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ABSTRACT This paper studies the fault-tolerant tracking consistency problem of multi-agent systems with
actuator faults and saturation and L2 disturbance. Firstly, a new index is given to describe the anti-disturbance
ability andH∞ performance of themulti-agent system. In addition, a newmethod of designing adaptive fault-
tolerant controller is given for multi-agent systems which can guarantee that the closed-loop systems H∞
performance and disturbance tolerance performance are better than the fixed gains method. For this new
method, by using the adaptive law, the controller parameters are updated on-line to compensate for the fault
effects on multi-agent systems. The results show that the adaptive controller designed can achieve system
consistency and better performance in the case of multi-agent system with actuator failure, saturation and
L2 disturbance. An example illustrating the validity of the results is given.

INDEX TERMS Actuator faults and saturation, multi-agent systems, tracking consistency,H∞ performance,
L2 disturbance.

I. INTRODUCTION
An agent is an entity that exists in a specific environment
and can be perceived and changed according to the envi-
ronment. This concept was first proposed by American pro-
fessor M. Minsky (see [1]). Multi-agent systems (MAS) are
proposed by biologists in the study of group behaviours of
social organisms in nature. For example, a flock of birds in
flight, a school of swimming fish, or a colony of worker
ants. With the increasing demand for engineering applica-
tions in recent years, research scholars have been inspired
by the self-organization phenomenon of nature, and pro-
posed the concept of MAS. And now with the rapid develop-
ment of artificial intelligence, sensors and other technologies,
the research of MAS has received more and more attention,
gaining extensive application in such areas as multi-satellite
formation, drone formation and robot group control ([2], [3]).

The research direction of MAS includes consistency, for-
mation control, optimization, distributed task allocation, esti-
mation and intelligent coordination. The consistency issue
is the most representative research direction ([4], [5]).
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Consistency means that the state of each individual in the
system tends to be the same by designing a reasonable con-
trol strategy. At present, the research on the consistency of
multi-agent systems has been deeply studied. For the multi-
agent system with general linear constant dynamic structure,
Ma and Zhang [6] give the necessary and sufficient condi-
tions for consistency, and clarify the relationship between
consistency and system dynamics and communication topol-
ogy. In [7] Sheng et al. have studied the optimal consistency
control algorithm for the communication time lag in the
system, while Zhu and Jing [8] use their study [7] as a basis
to consider the condition with event trigger. Wen et al. [9]
have studied the consistency of multi-agent systems under
intermittent communication and their L2 gain performance.

The MAS requires each individual to operate normally.
If some members’ actuators fail and saturate, the control
law may not meet the consistency requirements of the multi-
agent system. Therefore, during the process of design of the
consistency strategy, it is necessary to consider the actuator
faults, and design the corresponding fault-tolerant control
law to ensure that the MAS can achieve consistency in the
event of faults. Research on fault-tolerant control of single-
body systems has achieved a lot of results in recent years
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(see [10], [12], [13]), but there is little research on fault-
tolerant control for multi-agent systems. In work done by
Tichy et al. [14], they gave key aspects of fault-tolerant con-
trol in multi-agent systems and established different system
structures. The work of [15] studied the aggregation problem
of nonlinear systems with agent faults under time-varying
communication topology. Compared with single system,
the fault-tolerant control of multi-agent system is affected
by communication topology and neighbours. At present,
the research results on fault-tolerant control of multi-agent
systems are still in the initial stage.

It is well known that actuator faults and saturation phe-
nomena sometimes occur simultaneously in practice. When
actuator saturation and faults occur simultaneously, the con-
sistency of multi-agent systems will be greatly affected. This
paper considers both fault and saturation of actuators of
multi-agent systems under external disturbances by designing
adaptive gain compensation control law to guarantee the
closed-loop H∞ performance of MAS.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. NOTATION AND GRAPH THEORY
1) NOTATION
λmax (L) and λmin (L) represent the maximum eigenvalue
and minimum eigenvalue of matrix L. A > 0 denotes A
is a positive definite matrix. Let diag {A1, · · · ,AN } be the
block-diagonal matrix with matrices A1, · · · ,AN on its prin-
cipal diagonal. A ⊗ B denotes the Kronecker product of
matrices A and B.

