)1 ))T(A(c)
2 (r̄(c)2 ))T · · · (A(c)

N (r̄(c)N ))T]T.

V. QUADRATIC EQUATION CONSTRAINTS FOR
TDOA/FDOA LOCALIZATION
This section is devoted to presenting the quadratic equation
constraints on vectors t̄ and η. They play important role in the
development of the proposed estimator.

A. QUADRATIC EQUATION CONSTRAINTS ON VECTOR t̄
In this subsection, a set of quadratic equation constraints on
vector t̄ is given. To this end, we first need to deduce the
quadratic equations that vectors td = h(ūd , s̄) (1 ≤ d ≤ D)
satisfy. Since vector td includes two intermediate variables,
namely, β1(ūd , s̄) and β2(ūd , s̄), there exist two constraints
related to td . It follows from the functional forms of β1(ūd , s̄)
and β2(ūd , s̄) that

tTd


I3 O3×3 O3×1 O3×1

O3×3 O3×3 O3×1 O3×1

O1×3 O1×3 −1 0
O1×3 O1×3 0 0

 td = tTd01td = 0

tTd


O3×3 I3 O3×1 O3×1

I3 O3×3 O3×1 O3×1

O1×3 O1×3 0 −1
O1×3 O1×3 −1 0

 td = tTd02td = 0

(50)

Obviously, the element in 01 and 02 is either one or zero.
Both matrices are symmetric. From (50), we arrive at{
t̄T((i(d)D i(d)TD )⊗ 01)t̄ = t̄T0̄1d t̄ = 0

t̄T((i(d)D i(d)TD )⊗ 02)t̄ = t̄T0̄2d t̄ = 0
(1 ≤ d ≤ D) (51)

where 0̄1d = (i(d)D i(d)TD ) ⊗ 01 and 0̄2d = (i(d)D i(d)TD ) ⊗ 02. It
is noteworthy that (51) describes the final quadratic equation
constraints on t̄. The number of constraints is equal to 2D,
which is also the number of nuisance variables in t̄.

On the other hand, differentiating both sides of the first
equality in (51) with respect to ū yields

(H̄1(ū, s̄))T0̄1d t̄ = O6D×1 (1 ≤ d ≤ D) (52)

where

H̄1(ū, s̄) =
∂h̄(ū, s̄)

∂ūT

= blkdiag




I6
∂β1(ū1,s̄)
∂ūT1

∂β2(ū1,s̄)
∂ūT1




I6
∂β1(ū2,s̄)
∂ūT2

∂β2(ū2,s̄)
∂ūT2

 · · ·


I6
∂β1(ūD,s̄)
∂ūTD

∂β2(ūD,s̄)
∂ūTD



(53)

Following an analogous derivation, we get form the second
equality in (51) the relation

(H̄1(ū, s̄))T0̄2d t̄ = O6D×1 (1 ≤ d ≤ D) (54)

Notice that (52) and (54) are both crucial for the performance
analysis in Section VII.

B. QUADRATIC EQUATION CONSTRAINTS ON VECTOR η
This subsection shows the quadratic equation constraints on
vector η. It can be observed from the definition of η that there
exist four kinds of instrumental variables in η and the number
of these variables equals to 2(M+N ). So, we can form 2(M+
N ) quadratic equation constraints with respect to η.

According to the definitions of ψ1(s̄), ψ2(s̄), ψ3(s̄) and
ψ4(s̄), it can be verified that

ηT

 (i(m)M i(m)TM )⊗
[

I3 O3×3
O3×3 I3

]
O6M×(2M+2N )

O(2M+2N )×6M O(2M+2N )×(2M+2N )

 η
(55)

− i(6M+m)T8M+2N η = ηT�1mη + ρ
T
1mη = 0 (1 ≤ m ≤ M )

ηT

 (i(m)M i(m)TM )⊗
[
O3×3 I3
I3 O3×3

]
O6M×(2M+2N )

O(2M+2N )×6M O(2M+2N )×(2M+2N )

 η
(56)

− 2i(7M+m)T8M+2N η = ηT�2mη + ρ
T
2mη = 0 (1 ≤ m ≤ M )

ηT

O8M×8M O8M×N O8M×N

ON×8M i(n)N i(n)TN ON×N
ON×8M ON×N ON×N

 η
+

([
2wn

O(8M+2N−3)×1

]
− i(6M+1)8M+2N

)T

η (57)


A(c)
p,n(r̄

(c)
n ) = [ [1M−1 − IM−1]⊗ [2wT

n O1×3] [−1M−1 IM−1] O(M−1)×M −2r(c)n i(n)TN O(M−1)×N ]

b(c)p (r̄(c)n ) = ([IM−1 O(M−1)×(M−1)]r̄
(c)
n )� ([IM−1 O(M−1)×(M−1)]r̄

(c)
n )

η = ψ(s̄) = [s̄T (ψ1(s̄))
T (ψ2(s̄))

T (ψ3(s̄))
T (ψ4(s̄))

T]T
(42)

{
A(c)
v,n(r̄

(c)
n ) = [ [1M−1 − IM−1]⊗ [ẇT

n wT
n ] O(M−1)×M [−1M−1 IM−1] −ṙ(c)n i(n)TN −r(c)n i(n)TN ]

b(c)v (r̄(c)n ) = ([IM−1 O(M−1)×(M−1)]r̄
(c)
n )� ([O(M−1)×(M−1) IM−1]r̄

(c)
n )

(46)
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= ηT�3nη + ρ
T
3nη = ||wn||

2
2 (1 ≤ n ≤ N )

ηT

O8M×8M O8M×N O8M×N

ON×8M ON×N i(n)N i(n)TN
ON×8M i(n)N i(n)TN ON×N

 η
+

 2ẇn
2wn

O(8M+2N−6)×1

− 2i(7M+1)8M+2N

T

η (58)

= ηT�4nη + ρ
T
4nη = 2wT

n ẇn (1 ≤ n ≤ N )

The elements in �1m, �2m, �3n, �4n, ρ1m, ρ2m, ρ3n and ρ4n
can be found from (55)-(58).

Differentiating both sides of (55)-(58) with respect to s̄
leads to

(9(s̄))T
(
�1mη +

1
2
ρ1m

)
= O6M×1 (1 ≤ m ≤ M ) (59)

(9(s̄))T
(
�2mη +

1
2
ρ2m

)
= O6M×1 (1 ≤ m ≤ M ) (60)

(9(s̄))T
(
�3nη +

1
2
ρ3n

)
= O6M×1 (1 ≤ n ≤ N ) (61)

(9(s̄))T
(
�4nη +

1
2
ρ4n

)
= O6M×1 (1 ≤ n ≤ N ) (62)

where

9(s̄) =
∂ψ(s̄)

∂ s̄T

= [I6M (91(s̄))T (92(s̄))T (93(s̄))T (94(s̄))T]T (63)

in which 9 j(s̄) =
∂ψ j(s̄)
∂ s̄T

(1 ≤ j ≤ 4). We stress that
(59)-(62) are useful for the performance analysis in
Subsection VI.B.

VI. PROPOSED ICWLS ESTIMATOR BASED ON
TDOA/FDOA MEASUREMENTS
The objective of this section is to present a novel
TDOA/FDOA localization approach for multiple targets
when a set of UAV calibration emitters with known locations
are available. The proposed estimator is based on the pseudo-
linear equations derived in Section IV as well as the quadratic
equation constraints given in Section V. The new method has
two stages. In the first stage, the sensor locations are refined
based on the UAV calibration measurements as well as the
prior knowledge of sensor locations. In the second stage,
the multiple-target cooperative localization is performed by
combining the measurements form the target signals with
the estimated values in the first phase. It is noteworthy that
in each stage a novel ICWLS algorithm is developed. The
algorithms are implemented by using matrix SVD, which
has robust numerical performance. Moreover, the algorithm
can provide closed-form solutions and update the weighting
matrices accurately in every iteration.

A. STAGE-1 OF THE PROPOSED METHOD
In the first stage, the measurement vectors ˆ̄r(c) and ˆ̄s are com-
bined to estimate s̄. For this purpose, a novel ICWLS estima-
tor is formulated by using the weighted least squares (WLS)

criterion, which is asymptotically efficient under Gaussian
noise assumption.

1) OPTIMIZATION MODEL FOR ESTIMATION OF SENSOR
LOCATIONS
Notice that the functional forms of Ā

(c)
(·) and b̄

(c)
(·) in (49)

are known, but vector r̄(c) is not exactly known and only
its noisy value (i.e., ˆ̄r(c)) is available. To construct the cost
function, we introduce an error vector as

δ̄
(c)
= b̄

(c)
(ˆ̄r(c))− Ā

(c)
(ˆ̄r(c))η (64)

Applying a first-order Taylor series expansion of b̄
(c)
(ˆ̄r(c)) and

Ā
(c)
(ˆ̄r(c)) around r̄(c) produces
b̄
(c)
(ˆ̄r(c)) ≈ b̄

(c)
(r̄(c))+ B̄

(c)
(r̄(c))ε̄(c)

Ā
(c)
(ˆ̄r(c)) ≈ Ā

(c)
(r̄(c))+

2N (M−1)∑
j=1

〈ε̄(c)〉j
˙̄A(c)
j (r̄(c))

(65)

where

B̄
(c)
(r̄(c)) =

∂ b̄
(c)
(r̄(c))

∂ r̄(c)T
= blkdiag[B(c)(r̄(c)1 ) B(c)(r̄(c)2 ) · · · B(c)(r̄(c)N )]

˙̄A(c)
j (r̄(c)) =

∂Ā
(c)
(r̄(c))

∂〈r̄(c)〉j

= i
(nj)
N ⊗

∂A(c)
nj (r̄

(c)
nj )

∂〈r̄(c)nj 〉j−2(nj−1)(M−1)
(1≤ j≤2N (M−1))

(66)

in which B(c)(r̄(c)n ) = ∂b(c)(r̄(c)n )
∂ r̄(c)Tn

(1 ≤ n ≤ N ) and nj =⌈
j

2(M−1)

⌉
. Substituting (65) into (64) yields

δ̄
(c)
≈ B̄

(c)
(r̄(c))ε̄(c) −

2N (M−1)∑
j=1

〈ε̄(c)〉j
˙̄A(c)
j (r̄(c))η

= C̄
(c)
(η, r̄(c))ε̄(c) (67)

where

C̄
(c)
(η, r̄(c)) = B̄

(c)
(r̄(c))

− [ ˙̄A(c)
1 (r̄(c))η ˙̄A(c)

2 (r̄(c))η · · · ˙̄A(c)
2N (M−1)(r̄

(c))η] (68)

It follows from (67) that δ̄
(c)

is approximately Gaussian dis-
tributed with zero mean and covariance matrix

8̄
(c)
= E[δ̄

(c)
δ̄
(c)T

] = C̄
(c)
(η, r̄(c))Ē

(c)
A (C̄

(c)
(η, r̄(c)))T (69)

For the purpose of exploiting the noisy measurements of
sensor locations, we should introduce an augmented error
vector as

δ̃
(c)
=

[
δ̄
(c)

ξ̄

]
= b̃

(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))η (70)
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whereb̃
(c)
(ˆ̄r(c), ˆ̄s)=

[
b̄
(c)
(ˆ̄r(c))
ˆ̄s

]
; Ã

(c)
(ˆ̄r(c))=

[
Ā
(c)
(ˆ̄r(c))

Ī6M×(8M+2N )

]
Ī6M×(8M+2N ) = [I6M O6M×(2M+2N )]

(71)

Inserting (67) into (70) leads to

δ̃
(c)
≈ C̃

(c)
(η, r̄(c))

[
ε̄(c)

ξ̄

]
(72)

where C̃
(c)
(η, r̄(c)) = blkdiag[C̄

(c)
(η, r̄(c)) I6M ]. From (70),

it can be seen that δ̃
(c)

approximately obeys a zero-mean
Gaussian distribution with covariance matrix

8̃
(c)
= E[δ̃

(c)
δ̃
(c)T

]

= blkdiag[C̄
(c)
(η, r̄(c))Ē

(c)
A (C̄

(c)
(η, r̄(c)))T ĒB] (73)

Putting (55)-(58), (70) and (73) together, we can formulate
the following constrained minimization problem in (74), as
shown at the bottom of this page.
Problem (74) is certainly a quadratic programming with

2M + 2N quadratic indefinite equality constraints, which are
nonconvex. Hence, (74) can be viewed as a CWLS problem.
It does not seem possible to solve (74) in closed form because
of its nonlinearity. Therefore, we have to develop an iterative
algorithm to obtain the solution of (74). Besides, it is impor-
tant to point out that the weighting matrix 8̃

(c)
is dependent

on the unknown vector η so that, strictly speaking, it should
be denoted as 8̃

(c)
(η). However, since the weighting matrix

is updated recursively in the proposed iterative algorithm,
we denote it as 8̃

(c)
for the sake of brevity.