2) GRAPH THEORY
The theory of graph theory is used to describe the commu-
nication topology of multi-agent systems. Figure G = {v, ε}
represents the leader and follower multi-agent system com-
munication topology, v = {0, 1, · · · ,N } means all individu-
als, 0 represents the leader, i = 1, · · · ,N stands for follower.
Subgraph G = {vi, εi} represents the communication topol-
ogy of the follower, where vi = {0, 1, · · · ,N } and εi ⊆ vi ×
vi represent the set of followers and the set of communication
links between them respectively. An element (i, j) ∈ ε in the
set ε indicates that the individual i can obtain the information
of the individual j, Ni = {j, (i, j) ∈ ε} is called the neighbour
set of the individual i. The elements in the adjacency matrix
E =

[
aij
]
∈ R(N+1)×(N+1) are defined as follows: if (i, j) ∈ ε

then aij = 1; otherwise, aij = 0. L =
[
lij
]
∈ R(N+1)×(N+1)

is defined as lij =
∑
i 6=j
aij, if (i, j) ∈ ε1 ⇔ (j, i) ∈ ε1, then

graph G is called an undirected graph. In undirected graphs,
if there are paths between any two nodes, the undirected graph
is connected.
Assumption 1: The leader’s information can be obtained

by at least one follower, and the leader cannot obtain the
follower’s information, that is, the graph G contains a span-
ning tree, and the leader is the root node. On the other
hand, it is assumed that G is an undirected connection
figure.

B. SYSTEM DESCRIPTION
The dynamics of the followers are governed by

ẋi (t) = Axi (t)+ B1ωi (t)+ B2σ (ui (t))

zi (t) = Cxi (t)+ Dσ (ui) (1)

For each leader, assume that its control input is 0,
the dynamic model of the leader are governed by

ẋ0 (t) = Ax0 (t)+ B1ω0 (t)

z0 (t) = Cx0 (t) (2)

The xi (t) ∈ Rn ,Zi (t) ∈ Rs, ωi (t) ∈ Rd and σ (ui) ∈
Rm represents the follower’s state vector, regulated output,
exogenous disturbance in L2 [0,∞], state vector and control
input with saturation, x0 ∈ Rn,Z0 (t) ∈ Rs, ω0 (t) ∈ Rd rep-
resent the leader’s state vector, regulated output and exoge-
nous disturbance in L2 [0,∞]. A,B1,B2,C,D are matrices
with appropriate dimensions.

In order to study the consistency of multi-agent systems,
the error between the follower and the leader is defined as
ξi (t) = xi (t) − x0 (t), reference output error is ζi (t) =
zi (t)− z0 (t), i = 1, 2, · · · ,N and ξ0 = ζ0 = 0. The goal of
leader-following multi-agent system consistency is to design
the control law for each follower so that the follower state
tends to the leader state, i.e. lim

t→∞
‖xi (t)− xo (t)‖ = 0,∀ i =

1, · · · ,N . then

ξ̇i(t) = Aξi(t)+ B2σ (ui(t))+ B1 (ωi(t)− ω0(t))

ζi(t) = Cξi(t)+ Dσ (ui(t)) (3)

Assumption 2: For a linear system, the system’s immunity
to interference is described by the L2 gain. However, when
there is input saturation in the system, the external distur-
bance is too large and the closed-loop system state and output
divergence, so that the L2 gain will become meaningless.
Therefore, we assume that the energy of the external distur-
bance of the system is bounded, i.e.

=δ :=

{
ω : R+→ Rd :

∫
∞

0
ωT (t) ω (t) dt ≤ δ

}
(4)

C. FAULT MODEL
We use the actuator faults model of [13], [16] to cause errors
in fault-tolerant control

uFkq (t) =
(
1− pqk

)
σ (uk (t)) (5)

where k ∈ I [1,m] , q ∈ I [1,L], L is the number of total fault
modes. pqk is an unknown constant which satisfies 0 ≤ pqk ≤
pqk ≤ p̄

q
k ≤ 1.

The fault model (5) implies that: (i)pqk = p̄qk = 0 means
that there is no fault; (ii) 0 ≤ pqk ≤ p̄qk ≤ 1 signifies the loss-
of-effectiveness fault; (iii)pqk = p̄qk = 1 represents the outage
fault.

Denote

uFq (t) =
(
1− pq

)
σ (u (t)) (6)
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where q ∈ I [1,L], uFq (t) =
[
uF1q (t) , u

F
2q (t) , · · · u

F
mq (t)

]T
,

u (t) = [u1 (t) , u2 (t) , · · · , um (t)], pq =

diag
[
pq1, p

q
2, · · · , p

q
m
]
. For simplicity, the fault model is pre-

sented as

uF (t) = (I − p) σ (u (t)), p ∈
{
p1 · · · pL

}
(7)

where p = diag [p1, p2, · · · , pm]

D. CONTROL OBJECTIVE
The purpose of this paper is to design a distributed adaptive
fault-tolerant controller with actuator faults and saturation
and L2 disturbance for multi-agent systems to achieve the
following performance indicators.

(I) For ω ∈ = δ , any closed-loop system trajectory starting
from zero will remain in the region ε∗ (L1 ⊗ P, δ∗)
(II) In normal mode, i.e., p = 0, for ξ (0) = 0∫
∞

0
ζ T (t) ζ (t) dt ≤ r2n

∫
∞

0
ωT (t) ω (t) dt

+ r2n

N∑
i=1

m∑
k=1

p̃2ik (0)
τik

(8)

In fault mode, i.e., p ∈
{
p1 · · · pL

}
, for ξ (0) = 0∫

∞

0
ζ T (t) ζ (t) dt ≤ r2f

∫
∞

0
ωT (t) ω (t) dt

+ r2f

N∑
i=1

m∑
k=1

p̃2ik (0)
τik

(9)

where p̃ik (t) = p̂ik (t)− pik

E. DEFINITION AND LEMMAS
In order to solve the system fault and saturation problems,
the following definitions and lemmas are proposed.
Definition 1: We use Cclk to represent the kth row in the

matrix Ccl ∈ Rm×n, define

∂ (Ccl) =
{
x ∈ Rn : |Cclkξ | ≤ 1, k ∈ I [1,L]

}
where ∂(Ccl) represents the portion that is not saturated in the
state space.
Definition 2: Let P ∈ Rn×n be a positive definition matrix.

Denote

ε (P, δ) =
{
ξ ∈ Rn : ξTPξ ≤ δ

}
,

ε∗ (P, δ) =

{
ξ ∈ Rn : ξTPξ +

N∑
i=1

m∑
k=1

p̃2ik (t)

τik
≤ δ

}
Assume τik > 0 is given, we denote δ∗ = δ +

max
{
N∑
i=1

m∑
k=1

p̃2ik (0)
τik

}
Definition 3: Consider the following system

ξ̇ (t) = Aa
(
p̂ (t) , p

)
ξ (t)+ Ba

(
p̂ (t) , p

)
ω (t)

ζ (t) = Ca
(
p̂ (t) , p

)
ξ (t) , ξ (0) = 0 (10)

where p̂ (t) is the time-varying parameter vector to be
selected. Suppose system (8) has an adaptive H∞ perfor-
mance index no greater than r , where r > 0 is a given
constant, then for any ε > 0, the following inequality holds∫

∞

0
ζ T (t) ζ (t) dt ≤ r2

∫
∞

0
ωT (t) ω (t) dt + ε (11)

Definition 4: The nonlinear process of actuator saturation
is given as follows

σ (uk) =

{
uk , |uk | ≤ umaxk

sign (uk) ukmax , |uk | > umaxk
(12)

where k ∈ I [1,m]. Here, for the convenience of the following
description, we will use σ to describe both the scalar form
and the saturation function of the vector form and assume
ukmax = 1
Lemma 1: By assumption 1, its Laplacian matrix can be

written as Frobenius standard form as follows

L =
[
0 01×N

L2 L1

]
where L2 ∈ RN×1, L1 ∈ RN×N , the communication topology
between followers is undirected, and L1 > 0 is symmetric.
Lemma 2: Let u, v ∈ Rm with u = [u1, u2, · · · , um]T and

v = [v1, v2, · · · , vm]T . Suppose that |vk | ≤ 1 for all k ∈
I [1,m], then

σ (u) ∈ co
{
Ddu+ D

−

d v : d ∈ I
[
0,2m − 1

]}
(13)

where co denotes the convex hull.

σ (u) =
2m−1∑
d=0

ηd
(
Ddu+ D

−

d v
)

where
2m−1∑
d=0

ηd = 1, 0 ≤ ηd ≤ 1, and Dd is a set of m × m

diagonal matrices, and only 1 and 0 are taken on the diagonal
of the elements in the set. There are 2m elements in the Dd ,
such as m = 2,

D =
{[

0 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

]}
denote D−d = I − Dd , it is easy to see that D−d ∈ Dd .
Lemma 3 [17]: Let ξ ∈ ∂

(
H
(
p̂ (t)

))
, for each k ∈ I [1,m]

λk
(
ξ (t) , p̂ (t)

)
=


1, if K

(
p̂ (t)

)
kξ (t) = H

(
p̂ (t)

)
kξ (t)

σ
(
K
(
p̂(t)kξ (t)

))
− H

(
p̂ (t)

)
kξ (t)(

K
(
p̂ (t)