2) PROPOSED ITERATION ALGORITHM
The aim of this subsection is to present an iterative algorithm
to solve the quadratic programming in (74).
In optimization problem (74), the Hessian matrix of the

quadratic objective function is positive semidefinite; thus the

cost function is convex. But, all the equality constraints in
(74) are homogenous, indefinite and non-convex, so the key
difficulty focuses on the constraints. Inspired by the work
of [29], we would like to make the non-convex constraints
become a set of linear equality constraints. As a result, a new
convex programming can be obtained as an approximation
of (74).
For each homogenous quadratic equality constraint in (74),

if one of the variable η is replaced with its last iteration’s
value, then the non-convex quadratic constraints become
linear and convex. The resulted programming is a convex
approximation of (74). To be more specific, in the k + 1th
iteration we can formulate a convex optimization problem
in (75), as shown at the bottom of this page.
where η̂(k) is the estimated result in the kth iteration.
An important advantage of the problem (75) lies in that its
optimal solution can be analytically expressed. We are now
ready to state the main result.
Proposition 1: Define the vector g(c)(η̂(k)) and matrix

G(c)(η̂(k)) as follows in (76), (77), and (78), as shown at the
bottom of the next page.

g(c)(η̂(k))
= [(g(c)1 (η̂(k)))T (g(c)2 (η̂(k)))T · · · (g(c)4 (η̂(k)))T]T

G(c)(η̂(k))

= [G(c)
1 (η̂(k)) G(c)

2 (η̂(k)) · · · G(c)
4 (η̂(k))]

(76)

If Ã
(c)
(ˆ̄r(c)) has full column rank and (G(c)(η̂(k)))T is of full

row rank, then the optimal solution of (75) can be expressed
as

η̂opt(k + 1)

= η̂
′

opt(k+1)−((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1G(c)(η̂(k))

×((G(c)(η̂(k)))T((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1

×G(c)(η̂(k)))−1((G(c)(η̂(k)))Tη̂′opt(k + 1)− g(c)(η̂(k)))

(79)


min

η∈R(8M+2N )×1
J (c)(η) = min

η∈R(8M+2N )×1
(Ã

(c)
(ˆ̄r(c))η − b̃

(c)
(ˆ̄r(c), ˆ̄s))T(8̃

(c)
)−1(Ã

(c)
(ˆ̄r(c))η − b̃

(c)
(ˆ̄r(c), ˆ̄s))

s.t. ηT�1mη + ρ
T
1mη = 0 ; ηT�2mη + ρ

T
2mη = 0 (1 ≤ m ≤ M )

ηT�3nη + ρ
T
3nη = ||wn||

2
2 ; η

T�4nη + ρ
T
4nη = 2wT

n ẇn (1 ≤ n ≤ N )

(74)



min
η∈R(8M+2N )×1

J (c)(η) = min
η∈R(8M+2N )×1

(Ã
(c)
(ˆ̄r(c))η − b̃

(c)
(ˆ̄r(c), ˆ̄s))T(8̃

(c)
)−1(Ã

(c)
(ˆ̄r(c))η − b̃

(c)
(ˆ̄r(c), ˆ̄s))

s.t. (η̂(k))T�1mη +
1
2
ρT1mη = −

1
2
ρT1mη̂(k) (1 ≤ m ≤ M )

(η̂(k))T�2mη +
1
2
ρT2mη = −

1
2
ρT2mη̂(k) (1 ≤ m ≤ M )

(η̂(k))T�3nη +
1
2
ρT3nη = ||wn||

2
2 −

1
2
ρT3nη̂(k) (1 ≤ n ≤ N )

(η̂(k))T�4nη +
1
2
ρT4nη = 2wT

n ẇn −
1
2
ρT4nη̂(k) (1 ≤ n ≤ N )

(75)
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where η̂′opt(k + 1) = ((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1 ×

(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1b̃

(c)
(ˆ̄r(c), ˆ̄s).

Proposition 1 can be proved by applying Lagrange multi-
plier method in a direct manner, so it is omitted due to limited
space. It should be emphasized that Proposition 1 holds only
when matrix Ã

(c)
(ˆ̄r(c)) is of full column rank, which means

that there are at least two calibration emitters that must be
used for target localization. Next, we want to present an
alternative solution of (75) by using matrix SVD technique,
with no requirement on the number of calibration emitters.
Moreover, it requires less computation and has better numer-
ical stability compared with the solution in Proposition 1, due
to the advantage of matrix SVD.
Proposition 2: Performing matrix SVD onG(c)(η̂(k)) leads

to

G(c)(η̂(k))

= [Q(c)
11 (k+1) Q

(c)
12 (k+1)]

[
6

(c)
1 (k+1)

O6M×(2M+2N )

]
(R(c)

1 (k + 1))T

= Q(c)
11 (k + 1)6(c)

1 (k + 1)(R(c)
1 (k + 1))T (80)

where [Q(c)
11 (k + 1) Q(c)

12 (k + 1)] is an orthogonal matrix;
R(c)
1 (k + 1) is an orthogonal matrix; 6(c)

1 (k + 1) is a diag-
onal matrix, whose diagonal elements are the singular val-
ues of G(c)(η̂(k)). Subsequently, performing matrix SVD on
(8̃

(c)
)−1/2Ã

(c)
(ˆ̄r(c))Q(c)

12 (k + 1) yields

(8̃
(c)
)−1/2Ã

(c)
(ˆ̄r(c))Q(c)

12 (k + 1)

= [Q(c)
21 (k+1) Q

(c)
22 (k+1)]

[
6

(c)
2 (k + 1)

O2N (M−1)×6M

]
(R(c)

2 (k + 1))T

= Q(c)
21 (k + 1)6(c)

2 (k + 1)(R(c)
2 (k + 1))T (81)

where [Q(c)
21 (k + 1) Q(c)

22 (k + 1)] is an orthogonal matrix;
R(c)
2 (k + 1) is an orthogonal matrix; 6(c)

2 (k + 1) is a diagonal
matrix, whose diagonal entries are the singular values of
(8̃

(c)
)−1/2Ã

(c)
(ˆ̄r(c))Q(c)

12 (k + 1). Further, let us define a vector
x1(k + 1) that satisfies a set of linear equations:

R(c)
1 (k + 1)6(c)

1 (k + 1)x1(k + 1) = g(c)(η̂(k)), (82)

and define a vector x2(k + 1) that satisfies the linear relation-
ship:

6
(c)
2 (k + 1)(R(c)

2 (k + 1))Tx2(k + 1)

= (Q(c)
21 (k + 1))T(8̃

(c)
)−1/2

(
b̃
(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))

×Q(c)
11 (k + 1)x1(k + 1)

)
(83)

Then, the optimal solution of (75) is given by

η̂opt(k+1)=Q
(c)
11 (k+1)x1(k+1)+Q

(c)
12 (k+1)x2(k+1) (84)

The proof of Proposition 2 is shown in Appendix B. Cer-
tainly, when Ã

(c)
(ˆ̄r(c)) has full column rank, the solution in

Proposition 2 is consistent with that in Proposition 1. How-
ever, if this condition is not satisfied, for example, only a
single calibration emitter is present, then only the solution
in Proposition 2 can be applied.
Although the solution to problem (75) is an approximation

of the optimal solution of the original problem (74), it incor-
porates 2M + 2N approximate linear equality constraints
to improve the estimation performance. An intuitive update
strategy is to choose the optimal solution (84) to be the k +
1th iteration’s value. However, this update strategy requires
minor modification to avoid possible divergence problem.
We would like to adopt the update procedure introduced in
[29], which determines the current iteration’s value using
the linear combination of the solution to problem (75) and
the estimation result in the last iteration. Besides, since the
weighting matrix 8̃

(c)
is dependent on η, it should also be

updated at each iteration step.
The first stage of the proposed ICWLS method is formally

summarized in Table 3.
The following remarks concern the presented algorithm

described above.
Remark 5: If the optimization problem is non-convex, it is

very crucial to choose a reasonable proper starting point to
guarantee that the iterative algorithm converges to the global
minimum of the optimization problem. For the proposed
algorithm, we can exploit the prior measurement ˆ̄s to form



g(c)1 (η̂(k)) =
[
−
1
2
ρT11η̂(k) −

1
2
ρT12η̂(k) · · · −

1
2
ρT1M η̂(k)

]T
g(c)2 (η̂(k)) =

[
−
1
2
ρT21η̂(k) −

1
2
ρT22η̂(k) · · · −

1
2
ρT2M η̂(k)

]T
g(c)3 (η̂(k)) =

[
||w1||

2
2 −

1
2
ρT31η̂(k) ||w2||

2
2 −

1
2
ρT32η̂(k) · · · ||wN ||

2
2 −

1
2
ρT3N η̂(k)

]T
g(c)4 (η̂(k)) =

[
2wT

1 ẇ1 −
1
2
ρT41η̂(k) 2wT

2 ẇ2 −
1
2
ρT42η̂(k) · · · 2wT

N ẇN −
1
2
ρT4N η̂(k)

]T
(77)


G(c)
i (η̂(k)) =

[
�i1η̂(k)+

1
2
ρi1 �i2η̂(k)+

1
2
ρi2 · · · �iM η̂(k)+

1
2
ρiM

]
(i = 1 , 2)

G(c)
j (η̂(k)) =

[
�j1η̂(k)+

1
2
ρj1 �j2η̂(k)+

1
2
ρj2 · · · �jN η̂(k)+

1
2
ρjN

]
(j = 3 , 4)

(78)

1624 VOLUME 8, 2020



D. Wang et al.: Novel Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources

TABLE 3. Procedure of the first stage of the proposed ICWLS method.

the initial guess η̂(0) in the following way:

η̂(0)=ψ(ˆ̄s)= [ˆ̄sT(ψ1(ˆ̄s))
T(ψ2(ˆ̄s))

T(ψ3(ˆ̄s))
T(ψ4(ˆ̄s))

T]T (85)

The simulation results in Section VIII reveal that this initial
estimate is precise enough for global convergence.
Remark 6: It can be easily seen from step 10 that the

updated value in the k+1th iteration is the linear combination
of the solution to problem (75) and the estimation result in
the kth iteration. Extensive simulation results indicate that as
long asw1 is not close to 1, the final estimation accuracy is not

sensitive to the numerical value of w1. We set w1 = w2 = 0.5
in the simulation section.
Remark 7: It is impossible to obtain the true weighting

matrix 8̃
(c)
, although the algorithm updates this matrix at

each iteration step. This is because the calculation of 8̃
(c)

requires true measurement r̄(c), which is not available in
practice. So we have to compute 8̃

(c)
using ˆ̄r(c) in place

of r̄(c). Fortunately, plentiful simulation results show that
the estimation accuracy is relatively insensitive to errors
in the weighting matrix and the performance degradation
is insignificant due to the approximation of the weighting
matrix. This observation is consistent with the findings in
[45]–[47].

B. PERFORMANCE ANALYSIS FOR STAGE-1
The aim of this subsection is to provide the theoretical perfor-
mance analysis for the proposed iterative algorithm in stage-
1. First, its convergence property is studied based on the
optimality conditions in optimization theory. We prove that if
the iterative algorithm converges, then it is able to converge
to the optimal solution of the original CWLS problem (74).
Next, the MSE expression of the proposed solution is derived
by exploiting the first-order perturbation analysis. Moreover,
the MSE is proved to achieve the corresponding CRB given
in Subsection III.B at moderate error level before the thresh-
olding effect occurs.

1) CONVERGENCE ANALYSIS FOR STAGE-1
Here, the convergence property of the algorithm is investi-
gated. Notice that it is impossible to provide a strict proof as
to whether the iteration procedure converges or not, because
the original problem (74) is not convex. Therefore, we have
to simplify the analysis and prove that if the iterative algo-
rithm converges, then it must converge to the minimizer of
problem (74).