))
k − H

(
p̂ (t))p

)
ξ (t)

,

otherwise

and allow k = s12m−1 + s22m−2 + · · · + sm to satisfy the
condition of sk ∈ {0, 1}, define

ηk
(
ξ (t) , p̂ (t)

)
=

m∏
k=1

sk
[(
1− λk

(
ξ (t) , p̂ (t)

))
+ (1− sk) λk

(
ξ (t) , p̂ (t)

)]
Then ηd ’s are Lipschitz in x and p̂.
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Lemma 4 [18]: Suppose there is a determinant as follows

Z , Z =
[
Z11 Z12
ZT12 Z22

]
, and Z11,Z22 ∈ RNn×Nn, so we can get

the formula:

Z22kk ≤ 0, k ∈ I [1,N ]

Z11 + Z121(δ) + (Z121(δ))T + 1(δ)Z221(δ) ≥ 0 δ ∈

1δ;

[
Q E
ET F

]
+ V TV + Y TZY < 0, p ∈

{
p1 · · · pL

}
, pq ∈

Npq then inequality

M (δ) =

N∑
k=1

δkEk +

(
N∑
k=1

δkEk

)T
+

N∑
k=1

N∑
p=1

δkδpFkp

+

(
V0 +

N∑
k=1

δkVk

)T (
V0 +

N∑
k=1

δkVk

)
+ Q < 0

holds for all δk ∈
[
δ
f
ik δ̄

f
ik

]
, where Q = QT ∈ Rn×n, and

Fpk = FTpk ∈ R
n×n,Ek ∈ Rn×n.

1(δ) = diag [δ1In×n · · · δN In×n] ,E = [E1,E2 · · ·EN ]

F =

 F11 · · · F1N
· · · · · · · · ·

FN1 · · · FNN

, V =


In×n
· · ·

In×n
0

0 INn×Nn


Remark 1: By definition 3, for

∫
∞

0 ωT (t) ω (t) dt ≥ β,
where β > 0 and ε = β2, we have∫

∞

0
ζ T (t) ζ (t) dt ≤

(
r2 + β

) ∫ ∞
0

ωT (t) ω (t) dt (14)

for
∫
∞

0 ωT (t) ω (t) dt ≤ β, it follows∫
∞

0
ζ T (t) ζ (t) dt ≤ r2θ + θ2 (15)

Remark 2: To satisfy the conditions of the above problem,
we believe that each p ∈

{
p1 · · · pL

}
is stable to (A,B(I −p)).

III. MAIN RESULTS
The multi-agent system with fault (7) and saturation (12) is
described by

ẋi (t) = Axi (t)+ B1ωi (t)+ (Im − pi)B2σ (ui(t))

zi (t) = Cx0 (t)+ D (Im − pi) σ (ui(t)) (16)

The controller adopts the following structure

ui (t) = K
(
p̂i (t)

) N∑
j=1

aij
(
xi (t)− xj (t)

)
(17)

where K
(
p̂i (t)

)
=

(
K0 + Ka

(
p̂i (t)

)
+ Kb

(
p̂i (t)

))
, p̂i is

the estimation of pi, and Ka
(
p̂i
)
=

m∑
k=1

Kak p̂ik ,Kb
(
p̂i
)
=

m∑
k=1

Kbk p̂ik .

By lemma 2, the saturated feedback controller can be
expressed as

σ (ui (t)) =
2m−1∑
d=0

ηid
[
DidK

(
p̂i (t)

)
+D−idH

(
p̂i (t)

)] N∑
j=1

aij
(
xi (t)− xj (t)

)
(18)

for some scalars 0 ≤ ηid ≤ 1, d ∈ I [0,2m−1], such

that
2m−1∑
d=0

ηid = 1 and the following equality holds

(I − p) σ (u (t))

=

2m−1∑
d=0

ηid [(Im − pi)DidK0 + DidKa (pi)− piDidKa
(
p̂i
)

+
(
Im − p̂i (t)

)
DidKb

(
p̂i (t)

)
+ DidKa (p̃i (t))

+ p̃iDidKb
(
p̂i (t)

)
+ (Im − pi)D

−

idH0 + D
−

idHa (pi)

−D−idHa
(
p̂i
)
+
(
Im − p̂i (t)

)
D−idHb

(
p̂i (t)

)
+D−idHa (p̃i (t))+p̃iD

−

idHb
(
p̂i (t)

)
]
N∑
j=1

aij
(
xi (t)−xj (t)