The convergence analysis begins with the second-order
sufficient condition for the optimal solution to (74). It is
formally described as follows:
Lemma 1: Suppose that η̂opt, {λ

(c)
1m}1≤m≤M , {λ(c)2m}1≤m≤M ,

{λ
(c)
3n }1≤n≤N and {λ(c)4n }1≤n≤N satisfy

(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1(Ã

(c)
(ˆ̄r(c))η̂opt − b̃

(c)
(ˆ̄r(c), ˆ̄s))

+

M∑
m=1

λ
(c)
1m

2

(
�1mη̂opt +

1
2
ρ1m

)

+

M∑
m=1

λ
(c)
2m

2

(
�2mη̂opt +

1
2
ρ2m

)

+

N∑
n=1

λ
(c)
3n

2

(
�3nη̂opt +

1
2
ρ3n

)

+

N∑
n=1

λ
(c)
4n

2

(
�4nη̂opt +

1
2
ρ4n

)
= O(8M+2N )×1 (86)
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{
η̂
T
opt�1mη̂opt + ρ

T
1mη̂opt = 0

η̂
T
opt�2mη̂opt + ρ

T
2mη̂opt = 0

(1 ≤ m ≤ M )

(87){
η̂
T
opt�3nη̂opt + ρ

T
3nη̂opt = ||wn||

2
2

η̂
T
opt�4nη̂opt + ρ

T
4nη̂opt = 2wT

n ẇn
(1 ≤ n ≤ N )

(88)

Moreover, for any vector y belonging to the null space of
(G(c)(η̂opt))

T we have

yT

 (Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c))+

M∑
m=1

λ
(c)
1m
2 �1m

+

M∑
m=1

λ
(c)
2m
2 �2m +

N∑
n=1

λ
(c)
3n
2 �3n +

N∑
n=1

λ
(c)
4n
2 �4n

 y > 0,

(89)

Then, the vector η̂opt is the strictly optimal solution to the
CWLS problem (74).

The proof of Lemma 1 is given in [48]. The scalars
{λ

(c)
1m}1≤m≤M , {λ(c)2m}1≤m≤M , {λ(c)3n }1≤n≤N and {λ(c)4n }1≤n≤N are

commonly referred to as Lagrange multipliers. Subsequently,
we continue describing the first-order necessary condition for
the minimizer of problem (75).
Lemma 2: Assuming that the optimal solution to prob-

lem (75) is denoted by η̂opt(k + 1), there exist {λ(c)1m(k +
1)}1≤m≤M , {λ(c)2m(k + 1)}1≤m≤M , {λ(c)3n (k + 1)}1≤n≤N and
{λ

(c)
4n (k + 1)}1≤n≤N such that

(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1(Ã

(c)
(ˆ̄r(c))η̂opt(k + 1)− b̃

(c)
(ˆ̄r(c), ˆ̄s))

+

M∑
m=1

λ
(c)
1m(k + 1)

2

(
�1mη̂(k)+

1
2
ρ1m

)

+

M∑
m=1

λ
(c)
2m(k + 1)

2

(
�2mη̂(k)+

1
2
ρ2m

)

+

N∑
n=1

λ
(c)
3n (k + 1)

2

(
�3nη̂(k)+

1
2
ρ3n

)

+

N∑
n=1

λ
(c)
4n (k + 1)

2

(
�4nη̂(k)+

1
2
ρ4n

)
= O(8M+2N )×1 (90)

The proof of Lemma 2 can also be found in [48]. More-
over, {λ(c)1m(k + 1)}1≤m≤M , {λ(c)2m(k + 1)}1≤m≤M , {λ(c)3n (k +
1)}1≤n≤N and {λ(c)4n (k + 1)}1≤n≤N are also called Lagrange
multipliers. We are now ready to prove that if the iteration
sequence {η̂opt(k + 1)}0≤k≤+∞ converges, it will converge
to η̂opt, which is the strictly optimal solution to the CWLS
problem (74). For this purpose, three propositions are pre-
sented in turn.
Proposition 3: If the sequence {η̂(k+1)}0≤k≤+∞ converges

to η̂f, then the sequence {η̂opt(k + 1)}0≤k≤+∞ also converges
to η̂f.

Proof: From step 10 in Table 3 we have

lim
k→+∞

η̂opt(k + 1) =
1
w2

lim
k→+∞

η̂(k + 1)−
w1

w2
lim

k→+∞
η̂(k)

=
1− w1

w2
η̂f = η̂f (91)

which completes the proof.
Proposition 4: If the sequence {η̂(k + 1)}0≤k≤+∞ con-

verges, then the sequences {λ(c)1m(k + 1)}1≤m≤M , {λ(c)2m(k +
1)}1≤m≤M , {λ(c)3n (k + 1)}1≤n≤N and {λ(c)4n (k + 1)}1≤n≤N also
converge for arbitrary 1 ≤ m ≤ M and 1 ≤ n ≤ N .
The proof of Proposition 4 is provided in Appendix C.
Proposition 5: If the sequence {η̂(k+1)}0≤k≤+∞ converges

to η̂f, then η̂f = η̂opt is the strictly optimal solution to the
CWLS problem (74).

Appendix D shows the proof of Proposition 5, which
reveals that if the proposed iterative algorithm converges,
then it can provide the optimal solution for problem (74).
It should be noted, however, that there is no guarantee at
all that the iterative algorithm always converges. Fortunately,
the simulation results in SectionVIII demonstrate that inmost
cases the convergence can be achieved after a few iterations.

2) ESTIMATION MSE FOR STAGE-1
The aim of this subsection is to derive the MSE expression of
the proposed solution for stage-1. For this purpose, the first-
order perturbation analysis is applied to get the linear relation
between the estimation errors and the measurement errors,
which consist of ξ̄ and ε̄(c).
Assume that the iterative algorithm described above con-

verges to η̂f, which is also the minimizer for (74). According
to step 12 in Table 3, the final estimate for sensor locations is
given by ˆ̄sf = [I6M O6M×(2M+2N )]η̂f. Therefore, in order to
get the analytical expression for the MSE of ˆ̄sf, it is necessary
to derive the theoretical MSE of η̂f first. Let the estimation
error in η̂f be 1ηf. From the theoretical frame of the first-
order error analysis, 1ηf must be the optimal solution of the
following constrained optimization problem [28]–[see (92),
as shown at the bottom of the next page.]
Assuming the matrix SVD of G(c)(η) is given by

G(c)(η) = [Q(c)
11 Q(c)

12 ]
[

6
(c)
1

O6M×(2M+2N )

]
R(c)T
1

= Q(c)
116

(c)
1 R(c)T

1 , (93)

1ηf must lie in the range space of Q(c)
12 , which is orthogonal

to that of G(c)(η). As a consequence, we can express 1ηf as

1ηf = Q(c)
12 (Q

(c)T
12 (Ã

(c)
(r̄(c)))T(8̃

(c)
)−1Ã

(c)
(r̄(c))Q(c)

12 )
−1

×Q(c)T
12 (Ã

(c)
(r̄(c)))T(8̃

(c)
)−1C̃

(c)
(η, r̄(c))

[
ε̄(c)

ξ̄

]
(94)

It can be observed from (94) that η̂f is an approximately
unbiased estimate of η and, moreover, the estimation MSE
of η̂f is given by

MSE(η̂f) = Q(c)
12 (Q

(c)T
12 P̃

(c)
(r̄(c))Q(c)

12 )
−1Q(c)T

12 (95)
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where P̃
(c)
(r̄(c)) = (Ã

(c)
(r̄(c)))T(8̃

(c)
)−1Ã

(c)
(r̄(c)).

Before proceeding, three remarks are concluded in order.
Remark 8: Since Q(c)T

12 Q(c)
11 = O, it follows from (93) and

(95) that MSE(η̂f)G
(c)(η) = O, which means that MSE(η̂f)

is singular or rank deficient. This property results from the
equation constraint in (92).
Remark 9: According to (59)-(63), it can be verified that

9(s̄) is full column rank and the relation (9(s̄))TG(c)(η) =
O holds. Moreover, 9(s̄) and Q(c)

12 have the same number of
columns. Therefore, we have range{9(s̄)} = range{Q(c)

12 }.
Remark 10: Combining (71) and (73) yields an alternative

expression of P̃
(c)
(r̄(c)) as follows:

P̃
(c)
(r̄(c)) = (Ā

(c)
(r̄(c)))T(C̄

(c)
(η, r̄(c)))−T(Ē

(c)
A )−1

× (C̄
(c)
(η, r̄(c)))−1Ā

(c)
(r̄(c))+ blkdiag[Ē

−1
B O]

(96)

It is noteworthy that (96) is useful in the proof of Proposi-
tion 6 given below.

Next, we derive the theoretical MSE of the estimate
ˆ̄sf. Assuming that the estimation error in ˆ̄sf is defined
as 1s̄f, it is straightforward to check that 1s̄f =

[I6M O6M×(2M+2N )]1ηf, which immediately gives

MSE(ˆ̄sf) = [I6M O6M×(2M+2N )]Q
(c)
12

× (Q(c)T
12 P̃

(c)
(r̄(c))Q(c)

12 )
−1Q(c)T

12

[
I6M

O(2M+2N )×6M

]
(97)

Notice that the solution ˆ̄sf is an asymptotically efficient esti-
mate of s̄ because it can achieve the associated CRB accuracy
under moderate noise level, as shown below.
Proposition 6: Under the first-order approximation, the

relationMSE(ˆ̄sf) = CRBo(s̄) holds.
The proof of Proposition 6 is provided in Appendix E,

which reveals that the sensor location estimate obtained in the
first stage is asymptotically optimal. The estimator developed
in the second stage will exploit the estimation result from
stage-1.

C. STAGE-2 OF THE PROPOSED METHOD
In the second phase, we combine the measurement vector ˆ̄r
with the estimate ˆ̄sf provided in the first stage to perform
multiple-target cooperative positioning. Besides, the sensor
location is further refined in comparison with the estimate
ˆ̄sf. Similar to the first stage, an alternative ICWLS algorithm
is proposed, which is also asymptotically efficient under
Gaussian noise assumption.

1) OPTIMIZATION MODEL FOR MULTIPLE-TARGET
COOPERATIVE LOCALIZATION
It is easy to see that the functional forms of Ā(·, ·) and b̄(·, ·)
in (38) are known, but the values of r̄ and s̄ can not be
obtained accurately because only their noisy values (i.e., ˆ̄r
and ˆ̄sf) are available. To formulate the optimization model
for localization, it is necessary to first introduce the following
error vector

δ̄ = b̄(ˆ̄r, ˆ̄sf)− Ā(ˆ̄r, ˆ̄sf)t̄ (98)

Applying a first-order Taylor series expansion of b̄(ˆ̄r, ˆ̄sf) and
Ā(ˆ̄r, ˆ̄sf) around the true values r̄ and s̄ yields

b̄(ˆ̄r, ˆ̄sf) ≈ b̄(r̄, s̄)+ B̄1(r̄, s̄)ε̄ + B̄2(r̄, s̄)1s̄f

Ā(ˆ̄r, ˆ̄sf) ≈ Ā(r̄, s̄)+
2D(M−1)∑

j=1

〈ε̄〉j
˙̄A1j(r̄, s̄)

+

6M∑
j=1

〈1s̄f〉j ˙̄A2j(r̄, s̄)

(99)

where

B̄1(r̄, s̄) =
∂ b̄(r̄, s̄)

∂ r̄T
= blkdiag[B1(r̄1, s̄) B1(r̄2, s̄) · · · B1(r̄D, s̄)]

B̄2(r̄, s̄) =
∂ b̄(r̄, s̄)

∂ s̄T
= [(B2(r̄1, s̄))T (B2(r̄2, s̄))T · · · (B2(r̄D, s̄))T]T

˙̄A1j(r̄, s̄) =
∂Ā(r̄, s̄)
∂〈r̄〉j

= (i
(dj)
D i

(dj)T
D )⊗ Ȧ1,j−2(dj−1)(M−1)(r̄dj , s̄)

˙̄A2j(r̄, s̄) =
∂Ā(r̄, s̄)
∂〈s̄〉j

= blkdiag[Ȧ2j(r̄1, s̄) Ȧ2j(r̄2, s̄) · · · Ȧ2j(r̄D, s̄)]

(100)

in which B1(r̄d , s̄) =
∂b(r̄d ,s̄)
∂ r̄Td

, B2(r̄d , s̄) =
∂b(r̄d ,s̄)
∂ s̄T

,

Ȧ1j(r̄d , s̄) =
∂A(r̄d ,s̄)
∂〈r̄d 〉j

, Ȧ2j(r̄d , s̄) =
∂A(r̄d ,s̄)
∂〈s̄〉j

and dj =⌈
j

2(M−1)

⌉
. Putting (99) back into (98) produces

δ̄ ≈ C̄1(t̄, r̄, s̄)ε̄ + C̄2(t̄, r̄, s̄)1s̄f (101)

where

C̄1(t̄, r̄, s̄)

= B̄1(r̄, s̄)

− [ ˙̄A11(r̄, s̄)t̄ ˙̄A12(r̄, s̄)t̄ · · · ˙̄A1,2D(M−1)(r̄, s̄)t̄] (102)

C̄2(t̄, r̄, s̄)

= B̄2(r̄, s̄)

 min
1η∈R(8M+2N )×1

(
Ã
(c)
(r̄(c))1η − C̃

(c)
(η, r̄(c))

[
ε̄(c)

ξ̄

])T

(8̃
(c)
)−1

(
Ã
(c)
(r̄(c))1η − C̃

(c)
(η, r̄(c))

[
ε̄(c)

ξ̄

])
s.t. (G(c)(η))T1η = O(2M+2N )×1

(92)
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− [ ˙̄A21(r̄, s̄)t̄ ˙̄A22(r̄, s̄)t̄ · · · ˙̄A2,6M (r̄, s̄)t̄] (103)

It is clear from (101) that δ̄ is approximately Gaussian dis-
tributed with zero mean and the covariance matrix

8̄ = C̄1(t̄, r̄, s̄)ĒA(C̄1(t̄, r̄, s̄))T

+ C̄2(t̄, r̄, s̄) ·MSE(ˆ̄sf) · (C̄2(t̄, r̄, s̄))T (104)

To delay the noise threshold before performance deviates
suddenly from the CRB, the joint estimation of ū and s̄ should
be performed [35, 49]. For this purpose, we need to introduce
an augmented parameter vector as

t̃ = h̃(ū, s̄) =
[
t̄
s̄

]
=

[
h̄(ū, s̄)
s̄

]
(105)

Then, from (98) and (104), the criterion function with respect
to t̃ can be expressed as

J (t̃) = (b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃)T8̃
−1

(b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃) (106)

where

b̃(ˆ̄r, ˆ̄sf)=
[
b̄(ˆ̄r, ˆ̄sf)
ˆ̄sf

]
; Ã(ˆ̄r, ˆ̄sf)=blkdiag[Ā(ˆ̄r, ˆ̄sf) I] (107)

Applying the WLS criterion, the weighting matrix 8̃ is
given in (108), as shown at the bottom of the next page.
Besides, it can be verified from (51) that vector t̃ satisfies the
constraints

t̃T0̃1d t̃ = 0 ; t̃T0̃2d t̃ = 0 (1 ≤ d ≤ D) (109)

where 0̃1d = blkdiag[0̄1d O] and 0̃2d = blkdiag[0̄2d O].
Combining (106) and (109) yields the following CWLS

problem (110), as shown at the bottom of the next page.
Similar to (74), (110) is also a nonconvex problem because
the quadratic equality constraints are indefinite. Undoubtedly,
the closed-form solution for (110) is analytically intractable;
hence we have to solve (110) in an iterative way. In the sequel,
an alternative efficient ICWLS algorithm is presented. On the
other hand, it is worth noting that the weighting matrix 8̃ is
related to the unknown vector t̃ and so it should be updated
recursively in the proposed procedure.

2) PROPOSED ITERATION ALGORITHM
The numerical technique adopted in Subsection VI.A is also
applied here. First, we need to transform problem (110) into
a convex programming. To this end, a set of linear equality
constraints are employed instead of the homogenous and non-
convex constraints. Specifically, for each quadratic equality
constraint in (110), if we replace one of the variable t̃ with
its last iteration’s estimate, then the non-convex constraints
become linear and convex. The resulted programming is a
convex approximation of the CWLS problem (110). Math-
ematically, the approximate problem in the k + 1th iteration
can be formulated [see (111)], as shown at the bottom of the
next page.
where ˆ̃t(k) is the estimation result in the kth iteration. Similar
to problem (75), the closed-form solution for (111) also exists

and it can be obtained by means of matrix SVD. We are now
ready to show the corresponding result.
Proposition 7: Let ˆ̄t(k) denote the vector composed of the

first 8D elements of ˆ̃t(k). Defining the matrix

G(ˆ̄t(k))= [ 0̄11
ˆ̄t(k) · · · 0̄1D

ˆ̄t(k) 0̄21
ˆ̄t(k) · · · 0̄2D

ˆ̄t(k) ]

(112)

and performing matrix SVD on G(ˆ̄t(k)) lead to

G(ˆ̄t(k)) = [Q1(k) Q2(k)]
[
61(k)
O6D×2D

]
(R1(k))T

= Q1(k)61(k)(R1(k))T (113)

where [Q1(k) Q2(k)] is an orthogonal matrix; R1(k) is an
orthogonal matrix; 61(k) is a diagonal matrix, whose diag-
onal entries are the singular values of G(ˆ̄t(k)). Besides, let us
define Q̃2(k) = blkdiag[Q2(k) I6M×6M ]. Then, the optimal
solution for (111) is given by

ˆ̃topt(k + 1)

= Q̃2(k)((Q̃2(k))
T(Ã(ˆ̄r, ˆ̄sf))T8̃

−1
Ã(ˆ̄r, ˆ̄sf)Q̃2(k))

−1

× (Q̃2(k))
T(Ã(ˆ̄r, ˆ̄sf))T8̃

−1
b̃(ˆ̄r, ˆ̄sf) (114)

The proof of Proposition 7 is similar to that of Proposi-
tion 2, so it is omitted due to limited space. Although the
solution to problem (111) is an approximation of the optimal
solution of the CWLS problem (110), it incorporates 2D
approximate linear equality constraints to improve the local-
ization accuracy. Intuitively, the optimal solution (114) can
be directly used as the k + 1th iteration’s value. But, to avoid
the resulted solution sequence switching between two points,
we adopt the update strategy in [29] once again. Specifically,
the current iteration’s value is determined using the linear
combination of the solution to problem (111) and the esti-
mation result in the last iteration. Furthermore, the weighting
matrix 8̃ should also be updated at each iteration step because
it is related to t̃.
The second stage of the proposed ICWLS method is for-

mally outlined in Table 4.
At this point, we make three important remarks about the

proposed algorithm.
Remark 11: Here, it is also very important to find a

proper initial guess for the iterative algorithm. Notice that the
unknown vector t̃ is formed by t̄ and s̄; hence we must choose
good starting points for both of them. First, the estimation
result in the first stage (i.e., ˆ̄sf) can be directly considered as
the initial value of s̄. Second, the common least squares (LS)
criterion can be applied to determine the starting point of t̄,
which can written as

t̄(0) = ((Ā(ˆ̄r, ˆ̄sf))TĀ(ˆ̄r, ˆ̄sf))−1(Ā(ˆ̄r, ˆ̄sf))Tb̄(ˆ̄r, ˆ̄sf) (115)

Then, the initial estimate of t̃ is given by t̃(0) = [(t̄(0))T ˆ̄sTf ]
T.

Extensive Monte Carlo simulation tests show that this initial
value can yield satisfactory localization accuracy.
Remark 12: As shown in Step 7, the updated value in the

k + 1th iteration is the linear combination of the optimal
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solution (114) and the estimation result in the kth iteration.
A large number of simulation results show that the localiza-
tion performance is not sensitive to the numerical value ofw1.
In our simulation, w1 and w2 are both set to 0.5.
Remark 13: In optimization problem (111), the weighting

matrix 8̃ is not accurately known because it relies on t̄, s̄
and MSE(ˆ̄sf). It can be seen from Proposition 6 that matrix
MSE(ˆ̄sf) also depends on s̄. Therefore, it is necessary to
update 8̃ at each iteration step using the current iteration’s
value. Besides, matrix MSE(ˆ̄sf) can be obtained from (97).
Theoretical analysis demonstrates that such an approxima-
tion of the weighting matrix does not affect the asymptotic
properties of the estimator.

D. DISCUSSION ON THE PROPOSED ICWLS ESTIMATOR
As stated above, the proposed ICWLSmethod comprises two
stages: a first stage for refining the sensor locations, and
a second stage for multiple-target cooperative localization.
At each stage, an efficient iterative algorithm is proposed.
Moreover, it can be seen that the two iterative algorithms are
developed based on a unified theoretical framework.

It should be pointed out that although the proposed estima-
tor requires iteration, the convergence rate is fast, and more-
over, the closed-form solution is available at every iteration.
From our simulation results, it can be found that ten iterations
are enough to achieve the convergence criterion. In addition,
since the weighting matrices are updated recursively, more
accurate weighting matrices are obtained, leading to a higher
noise threshold than some existing methods before perfor-
mance breaks away from the CRB.

VII. PERFORMANCE ANALYSIS OF THE PROPOSED
ICWLS ESTIMATOR
This section is devoted to the performance analysis of the pro-
posed ICWLS estimator. The theoretical derivation is mainly
conducted for the iterative algorithm in stage-2, which pro-
vides the final estimation results. Similar to Subsection VI.B,
the work also consists of two parts: (1) analysis on con-
vergence property; (2) derivation for estimation MSE. Since
the convergence analysis presented here follows the same
theoretical framework as in Subsection VI.B, we just describe

the main results due to limited space. Besides, the estima-
tion MSE is deduced using the perturbation approach. More
importantly, the MSE is proved to asymptotically attain the
associated CRB given in Subsection III.A.

A. CONVERGENCE ANALYSIS FOR THE PROPOSED ICWLS
ESTIMATOR
Here, the convergence analysis is similar to that in Subsec-
tion VI.B. Therefore, we only state the main results without
detailed proofs. The objective is to illustrate that as long as the
iterative algorithm converges, it must converge to the optimal
solution for the CWLS problem (110).

According to the optimality of constrained optimization
theory, we first get the following two Lemmas.
Lemma 3: Suppose that ˆ̃topt, {λ1d }1≤d≤D and {λ2d }1≤d≤D

satisfy

(Ã(ˆ̄r, ˆ̄sf))T8̃
−1

(Ã(ˆ̄r, ˆ̄sf)ˆ̃topt − b̃(ˆ̄r, ˆ̄sf))

+

D∑
d=1

λ1d

2
0̃1d
ˆ̃topt +

D∑
d=1

λ2d

2
0̃2d
ˆ̃topt = O(8D+6M )×1

(116)
ˆ̃tTopt0̃1d

ˆ̃topt = 0 ; ˆ̃tTopt0̃2d
ˆ̃topt = 0 (1 ≤ d ≤ D) (117)

Moreover, it is assumed that

yT


(Ã(ˆ̄r, ˆ̄sf))T8̃

−1
Ã(ˆ̄r, ˆ̄sf)

+

D∑
d=1

λ1d

2
0̃1d +

D∑
d=1

λ2d

2
0̃2d

 y > 0, (118)

for any vector y belonging to the null space of (G̃(ˆ̃topt))T.
Then, vector ˆ̃topt is the strictly optimal solution to (110).
Lemma 4: Assuming that the optimal solution to (111) is

denoted by ˆ̃topt(k + 1), there exist {λ1d (k + 1)}1≤d≤D and
{λ2d (k + 1)}1≤d≤D such that

(Ã(ˆ̄r, ˆ̄sf))T8̃
−1

(Ã(ˆ̄r, ˆ̄sf)ˆ̃topt(k + 1)− b̃(ˆ̄r, ˆ̄sf))

+

D∑
d=1

λ1d (k + 1)
2

0̃1d
ˆ̃t(k)+

D∑
d=1

λ2d (k + 1)
2

0̃2d
ˆ̃t(k)

= O(8D+6M )×1 (119)

8̃ =

[
C̄1(t̄, r̄, s̄)ĒA(C̄1(t̄, r̄, s̄))T + C̄2(t̄, r̄, s̄) ·MSE(ˆ̄sf) · (C̄2(t̄, r̄, s̄))T C̄2(t̄, r̄, s̄) ·MSE(ˆ̄sf)

MSE(ˆ̄sf) · (C̄2(t̄, r̄, s̄))T MSE(ˆ̄sf)

]
(108)

 min
t̃∈R(8D+6M )×1

J (t̃) = min
t̃∈R(8D+6M )×1

{(b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃)T8̃
−1

(b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃)}

s.t. t̃T0̃1d t̃ = 0 ; t̃T0̃2d t̃ = 0 (1 ≤ d ≤ D)
(110)

 min
t̃∈R(8D+6M )×1

J (t̃) = min
t̃∈R(8D+6M )×1

{(b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃)T8̃
−1

(b̃(ˆ̄r, ˆ̄sf)− Ã(ˆ̄r, ˆ̄sf)t̃)}

s.t. t̃T0̃1d
ˆ̃t(k) = 0 ; t̃T0̃2d

ˆ̃t(k) = 0 (1 ≤ d ≤ D)
(111)
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FIGURE 2. Scatter plots of the target location estimates obtained from
the proposed method as well as the method in [34].