)
where p̃i (t) = p̂i (p) − pi, Bk =

[
0 · · · bk · · · 0

]
with

B =
[
b1 · · · bm

]
, and B =

m∑
k=1

Bk . Denote1p̂ ={
p̂ =

(
p̂1 · · · p̂m

)
: p̂k ∈

{
min
q

{
pqk
}
, max

q

{
p̄qk
}}}

By lemma 3, the equality (16) can be expressed as follows:

ẋi (t) = Axi (t)+ B2
2m−1∑
d=0

ηid [(Im − pi)Did (K0

+Ka
(
p̂i (t)

)
+ Kb

(
p̂i (t)

)
)

+ (Im − pi)Did− (H0+ Ha
(
p̂i (t)

)
+Hb

(
p̂i (t)

)] N∑
j=1

aij (xi (t) −xj (t)
)

+B1ωi (t) (19)

then

ξ̇i = Aξi + B2 (Im − pi)
2m−1∑
d=0

ηid
[
DidK

(
p̂i
)

+ D−idH
(
p̂i
)] N∑

j=1

lijξj + B1 (ωi − ω0)

ζi = Cξi + D (Im − pi)
2m−1∑
d=0

ηid
[
DidK

(
p̂i
)

+ D−idH
(
p̂i
)] N∑

j=1

lijξj (20)

define ξ =
[
ξT1 , ξ

T
2 , . . . , ξ

T
N

]
, ζ =

[
ζ T1 , ζ

T
2 , . . . , ζ

T
N

]
and

ω̃ = diag [ω1 − ω0, ω2 − ω0, · · · , ωN − ω0], then

ξ̇ = (IN ⊗ A) ξ +�(L1 ⊗ IN ) ξ + (IN ⊗ B1) ω̃

ζ = (IN ⊗ C) ξ +9 (L1 ⊗ IN ) ξ (21)
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where

�

= diag

[
B2 (Im − p1)

2m−1∑
d=0

η1d
[
D1dK

(
p̂1
)
+ D−1dH

(
p̂1
)]
,

. . . ,B2 (Im − pN )
2m−1∑
d=0

ηNk
[
DNkK

(
p̂N
)
+D−NkH

(
p̂N
)]]

9

= diag

[
D (Im − p1)

2m−1∑
d=0

η1d
[
D1dK

(
p̂1
)
+ D−1dH

(
p̂1
)]
,

. . . ,D (Im − pN )
2m−1∑
d=0

ηNk
[
DNkK

(
p̂N
)
+ D−NkH

(
p̂N
)]]

Obviously, if equality (21) is asymptotically stable, then
the fault-tolerant consistency problem of the original multi-
agent system can be solved.
Theorem 1: The control objectives (I) and (II) can be

achieved, if there exist X > 0, O0, Oak , Obk , Y0, Yak , Ybk ,
and matrices Zd , d ∈ I [0,2m−1] with

Z =
[
Zd 11 Zd 12
ZdT12 Zd 22

]
and Zd 11,Zd 22 ∈ Rmn×mn, let all Did ∈ D sat-
isfy the following inequalities, and ε (L1 ⊗ P, δ) ⊂

∂
(
H
(
p̂i
))
, i.e.,

∣∣H (p̂i)kξ
∣∣ ≤ 1, for all ξ ∈ ε∗ (L1 ⊗ P, δ),

k ∈ I [1,m] and d ∈ I [0, 2m − 1].

Zd 22kk ≤ 0

Zd 11 + Zd 121
(
p̂i
)
+ (Zd 121

(
p̂i
)
)T

+1
(
p̂i
)
Zd 221

(
p̂i
)
≥ 0[

N0d N1d
N1d

T N2d

]
+

1
r2n
VdTVd + Y TZdY < 0, ρ = 0[

N0d N1d
N1d

T N2d

]
+

1

r2f
VdTVd + Y TZdY < 0 (22)

where p ∈
{
p1, p2, · · · , pL

}
, pq ∈ Npq , p̂ ∈ 1p̂, and

N0d =
1

λmax (L1)
AX + B2 (I−pi)DidY0+

[
1

λmax (L1)
AX
]T

+[B2 (I − pi)DidY0]T + B2
m∑
k=1

pikDidYak

+ (B2
m∑
k=1

pikDidYak )T + B2 (I − pi)D
−

idO0

+ [B2 (I − pi)D
−

idO0]T + B2
m∑
k=1

pikD
−

idOak

+

[
B2

m∑
k=1

pikD
−

idOak

]T
+

1
λmax (L1)