Based on Lemmas 3 and 4, we can in turn draw the follow-
ing results.

TABLE 4. Procedure of the second stage of the proposed ICWLS method.

Proposition 8: If the sequence {ˆ̃t(k+1)}0≤k≤+∞ converges
to ˆ̃ts, then the sequence {ˆ̃topt(k + 1)}0≤k≤+∞ also converges

to ˆ̃ts.
Proposition 9: If the sequence {ˆ̃t(k + 1)}0≤k≤+∞ con-

verges, then the sequences {λ1d (k+1)}0≤k≤+∞ and {λ2d (k+
1)}0≤k≤+∞ also converge for arbitrary 1 ≤ d ≤ D.

Proposition 10: If the sequence {ˆ̃t(k + 1)}0≤k≤+∞ con-
verges to ˆ̃ts, then ˆ̃ts = ˆ̃topt is the strictly optimal solution
to (110).
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The proofs of Propositions 8-10 are similar to those of
Propositions 3-5, respectively. Proposition 10 shows that
if the proposed ICWLS algorithm converges, then it will
provide the optimal solution for (110). There is no general
approach, however, to ensure that the iterative algorithmmust
converge. Fortunately, the simulation results in Section VIII
reveal that the convergence criterion can be reached within
ten iterations in most cases.

B. ESTIMATION MSE FOR THE PROPOSED ICWLS
ESTIMATOR
This subsection is devoted to the derivation of the MSE
expression for the proposed ICWLS estimator. Moreover,
the obtained theoretical MSE is analytically shown to equal
the CRB given by (21). The first-order perturbation approach
is adopted for this purpose.

Suppose that the proposed ICWLS algorithm in the second
stage converges to ˆ̃ts, which is also the optimal solution for
(110) as shown in Proposition 10. Since the final location esti-

mates for target sources and sensors are obtained by
[
ˆ̄us
ˆ̄ss

]
=[

ID ⊗ [I6 O6×2] 1D ⊗4
O6M×8D I6M

]
ˆ̃ts, we should first deduce the

theoretical MSE of ˆ̃ts. Let the estimation error in ˆ̃ts be denoted
as1t̃s. In the theoretical frame of the first-order perturbation
analysis, 1t̃s can be approximately expressed as a linear
function with respect to the measurement noise ε̄ as well
as the estimation error1s̄f in the first stage. Indeed, by taking
the first-order approximation, 1t̃s is the optimal solution for
the following constrained minimization problem [28]:

min
1t̃∈R(8D+6M )×1



(
Ã(r̄, s̄)1t̃− C̄(t̄, r̄, s̄)

[
ε̄

1s̄f

])T

8̃
−1

×

(
Ã(r̄, s̄)1t̃− C̄(t̄, r̄, s̄)

[
ε̄

1s̄f

])


s.t. (G̃(t̃))T1t̃ = O2D×1

(120)

where G̃(t̃) = [ 0̃11 t̃ 0̃12 t̃ · · · 0̃1D t̃ 0̃21 t̃ 0̃22 t̃ · · · 0̃2D t̃ ].
The matrix SVD of G̃(t̃) can be described as

G̃(t̃) =
[

Q1 Q2 O8D×6M
O6M×2D O6M×6D I6M×6M

] 61
O6D×2D
O6M×2D

R1

=

[
Q1

O6M×2D

]
61R1 (121)

Due to the fact that 1t̃s is orthogonal to the range space of
G̃(t̃), it is easy to see that 1t̃s belongs to the range space of
Q̃2 = blkdiag[Q2 I6M×6M ]. Therefore, we can express 1t̃s
as

1t̃s = Q̃2(Q̃
T
2 (Ã(r̄, s̄))

T8̃
−1
Ã(r̄, s̄)Q̃2)

−1

× Q̃
T
2 (Ã(r̄, s̄))

T8̃
−1
C̄(t̄, r̄, s̄)

[
ε̄

1s̄f

]
(122)

TABLE 5. True positions (in meters) and velocities (in meters/second) of
sensors for the first set of simulations.

Since the mean value of1t̃s is equal to zero, ˆ̃ts is an approxi-
mately unbiased estimate of t̃. From (108) and (122), the esti-
mation MSE of ˆ̃ts is given by

MSE(ˆ̃ts) = Q̃2(Q̃
T
2 P̃(r̄, s̄)Q̃2)

−1Q̃
T
2 (123)

where P̃(r̄, s̄) = (Ã(r̄, s̄))T8̃
−1
Ã(r̄, s̄).

Three remarks are drawn in the sequel.
Remark 14: Since Q̃

T
2 G̃(t̃) = O, we immediately arrive at

MSE(ˆ̃ts)G̃(t̃) = O, which implies that MSE(ˆ̃ts) is a rank-
deficient matrix. The main reason for this is that 1t̃s must
satisfy the equation constraints in (120).
Remark 15: Define matrix

H̃1(ū, s̄) = blkdiag[H̄1(ū, s̄) I6M ]. Combining (52), (54)
with the definition of G̃(t̃) leads to (H̃1(ū, s̄))TG̃(t̃) = O. Note
that the number of columns of H̃1(ū, s̄) is equal to that of Q̃2,
so it can be verified that range{H̃1(ū, s̄)} = range{Q̃2}.
Remark 16: Combining (107) and (108) and applying

matrix identities (I) and (II) in Table 2, the detailed expression
for matrix P̃(r̄, s̄) can be written as shown in (124) [see p. 24].

It is noteworthy that (124) plays an important role in the
proof of Proposition 11 described below.

To proceed further, the theoretical MSE of the joint esti-

mate
[
ˆ̄us
ˆ̄ss

]
is presented. Let its estimation error be

[
1ūs
1s̄s

]
.

Then, we can get[
1ūs
1s̄s

]
=

[
ID ⊗ [I6 O6×2] 1D ⊗4

O6M×8D I6M

]
1t̃s (125)

which, combined with (123), yields

MSE
([
ˆ̄us
ˆ̄ss

])
=

[
ID ⊗ [I6 O6×2] 1D ⊗4

O6M×8D I6M

]
Q̃2

× (Q̃
T
2 P̃(r̄, s̄)Q̃2)

−1Q̃
T
2

 ID ⊗ [ I6
O2×6

]
O8D×6M

1TD ⊗4
T I6M


(126)
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FIGURE 3. Position iterative sequence obtained from the proposed method.

The MSEs of the estimates ˆ̄us and ˆ̄ss can be easily obtained

from (126). In the sequel, the solution
[
ˆ̄us
ˆ̄ss

]
is proved to reach

CRB accuracy under moderate noise level.
Proposition 11: Under the first-order approximation, we

have

MSE
([
ˆ̄us
ˆ̄ss

])
= CRB

([
ū
s̄

])
(127)

The proof of Proposition 11 is described in Appendix F.
The result in Proposition 11 demonstrates that the novel
estimator is asymptotically efficient. In Section VIII, some
simulations are conducted to support the theoretical develop-
ment as well as the advantages of the newly proposedmethod.

VIII. NUMERICAL EXPERIMENT AND RESULT ANALYSIS
In this section, we present a set of Monte Carlo simulations
in order to verify the analytical results and evaluate the
accuracy of the proposed localization method. The estimation
performance is assessed in terms of root-mean-square-error
(RMSE) and radius of circular error probability (CEP) [50].
The RMSEs are obtained from the average of 5000 indepen-
dent runs.

In the first set of experiments, the radius of CEP of the pro-
posed method is compared with that of the TSWLS method

in [34], which can locate multiple targets simultaneously
but does not utilize the UAV calibration emitters. From this
comparison, the performance improvement resulted from the
use of the calibration emitters can be clearly observed. Con-
sider a 3-D localization scenario consisting of 8 moving
sensors whose true positions and velocities are tabulated
in Table 5. These sensors are used to locate 2 moving tar-
get sources positioned at u1 = [6800 8600 7200]T (m)
and u2 = [4300 4200 5100]T (m) with velocities u̇1 =
[−12 10 − 14]T (m/s) and u̇2 = [16 − 13 − 15]T (m/s).
The target sources be stalled on any mobile vehicles, and
their TDOAs/FDOAs can be obtained in a disjoint manner.
Besides, there exist two UAV calibration emitters, which are
positioned at w1 = [5000 6000 5000]T (m) and w2 =

[6000 4000 6000]T (m) with velocities ẇ1 = [10 − 20 12]T

(m/s) and ẇ2 = [−15 16 − 18]T (m/s). In generating the
simulation results, the TDOA/FDOAmeasurements from the
unknown target sources and calibration emitters are produced
via adding to the true values zero mean Gaussian noise with
covariance matrices Ed = σ 2

1 blkdiag[T 0.012T] and En =
σ 2
1 blkdiag[T 0.012T](d , n = 1 , 2), where σ1 is fixed at

5 and T is an M ×M matrix with 1 in the diagonal elements
and 0.5 otherwise. The erroneous sensor locations are created
in a similar approach, where the covariance matrix of ĒB is
σ 2
2 (IM ⊗ blkdiag[I3 0.012I3]), and σ2 is set to 15.
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FIGURE 4. RMSE of multiple-target and sensor location estimation versus σ1.

Figs.2(a)-(d) depict the scatter plots of the target loca-
tion estimates obtained from the proposed method as well
as the TSWLS method in [34] through 2000 independent
experiments. The radiuses of CEP for the two localization
methods are also provided in these figures. Additionally,
the position iterative sequence of the proposed method is
plotted in Figs.3(a)-(d), where we perform 10 independent
Monte-Carlo runs, each of which has different noise values.
Meanwhile, the globally optimal solutions for target positions
are also displayed. Note that the optimal solutions can be
obtained by a direct grid search and they are generally not
equal to the true values due to the presence of measurement
errors.

From Figs.2 and 3 we can draw the following conclusions:
(1) From the starting points described inRemarks 5 and 11,

the new method is able to find the globally optimum
solutions. Moreover, the convergence criterion can be
reached within 10 iterations in most cases. Therefore,
the validity of the convergence analysis presented in
Subsections VI.B and VII.A is verified.

(2) The CEP radius of the proposed method is much
smaller than that of the TSWLS method in [34]. This
finding reveals that the location accuracy could be
significantly improved if the measurements from the
calibration emitters are fully utilized.

In the second set of simulations, the newly developed
method is compared with the TSWLS methods in [34], [35]
and the Taylor-series iterative method extended from [51] in
terms of estimation RMSE. Since these comparedmethods do
not exploit the calibration emitters, we can accurately assess
the performance gain due to the use of the calibration emitters
from this comparison. On the other hand, as mentioned in
[38], the differential calibration (DC) technique is commonly
used in global positioning systems (GPS) to mitigate the
effect of uncertainties in satellite position and velocity. This
method can be easily extended to the localization scenario
studied here. So, it is reasonable to compare our method with
the DC technique. The simulation settings are the same as
those in the first set of experiments, except that the covariance
matrices {Ed }1≤d≤2, {En}1≤n≤2 and ĒB are changed. First,
we choose ĒB = 202(IM⊗blkdiag[I3 0.012I3]) and setEd =
σ 2
1 blkdiag[T 0.012T] and En = σ 2

1 blkdiag[T 0.012T](d, n =
1, 2), where σ1 varies from 2 to 40. Figs.4(a)-(d) depict
the RMSEs of multiple-target position estimation, multiple-
target velocity estimation, sensor position estimation and
sensor velocity estimation versus σ1, respectively. Subse-
quently, we fix Ed = 152blkdiag[T 0.012T] and En =
152blkdiag[T 0.012T](d , n = 1 , 2), and set ĒB =

σ 2
2 (IM ⊗ blkdiag[I3 0.012I3]), where σ2 ranges from 2 to

40. Figs.5(a)-(d) show the RMSEs of multiple-target position
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FIGURE 5. RMSE of multiple-target and sensor location estimation versus σ2.

estimation, multiple-target velocity estimation, sensor posi-
tion estimation and sensor velocity estimation as a function
of σ2, respectively.