B1BT1

Y =


In×n
· · ·

In×n

0

0 Imn×mn


N1d = [−B2piDidYa1 + B2DdYb1 − B2piD

−

idOa1

+B2D
−

d Ob1, · · · ,−B2piDidYam + B2DidYbm

−B2piD
−

idOam + B2D
−

idObm
]

Vd =
[

1
λmax (L1)

CX

+D (I − pi)DidY0 + D (I − pi)D
−

idO0

D (I − pi) [Did (Yak + Ybk) + D
−

id (Oak + Obk)
]]

Nkp = −Bk2DidYbp −
[
Bk2DidYbp

]T
−Bk2D

−

idObp −
[
Bk2D

−

idObp
]T

and determine ρ̂ik (t) according to the adaptive law

˙̂pik = Pr oj[min
q
{pqik },max

q
{pqik ]
{Tik}

=


if p̂ik = min

q

{
pqik
}
and Tik ≤ 0

0, or p̂ik = max
q

{
pqik
}
and Tik ≥ 0

Tik , otherwise

(23)

where

Tik =−τik

 N∑
j=1

aij
(
xi − xj

)T [PB2 (2m−1∑
d=0

ηidDid

)
Kak

+PBk2

(
2m−1∑
d=0

ηidDid

)
Kb
(
p̂i
)
+PBk2

(
2m−1∑
d=0

ηidDid

)
Hak

+PBk2

(
2m−1∑
d=0

ηidDid

)
Hb
(
p̂i
)
]

 N∑
j=1

aij
(
xi − xj

)
P = X−1, Kak = YakX−1, Kbk = YbkX−1, Haj = OakX−1,
Hbj = ObkX−1, τik > 0 (k ∈ I [1,m]), and δ > 0 belong to
a gain of the system, and it is adaptively selected according
to the actual situation. Then the control gain is given by

K
(
p̂i
)
= Y0X−1 +

m∑
k=1

p̂ikYakX−1 +
m∑
k=1

p̂ikYbkX−1 (24)

Proof: see appendix
Corollary 1: When rn > rf > 0, the controller gain is

given by (23) and (24), condition (22) is established, then
the adaptive H∞ performance index is less than rn and rf in
normal and fault modes, respectively.
Algorithm 1: Let rn and rf to describe the adaptive H∞

performance of the closed-loop system (21) in normal mode
and fault mode, respectively. The perturbation tolerance level
of the closed loop system is described by δ. Then, we
can minimize the indicators rn, rf and maximize the index
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FIGURE 1. Topology of multi-agent systems.

by solving the following optimization process.

min θ = αθn + βθf + γ θδ
s.t. (a)(20)

(b) ε∗ (L1 ⊗ P, δ) ⊂ ∂
(
H
(
p̂i
))

(25)

where θδ = 1
δ∗
=

1

δ+max
{∑N

i=1
∑m

k=1
p̃2ik
τik

} , θn = r2n , θf = r2f ,

and α, β, γ are weighting coefficients.
However, by definition 2, we have that (b) cannot be shown

as LMIs directly. Obviously ε∗ (L1 ⊗ P, δ) ⊂ ε (L1 ⊗ P, δ)
which implies that (b) holds if (b1) holds, where

(bl) ε (L1 ⊗ P, δ) ⊂ ∂
(
H
(
p̂i
))

(26)

condition (b1) is equivalent to

δh
(
p̂
)
k

(
L1 ⊗ P−1

)
h
(
p̂i
)T
k ≤ 1

⇔


1 h

(
p̂i
)
k

(
L1 ⊗ P−1

δ

)−1
∗

(
L1 ⊗ P−1

δ

)−1
 ≥ 0 (27)

for all k ∈ I [1,m], where h
(
p̂i
)
k be the jth row of H

(
p̂i
)
.

We have that (27) is equivalent to the following inequalities. −1
λmax (L1)

−Oos

∗ −X

+ N∑
i=1

m∑
k=1

p̂ik

[
0 −Oaks−Obks
∗ 0

]
≤0

(28)

IV. EXAMPLES
Consider the system of form (1) and (2) with

A =
[
−3 4
−4 −3

]
, B1 =

[
1 0
1 0

]
, B2 =

[
0 3
3 0

]
D =

[
4 0 0
0 0 0

]T
, D =

[
0 0.6 0
0 0 1

]T
The topology of the multi-agent system is shown in Figure 1

FIGURE 2. State difference curve of multi-agent system under
disturbance.

Fault Mode 1: The first actuator is outage and the second
actuator may be normal or loss of effectiveness, described by
p21 = 1, 0 ≤ p22 ≤ a, where a = 0.6 denotes the maximal loss
of effectiveness for the second actuator. Fault mode 2: Both
of the two actuators are normal.