From Figs.4 and 5 we can draw the following conclusions:

(1) The proposedmethod is able to reach the corresponding
CRB accuracy under a moderate noise level. This is
because the new estimator is established based on the
WLS criterion, which yields an asymptotically efficient
solution under Gaussian model. Note that we prove
analytically using first order analysis that the estima-
tion performances in both stage-1 and stage-2 asymp-
totically attain the relevant CRBs. Hence, the simula-
tion results confirm the theoretical development in this
work.

(2) The advantages of the new method over the TSWLS
methods in [34], [35] and the Taylor-series iterative
method extended from [51] are remarkable. The reason
is that none of the compared methods exploits the mea-
surements from the calibration signals. In other words,
this significant performance gap mainly comes from
the use of the calibration emitters. In addition, both the
TSWLSmethods and the Taylor-series iterativemethod
can achieve CRB without calibration signal, before the
thresholding effect starts to occur.

(3) Our method is superior to the DC technique and, more-
over, the RMSE improvement increases as σ1 increases.
Besides, the RMSE of the DCmethod is larger than the
associated CRB because its cost function is not asymp-
totically efficient. This observation is consistent with
the analytical result in [38]. More importantly, the DC
approach can not further refine the sensor position and
velocity, while the proposed method can.

The third set of simulations is carried out to demonstrate
that cooperation positioning for multiple targets can produce
considerable performance gain compared to decoupled local-
ization. For this purpose, the localization method presented
in [43] is implemented for comparison. Since this method is
developed for single-target localization scenario where the
TDOA/FDOA measurements from both target source and
calibration emitters are used, its performance can be chosen
as benchmark to show performance improvement due to joint
localization. The simulation scenario has an array of 8 mov-
ing sensors and their nominal positions and velocities are the
same as in the previous experiments. These sensors are used
to locate 3 moving target sources, which are positioned at
u1 = [7200 8400 7700]T (m), u2 = [6500 6400 5600]T (m)
and u3 = [4600 4700 5400]T (m). Their velocities are set to
be u̇1 = [14 −12 10]T (m/s), u̇2 = [14 −12 −15]T (m/s) and
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FIGURE 6. RMSE of target location estimation versus σ2 for each target source.

u̇3 = [−13 16 13]T (m/s). Besides, three calibration emitters
are deployed near the target source, and they are located at
w1 = [7000 7000 8000]T (m), w2 = [8000 9000 6000]T

(m) and w3 = [9000 6000 8000]T (m) with velocities
ẇ1 = [−12 − 18 14]T (m/s), ẇ2 = [−16 15 − 12]T

(m/s) and ẇ3 = [10 − 14 18]T (m/s). Similar to the previous
simulations, the TDOA/FDOAmeasurements from the target
sources and calibration emitters are produced by adding to the

true values zero-mean Gaussian noise with covariance matrix
{Ed }1≤d≤3 and {En}1≤n≤3, respectively. The noisy sensor
positions and velocities are created in a similar manner using
covariance matrix ĒB. We fix Ed = 32blkdiag[T 0.012T]
and En = 32blkdiag[T 0.012T](d , n = 1 , 2 , 3), and
set ĒB = σ 2

2 (IM ⊗ blkdiag[I3 0.012I3]), where σ2 varies
from 3 to 60. Figs.6(a)-(f) illustrate the RMSEs of location
estimation versus σ2 for each target source.
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FIGURE 7. RMSE of target and sensor location estimation versus σ2 for a different number of calibration emitters.

From Figs.6 we can draw the following conclusions:

(1) The performance improvement in positioning accuracy
resulted from cooperative localization is noticeable.

(2) The RMSE gap is more pronounced as σ2 increases.
This is because when σ2 is large, the uncertainties in
sensor position and velocity dominate the performance
and then the advantage of cooperative positioning over
decoupled localization becomes significant.

(3) The estimation accuracy of the method in [43] is able
to attain CRB for non-cooperative localization at mod-
erate noise and error level. This observation confirms
the analytical result in [43].

The fourth set of experiments studies the effect of the num-
ber of UAV calibration emitters. The simulation parameters
are the same as those used to produce Fig.6. We examine
the estimation accuracy of the new method for three cases.

In the first case, single calibration emitter is used for target
localization and it is located at w1 = [7000 7000 8000]T (m)
with velocity ẇ1 = [−12 − 18 14]T (m/s). The sec-
ond case assumes that there are two calibration emitters,
which are positioned at w1 = [7000 7000 8000]T (m)
and w2 = [8000 9000 6000]T (m) with velocities ẇ1 =

[−12 − 18 14]T (m/s) and ẇ2 = [−16 15 −

12]T (m/s). In the third case, three calibration emitters are
deployed for locating the targets and they are placed at w1 =

[7000 7000 8000]T (m), w2 = [8000 9000 6000]T (m) and
w3 = [9000 6000 8000]T (m) with velocities ẇ1 = [−12 −
18 14]T (m/s), ẇ2 = [−16 15 − 12]T (m/s) and ẇ3 = [10 −
14 18]T (m/s). We choose Ed = 32blkdiag[T 0.012T] and
En = 32blkdiag[T 0.012T](d , n = 1 , 2 , 3), and set ĒB =

σ 2
2 (IM ⊗ blkdiag[I3 0.012I3]), where σ2 varies from 3 to 60.

Figs.7(a)-(d) plot the RMSEs of multiple-target position esti-
mation, multiple-target velocity estimation, sensor position

P̃(r̄, s̄) =

 (Ā(r̄, s̄))T(C̄1(t̄, r̄, s̄))−TĒ
−1
A (C̄1(t̄, r̄, s̄))−1Ā(r̄, s̄) −(Ā(r̄, s̄))T(C̄1(t̄, r̄, s̄))−TĒ

−1
A (C̄1(t̄, r̄, s̄))−1C̄2(t̄, r̄, s̄)

−(C̄2(t̄, r̄, s̄))T(C̄1(t̄, r̄, s̄))−TĒ
−1
A (C̄1(t̄, r̄, s̄))−1Ā(r̄, s̄)

(MSE(ˆ̄sf))−1 + (C̄2(t̄, r̄, s̄))T(C̄1(t̄, r̄, s̄))−T

×Ē
−1
A (C̄1(t̄, r̄, s̄))−1C̄2(t̄, r̄, s̄)


(124)
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estimation and sensor velocity estimation as a function of σ2,
respectively.

From Figs.7 we can draw the following conclusions:

(1) The proposed estimator is shown to yield the solution
reaching the CRB accuracy under moderate noise level.
This finding can further support the theoretical devel-
opment in Section VII.

(2) As expected, the localization accuracy will improve
when more calibration signals are available for target
localization. Furthermore, the higher the noise level,
the greater the performance gain in estimation accuracy
resulted from the increase in the number of calibration
emitters. However, no matter how many calibration
emitters exist, the positioning accuracy will not be
higher than the bound for the case of no sensor location
errors.

IX. CONCLUSION
This work focuses on the use of UAV calibration emitters
for TDOA/FDOA multiple-target positioning in a wireless
connected network. The study starts with deriving the CRB
for TDOA/FDOA-based target location estimate when some
UAV calibration emitters with known locations are available.
The insight gained from the CRB reveals that the calibration
signals are rather useful in reducing the effects of the uncer-
tainties in sensor position and velocity. Moreover, the cooper-
ative gain is significant when the multiple moving targets are
located simultaneously in the presence of calibration emitters,
even if the target sources are disjoint. The disjointness may
be in time, frequency or both. The paper then proceeds to
present a novel ICWLS estimator for multiple-target joint
localization based on TDOA/FDOAmeasurements from both
target sources and calibration emitters. The newly proposed
method is composed of two stages. Specifically, the first
stage refines the sensor locations by using the calibration
TDOA/FDOA measurements as well as the statistical char-
acteristic of the noisy sensor locations. The second stage pro-
vides the estimate of multiple-target locations by combining
the measurements of target signals and the estimated values
in the first stage. An efficient ICWLS algorithm is designed
at each stage. Both the two algorithms are implemented
based on matrix SVD, which is able to find a closed-form
solution and update the weighting matrix at every iteration.
Performance analysis of the proposed ICWLS estimator is
also conducted, which consists of two parts: (1) analysis on
convergence property; (2) derivation for estimationMSE. The
results demonstrate that the proposed method, if converges,
can produce the optimal solution of the formulated non-
convex CWLS problem. Besides, its estimation MSE can
achieve CRB with calibration emitters at moderate noise.
Simulation results verify the validity of the analytical results
in this paper and confirm the superiority of the proposed
method over some existing localization methods.

It is worthy to point out that the proposed estimator can
be extended to reduce the effects of the clock offsets and

frequency deviations on target localization accuracy. In future
work, we will focus on this topic.

APPENDIX
A. PROOF OF CRB(ūd ) ≤ CRBi(ūd ) (1 ≤ d ≤ D)
First, it is readily checked that

F̄1(ū, s̄)
= blkdiag[F1(ū1, s̄) F1(ū2, s̄) · · · F1(ūD, s̄)]
F̄2(ū, s̄)
= [(F2(ū1, s̄))T (F2(ū2, s̄))T · · · (F2(ūD, s̄))T]T

(A.1)

For convenience, we define the matrix

X = ĒA + F̄2(ū, s̄)

× (Ē
−1
B + (F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1(F̄2(ū, s̄))T,

(A.2)

and partition it into blocks (submatrices) as follows:

X =


X1︸︷︷︸

2(M−1)×2(M−1)

X2︸︷︷︸
2(M−1)×2(D−1)(M−1)

XT
2︸︷︷︸

2(D−1)(M−1)×2(M−1)

X3︸︷︷︸
2(D−1)(M−1)×2(D−1)(M−1)


(A.3)

Then, using the second equality in (A.1) yields

X1 = E1 + F2(ū1, s̄)

× (Ē
−1
B + (F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1(F2(ū1, s̄))T

(A.4)

Further, combining matrix identity (I) in Table 2, the first
equality in (A.1) and (22) produces (A.5), as shown at the
bottom of the next page.
where{
Y = (X1 − X2X−13 XT

2 )
−1
; Z = (X3 − XT

2X
−1
1 X2)−1

F̃r(ū, s̄) = blkdiag[F1(ū2, s̄)F1(ū3, s̄) · · ·F1(ūD, s̄)]
(A.6)

It can be verified from (A.6) that YX2X−13 = X−11 X2Z. Then,
from (A.5) and matrix identity (I) in Table 2, we get

(CRB(ū1))−1 = (F1(ū1, s̄))TYF1(ū1, s̄)
−(F1(ū1, s̄))TX−11 X2ZF̃r(ū, s̄)
×((F̃r(ū, s̄))TZF̃r(ū, s̄))−1(F̃r(ū, s̄))TZXT

2X
−1
1 F1(ū1, s̄)

(CRB(ũr))−1 = (F̃r(ū, s̄))TZF̃r(ū, s̄)
−(F̃r(ū, s̄))TX−13 XT

2YF1(ū1, s̄)
×((F1(ū1, s̄))TYF1(ū1, s̄))−1(F1(ū1, s̄))TYX2X−13 F̃r(ū, s̄)

(A.7)

where ũr = [ūT2 ūT3 · · · ū
T
D]

T, which does not comprise the
first location vector u1.