Let α = 10, β = 1,γ = 10, the optimization index
obtained by the fixed gain controller design method is θn =
0.6626, θf = 1.6657, θδ = 0.2894, θ = 11.1854. By solving
the optimization process (25), the optimization index can be
given as θn = 0.5449, θf = 1.2611, θδ = 0.2893, θ =
9.6031, in order to better reflect the superiority of the adaptive
design method, we choose α = 110, β = 0.3, γ = 0.6,
then we get θn = 0.1735, θf = 1.4733, θδ = 3.6237. This
phenomenon indicates that the adaptive controller design
method presented in this paper has higher superiority than the
fixed gain H∞ controller design method.

In order to demonstrate the effectiveness of the proposed
method, a system simulation is given. First, we consider the
simulation of multi-agent system under actuator faults and
saturation and disturbance. Agents 1 and 3 use fault 1, agent
2 use fault 2, The disturbance is given as

ωi (t) =

{
sin (2t) , 4 ≤ t ≤ 6
0, otherwise

Considering that the system is in a steady state and then
adding a disturbance signal, the state difference curve of the
system is shown in Figure 2. The result shows that the system
can still return to a stable state when it is disturbed. In order
to show that the designed adaptive controller has better con-
trol effect than the fixed gain controller, the follower 1 is
compared under the control of the adaptive controller and the
fixed gain controller respectively. The disturbance is given as

ω1 (t) =

{
1, 4 ≤ t ≤ 6.5
0, otherwise

Figure 3 shows the state controller of follower 1 under adap-
tive controller and fixed gain controller. The results show that
the adaptive controller has better control effect.
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FIGURE 3. State curve of follower 1 under disturbance (The solid line is
the adaptive controller and the dotted line is the fixed gain controller.).

V. CONCLUSION
This paper considers the problem of multi-agent system fault-
tolerant control with both actuator faults and saturation and
external disturbance. The fault-tolerant consistency of multi-
agent systems is achieved by designing a control law with
adaptive gain. By analyzing the closed-loop asymptotic sta-
bility of the tracking error system, the conditions for the
consistency of the original multi-agent system are given.
The results show that under the condition of actuator faults
and saturation and external disturbance, the consistency of
multi-agent system can be realized by reasonable selection
of control parameters.

APPENDIX
Proof of Theorem 1: Choose the following Lyapunov

function

V = ξT (L1 ⊗ P) ξ +
N∑
i=1

m∑
k=1

p̃2ik
τik

then from the derivative of V along the closed-loop system,
it follows

V̇ +
1

r2f
ζ T ζ − ω̃T ω̃

≤ M + ξT
(
L1 ⊗ PB1BT1 P

)
ξ +

1

r2f
NTN

−

(
ω̃T − ξT (L1 ⊗ PB1)

) (
ω̃ −

(
BT1 P⊗ L1

)
ξ
)

where

M = ξT
(
L1 ⊗

(
PA+ ATP

))
ξ +

 N∑
j=1

l1jξj

T (M1

+MT
1

) N∑
j=2

l1jξj

+ · · · +
 N∑
j=1

lNjξj

T (M1

+MT
1

) N∑
j=1

lNjξj

+ 2

 N∑
j=1

lijξj

T [PB2 2m−1∑
d=0

ηid

[
×DidKa (p̃i)+ p̃iDidKb

(
p̂i
)
+ D−idHa (p̃i)

+ p̃iD
−

idHb
(
p̂i
)] N∑

j=1

lijξj

+ 2
N∑
i=1

m∑
k=1

p̃ik ˙̃pik
τik

M1 = PB2
2m−1∑
d=0

ηid [(Im − pi)DidK0 + DidKa (pi)

− piDidKa
(
p̂i
)
+
(
Im − p̂i

)
DidKb

(
p̂i
)

+ (Im − pi)D
−

idH0 + D
−

idHa (pi)− piD
−

idHa
(
p̂i
)

+
(
Im − p̂i

)
D−idHb

(
p̂i
)]

N =
2m−1∑
d=0

ηid [IN ⊗ C + (L1 ⊗ D) (Im − ρi)[
DidKb

(
p̂i
)
+ D−idHa

(
p̂i
)]]
ξ

let B =
[
b1, · · · bm

]
, Bk =

[
0, · · · bk · · · , 0

]
, we have

V̇+
1

r2f
ζ T ζ−ω̃T ω̃≤M+ξT

(
L1 ⊗ PB1BT1 P

)
ξ +

1

r2f
NTN

Let P = X−1, K0 = Y0X−1, Kak = YakX−1, Kbk = YbkX ,
H0 = O0X−1Hak = OakX−1, Hbk = ObkX−1, choose the
adaptive laws as (23), we can know N∑

j=1

lijξj

T [PB2 2m−1∑
d=0

ηid

[
DidKa (p̃i)+ p̃iDidKb

(
p̂i
)

+D−idHa (p̃i)+ p̃iD
−

idHb
(
p̂i
)]] N∑

j=1

lijξj


+

N∑
i=1

m∑
k=1

p̃ik ˙̃pik
τik
≤ 0

then

M + ξT
(
L1 ⊗ PB1BT1 P

)
ξ +

1

r2f
NTN

≤ ξT
(
L1 ⊗

(
PA+ ATP+ PB1BT1 P

))
ξ

+

 N∑
j=1

l1jξj

T (01 + 0T1 )
 N∑
j=1

l1jξj

+ . . .
+

 N∑
j=1

lNjξj

T (0N + 0TN)
 N∑
j=1

lNjξj

+ 1

r2f
NTN

where

0i = PB2
2m−1∑
d=0

[(Im − pi)DidK0 + DidKa (pi)

− piDidKa
(
p̂i
)
+
(
Im − p̂i

)
DidKb

(
p̂i
)

+ (Im − pi)D
−

idH0 + D
−

idHa (pi)− piD
−

idHa
(
p̂i
)

562 VOLUME 8, 2020



W. Guan et al.: Fault-Tolerant Control of MAS With Saturation and L2-Disturbances

+
(
Im − p̂i

)
D−idHb

(
p̂i
)]

then

V̇ ≤ ξT (L1 ⊗ In)

(
2m−1∑
d=0

ηid8+
1

r2f
W TW

)
(L1 ⊗ In) ξ

where 8 = diag
(
φ1,···φn

)
φi =

1
λmax (L1)

(
PA+ ATP+ PB1BT1 P

)
+ 0i + 0

T
i

If for all p ∈
{
p1, p1, · · · , pL

}
, pq ∈ Npq

2m−1∑
d=0

ηid
[
K0d + K1q

(
p̂ik
)
+ K2q

(
p̂ik
)]
+

1

r2f
W TW < 0

then the adaptive rate can be chosen (23) to make V̇ < 0 is
established, where K0d = N0d , and

K1q
(
p̂ik
)
= −B2piDid

m∑
k=1

p̂ikYak + B2Dd
m∑
k=1

p̂ikYbk

+

(
−B2piDid

m∑
k=1

p̂ikYak + B2Dd
m∑
k=1

p̂ikYbk

)T

−B2piD
−

id

m∑
k=1

p̂ikOak + B2D
−

d

m∑
k=1

p̂ikObk

+

(
−B2piD

−

id

m∑
k=1

p̂ikOak+B2D
−

d

m∑
k=1

p̂ikObk

)T

K2q
(
p̂ik
)
=

m∑
k=1

m∑
p=1

p̂ik p̂ip

(
−BkDidYbp −

[
BkDidYbp

]T
−BkD−idObp −

[
BkD−idObp

]T)
W =

2m−1∑
d=0

ηd

[
1

λmax (L1)
CX + D (I − pi)DidY0

+D (I − pi)D
−

idO0 +

m∑
k=1

p̂ikD (I − pi)

[
Did (Yak + Ybk )+ D

−

id (Oak + Obk)
]]

By lemma 3 and (22), it follows that V̇ < 0, for any ξi ∈
∂
(
H
(
p̂i
))
, p ∈

{
p1, p1, · · · , pL

}
and p̂i satisfying (23).

Proof Control Objective (I): V̇ ≤ M + ξT (L1 ⊗ PB1ω̃)+
(L1 ⊗ ω̃TBT1 P)ξ , noting that ξT (L1 ⊗ PB1ω̃) + (L1 ⊗
ω̃TBT1 P)ξ ≤ ξ

T
(
L1 ⊗ PB1BT1 P

)
ξ + ω̃T ω̃, we have

V̇ ≤ M + ξT
(
L1 ⊗ PB1BT1 P

)
ξ + ω̃T ω̃

By the proof of control objective (II), we have V̇ ≤ ω̃T ω̃,
which implies that

V (ξ (t)) ≤
∫
∞

0
ω̃T (t) ω̃ (t) dt +

N∑
i=1

m∑
k=1

p̃2ik (0)
τik

then, the conclusion can be drawn that trajectories of the
closed-loop system that start from the origin will remain
inside ε∗ (L1 ⊗ P, δ∗).
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