On the other hand, it readily follows from matrix identity
(II) in Table 2 that{

Y = X−11 + X
−1
1 X2ZXT

2X
−1
1

Z = X−13 + X
−1
3 XT

2YX2X−13
(A.8)

VOLUME 8, 2020 1637



D. Wang et al.: Novel Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources

Putting (A.8) back into (A.7) produces
(CRB(ū1))−1 = (F1(ū1, s̄))TX−11 F1(ū1, s̄)
+(F1(ū1, s̄))TX−11 X2Z0XT

2X
−1
1 F1(ū1, s̄)

(CRB(ũr))−1 = (F̃r(ū, s̄))TX−13 F̃r(ū, s̄)
+(F̃r(ū, s̄))TX−13 XT

2Y0X2X−13 F̃r(ū, s̄)

(A.9)

where
Y0 = Y− YF1(ū1, s̄)((F1(ū1, s̄))TYF1(ū1, s̄))−1

×(F1(ū1, s̄))TY
Z0 = Z− ZF̃r(ū, s̄)((F̃r(ū, s̄))TZF̃r(ū, s̄))−1

×(F̃r(ū, s̄))TZ

(A.10)

According to the definition of orthogonal projection matrix,
(A.10) can be rewritten as{

Y0 = Y1/25⊥[Y1/2F1(ū1, s̄)]Y1/2 ≥ O
Z0 = Z1/25⊥[Z1/2F̃r(ū, s̄)]Z1/2 ≥ O

(A.11)

Substituting (A.11) into the first equality in (A.9) and using
(A.4) lead to

(CRB(ū1))−1

≥ (F1(ū1, s̄))TX−11 F1(ū1, s̄)

= (F1(ū1, s̄))T

E1 + F2(ū1, s̄)

×

(
Ē
−1
B +(F̄

(c)
(s̄))T

×(Ē
(c)
A )−1F̄

(c)
(s̄)

)−1
(F2(ū1, s̄))T


−1

×F1(ū1, s̄)

= (CRBi(ū1))−1 (A.12)

which implies CRB(ū1) ≤ CRBi(ū1). The derivation
described above can be easily extend to prove CRB(ūd ) ≤
CRBi(ūd ) for 2 ≤ d ≤ D, as long as we exchange the order
of ū1 and ūd in composite location vector ū. At this point,
the proof is completed.

B. PROOF OF PROPOSITION 2
It can be easily checked from (80) that

(G(c)(η̂(k)))T= (Q(c)
11 (k + 1)6(c)

1 (k + 1)(R(c)
1 (k + 1))T)T

=R(c)
1 (k+1)6(c)

1 (k+1)(Q(c)
11 (k+1))

T (B.1)

Combining (B.1) and (82) gives

(G(c)(η̂(k)))TQ(c)
11 (k + 1)x1(k + 1)

= R(c)
1 (k+1)6(c)

1 (k+1)(Q(c)
11 (k+1))

TQ(c)
11 (k+1)x1(k + 1)

= R(c)
1 (k + 1)6(c)

1 (k + 1)x1(k + 1) = g(c)(η̂(k)) (B.2)

where the second equality uses the relation (Q(c)
11 (k +

1))TQ(c)
11 (k+1) = I. From (B.1) and (B.2), it can be seen that

the vectorQ(c)
11 (k+1)x1(k+1) satisfies the equality constraint

in (75). As a consequence, we can write the optimal solution
of (75) as

η̂opt(k + 1) = Q(c)
11 (k + 1)x1(k + 1)+ η̂o(k + 1) (B.3)

where η̂o(k+1) fulfils the linear equation (G
(c)(η̂(k)))Tη̂o(k+

1) = O and, moreover, it should minimize the cost function
in (75). We are now ready to prove that the vector η̂o(k + 1)
is equal to Q(c)

12 (k + 1)x2(k + 1).
Since η̂o(k + 1) belongs to the null space of (G(c)(η̂(k)))T,

it can be expressed as

η̂o(k + 1) = Q(c)
12 (k + 1)zo (B.4)

where zo ∈ R6M×1 needs to be determined. Inserting (B.3)
and (B.4) into the objective function in (75) yields

J (c)(η̂opt(k + 1))

= (Ã
(c)
(ˆ̄r(c))η̂opt(k + 1)− b̃

(c)
(ˆ̄r(c), ˆ̄s))T(8̃

(c)
)−1

× (Ã
(c)
(ˆ̄r(c))η̂opt(k + 1)− b̃

(c)
(ˆ̄r(c), ˆ̄s))

= ||(8̃
(c)
)−1/2Ã

(c)
(ˆ̄r(c))Q(c)

12 (k + 1)zo − (8̃
(c)
)−1/2

× (b̃
(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))Q(c)

11 (k + 1)x1(k + 1))||22
(B.5)

Substituting (83) into (B.5) leads to (B.6), as shown at the
bottom of the next page, which implies that the objective
function reaches its minimum value at z0 = x2(k + 1). Then,
combining (B.3) and (B.4) we have

η̂opt(k+1)=Q
(c)
11 (k+1)x1(k+1)+Q

(c)
12 (k+1)x2(k+1)

(B.7)

At this point, the proof is ended.

C. PROOF OF PROPOSITION 4
It can be seen from (76), (78) and (90) that (C.2), as shown at
the bottom of the next page.

(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c))η̂opt(k + 1)

= (Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1b̃

(c)
(ˆ̄r(c), ˆ̄s)

−
1
2
G(c)(η̂(k))λ(c)(k + 1)

⇒ η̂opt(k + 1) = ((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1

×

(
(Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1b̃

(c)
(ˆ̄r(c), ˆ̄s)

−
1
2G

(c)(η̂(k))λ(c)(k + 1)

)
(C.1)

CRB(ū) =
[

(F1(ū1, s̄))TYF1(ū1, s̄) −(F1(ū1, s̄))TYX2X−13 F̃r(ū, s̄)
−(F̃r(ū, s̄))TX−13 XT

2YF1(ū1, s̄) (F̃r(ū, s̄))TZF̃r(ū, s̄)

]−1
(A.5)
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Inserting (C.1) into the equality constraints in (75) and using
some algebraic manipulations yield

λ(c)(k + 1)

= 2((G(c)(η̂(k)))T((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1

×G(c)(η̂(k)))−1 × ((G(c)(η̂(k)))T((Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1

× Ã
(c)
(ˆ̄r(c)))−1(Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1b̃

(c)
(ˆ̄r(c), ˆ̄s)

− g(c)(η̂(k))) (C.3)

If {η̂(k + 1)}0≤k≤+∞ converges to η̂f, then it can be shown
from (76)-(78) that

g(c)(η̂f) = lim
k→+∞

g(c)(η̂(k))

= [(g(c)1 (η̂f))
T(g(c)2 (η̂f))

T(g(c)3 (η̂f))
T(g(c)4 (η̂f))

T]T

G(c)(η̂f) = lim
k→+∞

G(c)(η̂(k))

= [G(c)
1 (η̂f) G

(c)
2 (η̂f) G

(c)
3 (η̂f) G

(c)
4 (η̂f)]

(C.4)

where
Putting (C.4) into (C.3) leads to

lim
k→+∞

λ(c)(k + 1)

= 2((G(c)(η̂f))
T((Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c)))−1G(c)(η̂f))

−1

× ((G(c)(η̂f))
T((Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1

× Ã
(c)
(ˆ̄r(c)))−1(Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1b̃

(c)
(ˆ̄r(c), ˆ̄s)− g(c)(η̂f))

(C.7)

which implies that the sequences {λ(c)1m(k + 1)}0≤k≤+∞,
{λ

(c)
2m(k + 1)}0≤k≤+∞, {λ

(c)
3n (k + 1)}0≤k≤+∞ and {λ(c)4n (k +

1)}0≤k≤+∞ converge for arbitrary 1 ≤ m ≤ M and 1 ≤ n ≤
N . At this point, the proof is completed.

D. PROOF OF PROPOSITION 5
Since {η̂(k + 1)}0≤k≤+∞ converges, it can be seen from
Proposition 4 that the sequences {λ(c)1m(k + 1)}0≤k≤+∞,
{λ

(c)
2m(k + 1)}0≤k≤+∞, {λ

(c)
3n (k + 1)}0≤k≤+∞ and {λ(c)4n (k +

1)}0≤k≤+∞ also converge for arbitrary 1 ≤ m ≤ M and
1 ≤ n ≤ N . Let lim

k→+∞
η̂(k + 1) = η̂f, lim

k→+∞
λ
(c)
1m(k + 1) =

λ
(c)
1m,f, lim

k→+∞
λ
(c)
2m(k + 1) = λ(c)2m,f, lim

k→+∞
λ
(c)
3n (k + 1) = λ(c)3n,f

and lim
k→+∞

λ
(c)
4n (k + 1) = λ

(c)
4n,f. Using Proposition 3 yields

lim
k→+∞

η̂opt(k + 1) = lim
k→+∞

η̂(k + 1) = η̂f. Then, taking the

limit on both sides of (90) produces

(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1(Ã

(c)
(ˆ̄r(c))η̂f − b̃

(c)
(ˆ̄r(c), ˆ̄s))

+

M∑
m=1

λ
(c)
1m,f

2

(
�1mη̂f +

1
2
ρ1m

)

+

M∑
m=1

λ
(c)
2m,f

2

(
�2mη̂f +

1
2
ρ2m

)

+

N∑
n=1

λ
(c)
3n,f

2

(
�3nη̂f +

1
2
ρ3n

)

+

N∑
n=1

λ
(c)
4n,f

2

(
�4nη̂f +

1
2
ρ4n

)
= O(8M+2N )×1 (D.1)

Due to the fact that η̂opt(k+1) is the optimal solution for (75),
it can be shown from the equality constraints in (75) that

lim
k→+∞

(η̂(k))T�1mη̂opt(k + 1)+
1
2
ρT1mη̂opt(k + 1)

= lim
k→+∞

−
1
2
ρT1mη̂(k)

⇒ η̂
T
f �1mη̂f + ρ

T
1mη̂f = 0 (1 ≤ m ≤ M ) (D.2)

lim
k→+∞

(η̂(k))T�2mη̂opt(k + 1)+
1
2
ρT2mη̂opt(k + 1)

= lim
k→+∞

−
1
2
ρT2mη̂(k)

⇒ η̂
T
f �2mη̂f + ρ

T
2mη̂f = 0 (1 ≤ m ≤ M ) (D.3)

lim
k→+∞

(η̂(k))T�3nη̂opt(k + 1)+
1
2
ρT3nη̂opt(k + 1)

= lim
k→+∞

||wn||22 −
1
2
ρT3nη̂(k)

⇒ η̂
T
f �3nη̂f + ρ

T
3nη̂f = ||wn||

2
2 (1 ≤ n ≤ N ) (D.4)

lim
k→+∞

(η̂(k))T�4nη̂opt(k + 1)+
1
2
ρT4nη̂opt(k + 1)

= lim
k→+∞

2wT
n ẇn −

1
2
ρT4nη̂(k)

⇒ η̂
T
f �4nη̂f + ρ

T
4nη̂f = 2wT

n ẇn (1 ≤ n ≤ N ) (D.5)

On the other hand, for any vector y belonging to the null space
of (G(c)(η̂opt))

T, we can write y = Q(c)
12 (η̂opt)x. Moreover,

using (C.7) and performing some algebraic manipulations

J (c)(η̂opt(k + 1))

= ||Q(c)
21 (k + 1)6(c)

2 (k + 1)(R(c)
2 (k + 1))Tzo − (8̃

(c)
)−1/2(b̃

(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))Q(c)

11 (k + 1)x1(k + 1))||22

=

∥∥∥∥∥
[
6

(c)
2 (k + 1)(R(c)

2 (k + 1))Tzo
O2N (M−1)×1

]
−

[
(Q(c)

21 (k + 1))T(8̃
(c)
)−1/2(b̃

(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))Q(c)

11 (k + 1)x1(k + 1))

(Q(c)
22 (k + 1))T(8̃

(c)
)−1/2(b̃

(c)
(ˆ̄r(c), ˆ̄s)− Ã

(c)
(ˆ̄r(c))Q(c)

11 (k + 1)x1(k + 1))

]∥∥∥∥∥
2

2

(B.6)
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yield

(Q(c)
12 (η̂opt))

T


(Ã

(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c))

+

M∑
m=1

λ
(c)
1m,f
2 �1m +

M∑
m=1

λ
(c)
2m,f
2 �2m

+

N∑
n=1

λ
(c)
3n,f
2 �3n +

N∑
n=1

λ
(c)
4n,f
2 �4n

Q(c)
12 (η̂opt)

= (Q(c)
12 (η̂opt))

T(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c))Q(c)

12 (η̂opt)>O

(D.6)

where the positive definiteness uses the fact that Q(c)
12 (η̂opt)

has full column rank. It readily follows from (D.6) that

yT



(Ã
(c)
(ˆ̄r(c)))T(8̃

(c)
)−1Ã

(c)
(ˆ̄r(c))

+

M∑
m=1

λ
(c)
1m,f

2
�1m +

M∑
m=1

λ
(c)
2m,f

2
�2m

+

N∑
n=1

λ
(c)
3n,f

2
�3n +

N∑
n=1

λ
(c)
4n,f

2
�4n


y > 0 (D.7)

From (D.1), (D.2)-(D.5), (D.7) and Lemma 1 we can con-
clude that η̂f = η̂opt is the strictly optimal solution to the
CWLS problem (74). Hence, the proof is completed.

E. PROOF OF PROPOSITION 6
Since range{9(s̄)} = range{Q(c)

12 }, there exists a nonsingular
matrix TA ∈ R6M×6M such that Q(c)

12 = 9(s̄)TA. Putting this
into (97) gives

MSE(ˆ̄sf)

= [I6M O6M×(2M+2N )]9(s̄)TAT−1A

× ((9(s̄))TP̃
(c)
(r̄(c))9(s̄))−1T−TA TTA

× (9(s̄))T
[

I6M
O(2M+2N )×6M

]

= [I6M O6M×(2M+2N )]9(s̄)((9(s̄))TP̃
(c)
(r̄(c))9(s̄))−1

× (9(s̄))T
[

I6M
O(2M+2N )×6M

]
= ((9(s̄))TP̃

(c)
(r̄(c))9(s̄))−1 (E.1)

where the third equality follows from the relation

(9(s̄))T
[

I6M
O(2M+2N )×6M

]
= I6M . Substituting (96) into (E.1)

produces

MSE(ˆ̄sf) = ((9(s̄))T(Ā
(c)
(r̄(c)))T(C̄

(c)
(η, r̄(c)))−T(Ē

(c)
A )−1

× (C̄
(c)
(η, r̄(c)))−1Ā

(c)
(r̄(c))9(s̄)+ Ē

−1
B )−1

(E.2)

where the second equality follows from the relation

(9(s̄))Tblkdiag[Ē
−1
B O]9(s̄) = Ē

−1
B (E.3)

On the other hand, inserting r̄(c) = f̄
(c)
(s̄) into (49) yields

Ā
(c)
(f̄

(c)
(s̄))η = Ā

(c)
(f̄

(c)
(s̄))ψ(s̄) = b̄

(c)
(f̄

(c)
(s̄)) (E.4)

Differentiating both sides of (E.4) with respect to s̄ leads to

B̄
(c)
(r̄(c))F̄

(c)
(s̄)

= [ ˙̄A(c)
1 (r̄(c))η ˙̄A(c)

2 (r̄(c))η · · · ˙̄A(c)
2N (M−1)(r̄

(c))η]F̄
(c)
(s̄)

+ Ā
(c)
(r̄(c))9(s̄)

⇒ C̄
(c)
(η, r̄(c))F̄

(c)
(s̄) = Ā

(c)
(r̄(c))9(s̄)⇒ F̄

(c)
(s̄)

= (C̄
(c)
(η, r̄(c)))−1Ā

(c)
(r̄(c))9(s̄) (E.5)

Combining (E.2) and (E.5), we have

MSE(ˆ̄sf) = (Ē
−1
B + (F̄

(c)
(s̄))T(Ē

(c)
A )−1F̄

(c)
(s̄))−1

= CRBo(s̄) (E.6)

which proves the result.

λ(c)(k+1)= [ λ(c)11 (k+1) · · · λ
(c)
1M (k+1) λ(c)21 (k+1) · · · λ

(c)
2M (k+1) λ(c)31 (k+1) · · · λ

(c)
3N (k+1) λ

(c)
41 (k+1) · · · λ

(c)
4N (k+1) ]

T

(C.2)



g(c)1 (η̂f) =
[
−

1
2ρ

T
11η̂f −

1
2ρ

T
12η̂f · · · −

1
2ρ

T
1M η̂f

]T
g(c)2 (η̂f) =

[
−

1
2ρ

T
21η̂f −

1
2ρ

T
22η̂f · · · −

1
2ρ

T
2M η̂f

]T
g(c)3 (η̂f)

=

[
||w1||

2
2 −

1
2ρ

T
31η̂f ||w2||

2
2 −

1
2ρ

T
32η̂f · · · ||wN ||

2
2 −

1
2ρ

T
3N η̂f

]T
g(c)4 (η̂f)

=

[
2wT

1 ẇ1 −
1
2ρ

T
41η̂f 2w

T
2 ẇ2 −

1
2ρ

T
42η̂f · · · 2w

T
N ẇN −

1
2ρ

T
4N η̂f

]T
(C.5)


G(c)
i (η̂f)

=

[
�i1η̂f +

1
2ρi1 �i2η̂f +

1
2ρi2 · · · �iM η̂f +

1
2ρiM

]
(i = 1 , 2)

G(c)
j (η̂f)

=

[
�j1η̂f +

1
2ρj1 �j2η̂f +

1
2ρj2 · · · �jN η̂f +

1
2ρjN

]
(j = 3 , 4)

(C.6)
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F. PROOF OF PROPOSITION 11
The proof is comprised of two parts. First, inserting r̄d =
f(ūd , s̄) into (36) produces

b(f(ūd , s̄), s̄) = A(f(ūd , s̄), s̄)h(ūd , s̄)

= A(f(ūd , s̄), s̄)td (1 ≤ d ≤ D) (F.1)

Differentiating both sides of (F.1) with respect to ūd and s̄
yields

B1(r̄d , s̄)F1(ūd , s̄)

= [Ȧ11(r̄d , s̄)td Ȧ12(r̄d , s̄)td · · · Ȧ1,2(M−1)(r̄d , s̄)td ]

×F1(ūd , s̄)+ A(r̄d , s̄)H1(ūd , s̄) (F.2)

⇒ F1(ūd , s̄)

= (C1(td , r̄d , s̄))−1A(r̄d , s̄)H1(ūd , s̄) (1 ≤ d ≤ D)

B1(r̄d , s̄)F2(ūd , s̄)+ B2(r̄d , s̄)

= [Ȧ11(r̄d , s̄)td Ȧ12(r̄d , s̄)td · · · Ȧ1,2(M−1)(r̄d , s̄)td ]

×F2(ūd , s̄)

+ [Ȧ21(r̄d , s̄)td Ȧ22(r̄d , s̄)td · · · Ȧ2,6M (r̄d , s̄)td ]

+A(r̄d , s̄)H2(ūd , s̄)

⇒ F2(ūd , s̄) = (C1(td , r̄d , s̄))−1

× (A(r̄d , s̄)H2(ūd , s̄)− C2(td , r̄d , s̄)) (1 ≤ d ≤ D)

(F.3)

where



H1(ūd , s̄) =
∂h(ūd , s̄)

∂ūTd
; H2(ūd , s̄) =

∂h(ūd , s̄)

∂ s̄T

C1(td , r̄d , s̄) = B1(r̄d , s̄)
−[Ȧ11(r̄d , s̄)td Ȧ12(r̄d , s̄)td · · · Ȧ1,2(M−1)(r̄d , s̄)td ]
C2(td , r̄d , s̄) = B2(r̄d , s̄)
−[Ȧ21(r̄d , s̄)td Ȧ22(r̄d , s̄)td · · · Ȧ2,6M (r̄d , s̄)td ]

(F.4)

Putting all the D equations in (F.2) together and writing in
matrix form produces (F.5), as shown at the top of the next
page.
where H̄1(ū, s̄)=

∂h̄(ū,s̄)
∂ūT
=blkdiag[H1(u1, s̄) · · · H1(uD, s̄)].

Analogously, the collection of all the D equations in (F.3)
forms (F.6), as shown at the top of the next page.
where H̄2(ū, s̄)=

∂h̄(ū,s̄)
∂ s̄T
= [(H2(u1, s̄))T · · · (H2(uD, s̄))T]T.

Substituting (F.5) and (F.6) into (21) and applying the result

in Proposition 6, we can rewritten CRB
([

ū
s̄

])
as

CRB
([

ū
s̄

])
=

[
Z1 Z2
ZT2 Z3

]−1
(F.7)

where

Z1 = (H̄1(ū, s̄))T(Ā(r̄, s̄))T(C̄1(t̄, r̄, s̄))−TĒ
−1
A

× (C̄1(t̄, r̄, s̄))−1Ā(r̄, s̄)H̄1(ū, s̄)

Z2 = (H̄1(ū, s̄))T(Ā(r̄, s̄))T(C̄1(t̄, r̄, s̄))−TĒ
−1
A

× (C̄1(t̄, r̄, s̄))−1(Ā(r̄, s̄)H̄2(ū, s̄)− C̄2(t̄, r̄, s̄))
Z3 = (Ā(r̄, s̄)H̄2(ū, s̄)− C̄2(t̄, r̄, s̄))T(C̄1(t̄, r̄, s̄))−T

× Ē
−1
A (C̄1(t̄, r̄, s̄))−1(Ā(r̄, s̄)H̄2(ū, s̄)− C̄2(t̄, r̄, s̄))

+MSE(ˆ̄sf)
(F.8)

Since range{H̃1(ū, s̄)} = range{Q̃2}, there exists a non-
singular matrix TB ∈ R(6D+6M )×(6D+6M ) such that Q̃2 =

H̃1(ū, s̄)TB. Putting this into (126) leads to

MSE
([
ˆ̄us
ˆ̄ss

])
=

[
ID ⊗ [I6 O6×2] 1D ⊗4

O6M×8D I6M

]
H̃1(ū, s̄)

× ((H̃1(ū, s̄))TP̃(r̄, s̄)H̃1(ū, s̄))−1(H̃1(ū, s̄))T

×

 ID ⊗ [ I6
O2×6

]
O8D×6M

1TD ⊗4
T I6M

 (F.9)

From (53) and the definition of H̃1(ū, s̄), we get[
ID ⊗ [I6 O6×2] 1D ⊗4

O6M×8D I6M

]
H̃1(ū, s̄)

=

[
I6D 1D ⊗4

O6M×6D I6M

]
(F.10)

Inserting (F.10) back into (F.9) yields

MSE
([
ˆ̄us
ˆ̄ss

])
=

([
I6D O6D×6M

−(1TD ⊗4
T) I6M

]
× (H̃1(ū, s̄))TP̃(r̄, s̄)H̃1(ū, s̄)

[
I6D −(1D ⊗4)

O6M×6D I6M

])−1
(F.11)

On the other hand, it can be proved that

H̃1(ū, s̄)
[

I6D −(1D ⊗4)
O6M×6D I6M

]
=

[
H̄1(ū, s̄) H̄2(ū, s̄)
O6M×6D I6M

]
(F.12)

which together with (F.11) results in

MSE
([
ˆ̄us
ˆ̄ss

])
=


[
(H̄1(ū, s̄))T O6D×6M

(H̄2(ū, s̄))T I6M

]
P̃(r̄, s̄)

×

[
H̄1(ū, s̄) H̄2(ū, s̄)
O6M×6D I6M

]

−1

(F.13)
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F̄1(ū, s̄) = blkdiag[(C1(t1, r̄1, s̄))−1 (C1(t2, r̄2, s̄))−1 · · · (C1(tD, r̄D, s̄))−1]

× blkdiag[A(r̄1, s̄) A(r̄2, s̄) · · · A(r̄D, s̄)]× blkdiag[H1(ū1, s̄) H1(ū2, s̄) · · · H1(ūD, s̄)]

⇒ F̄1(ū, s̄) = (C̄1(t̄, r̄, s̄))−1Ā(r̄, s̄)H̄1(ū, s̄) (F.5)

F̄2(ū, s̄) = blkdiag[(C1(t1, r̄1, s̄))−1 (C1(t2, r̄2, s̄))−1 · · · (C1(tD, r̄D, s̄))−1]

×

blkdiag[A(r̄1, s̄) A(r̄2, s̄) · · · A(r̄D, s̄)]


H2(ū1, s̄)
H2(ū2, s̄)

...

H2(ūD, s̄)

−

C2(t1, r̄1, s̄)
C2(t2, r̄2, s̄)

...

C2(tD, r̄D, s̄)




⇒ F̄2(ū, s̄) = (C̄1(t̄, r̄, s̄))−1(Ā(r̄, s̄)H̄2(ū, s̄)− C̄2(t̄, r̄, s̄)) (F.6)

Inserting (124) into (F.13) gives

MSE
([
ˆ̄us
ˆ̄ss

])
=

[
Z1 Z2
ZT2 Z3

]−1
= CRB

([
ū
s̄

])
(F.14)

Then, the proof is ended.
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