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ABSTRACT Convolutional operations can extract effective features and have been widely used in the
field of deep learning. For the deficiency of convolution mainly dealing with numerical data, we propose a
novel convolutional operator on granules with a set form, further we build a classifier on it. Firstly, feature
granules are constructed on each single feature of a classification system by introducing neighborhood rough
sets. Synchronously, decision granules are generated on the labels of samples. Secondly, feature granule
vectors and weighted granule vectors are constructed from these granules, and a convolutional operation is
proposed on feature granule vectors and weighted granule vectors, then a predicted granule is produced as
a result of the convolutional operation. The predicted granule is compared with the decision granule, and
their residual error is back propagated to the weighted granule vector for tuning its value. After multiple
iterations of the granular convolutional operations and back propagation corrections, the weight of the
granular vector is convergent and optimized. Furthermore, a granular classifier is designed based on the
convolutional operation. The constringency of the granular convolution and the classification performance
of the granular classifier are tested on some UCI datasets. Theoretical analysis and experimental results
show that the granular convolution has a characteristic of fast convergence, and the granular convolutional
classifier has a better classification performance.

INDEX TERMS Granular computing, neighborhood rough sets, convolutional network, granular classifier,
rough sets.

I. INTRODUCTION
Convolution is an important operation in analytical
mathematics. Let f (x) and g(x) be two integrable functions on
R and their integral is:

∫
∞

−∞
f (u)g(x − u) du. It can be shown

that for any x ∈ (−∞,∞), its integral exists. Thus, with
different values of x, the integral defines a new function h(x),
called the convolution of functions f and g, denoted as
h(x) = (f ∗ g)(x). Convolution is widely used in mathemat-
ics [1], natural science [2], and practical engineering [3], [4].
The integer and polynomial multiplication in algebra and
weightedmoving average in statistics are convolutions. At the
same time, convolution is also used in the fields of sound
signal processing [5], digital communication [6] and bioinfor-
matics [7], especially in the areas of image processing [8], [9],
image segmentation [10], image denoising [11] and target
recognition [12], [13].
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Convolutional operation is a common calculation method
that has excellent performances in various fields. It has
an advantage that the data reuse rate is high, which can
greatly reduce the research cost. In the deep learning field,
a convolutional network can accurately extract effective fea-
tures. It achieves a great success in machine learning fields,
such as face recognition [14], [15], object detection [16],
video classification [17], natural language processing [18],
etc [3], [19], [20]. Although, the theoretical founda-
tion of deep learning has been investigated by some
authors [21], [22], which includes convolutional operations,
but the calculation of convolutional operations is highly
complex. The convolutional network has huge parameters,
resulting to a slow convergence and even a local solution.
At the same time, convolution is mainly applicable to numer-
ical data, but weakly handles sets with category data.

Rough set theory, proposed by Pawlak in 1982 [23], [24],
is a mathematical tool for tackling set operations. Granular
computing is originated from Zedeh [25] and Zedeh and
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Lin [26], [27], which turns sets into granules. Yao pro-
posed neighborhood systems and neighborhood granular
computing [28], [29]. Pedrycz proposed a hyper box fuzzy
granular classifier [30], [31]. Fujita discussed a systemic
integration of granular computing from the perspective of
cognition [32]. Liang and Qian analyzed uncertainty mea-
surement in granular computing and its application in big
data [33], [34]. Hu proposed a neighborhood granulation
method for feature selection and classification [35]–[37].
We discuss granular structures, distances and measures [38],
further proposed some operations on granules [39], [40].
Actually, these granules are sets. It is hard for convolu-
tional operations running on these sets since they are dis-
crete and non derivable. As for non-set data, there are many
classification methods and systems including KNN [41],
SVM [42], CNN [43], classifier ensemble [44], regression
model [45], boosting and bagging systems [46], [47]. Since
these classifiers focus on real-number data that are continue
and derivable, the convolutional operation can be applied on
them. In order to extend a function of convolution to set data,
we construct some granule vectors and present a granular
convolutional classifier in this paper. Firstly, a neighborhood
rough set model is introduced for generating feature granules
on each single feature in a classification system. As for the
labels of samples, they are granulated into decision granules.
Based on these granules, we define feature granule vectors
and weighted granule vectors, and a convolutional operation
is proposed on these vectors, then a new feature granule is
formed as a result of the convolutional operation. Feature
granules are compared with decision granules, and their
residual errors are back propagated to the weighted granule
vectors for tuning their values. Through the iterating process
of granular convolutional operations and back propagation,
the weight of granular vector is convergent and optimized.
Furthermore, we design a granular classifier based on the con-
volutional operation. The constringency of granular convolu-
tion and the classification performance of a granular classifier
are tested on some UCI datasets. Theoretical analysis and
experimental results show that the granular convolution has
a characteristic of fast convergence, and the granular convo-
lutional classifier has a better classification performance.

The paper is structured as follows. First, we introduce the
neighborhood granulation in Section II and present some
granule vectors in Section III. Then, we propose a classifica-
tion model based on granule vectors and granular convolution
in Section IV. In Section V, we design an algorithm of granu-
lar convolutional classifier. In Section VI, we present exper-
imental results. Conclusions and future works are covered
in Section VII.

II. NEIGHBORHOOD GRANULATION
The rough set theory [23], proposed by Polish mathematician
Pawlak, is one of the most widely used models in classifi-
cation systems. In rough set theory, an equivalence class is
considered as an elementary granule. For the numerical data
that exists widely in the real world, the discretization process

is needed. However, the discretization process is easy to cause
the loss of classifying information. Therefore, Yao and Hu
proposed a neighborhood rough set model [35]–[37] that is
applied to the field of classification, while its neighborhood
granulation is carried out from the whole features. In this
paper, neighborhood granulation is performed on single fea-
tures based on the Manhattan distance.

Suppose CS = (S,F,L) is a classification system,
where S = {x1, x2, . . . , xn} is a set of samples or objects;
F = {f1, f2, . . . , fm} is a set of conditional features or
attributes; and L = {l} represents a decision attribute or label.
The values of samples on feature set F are numerical, while
their values on label set L are discrete or categories.

In a classification system, for any samples x, y ∈ S and
any single feature a ∈ F , the Manhattan distance between
the samples x, y on the feature a is:

1a(x, y) = |v(x, a)− v(y, a)|, (1)

where v(x, a) represents the value of sample x on feature a.
In a classification system, let δ be a neighborhood granu-

lation parameter, for any sample x ∈ S and a single feature
a ∈ F , the δ−neighborhood granule of x on a is:

gδa(x) = {y|x, y ∈ S,1a(x, y) ≤ δ}. (2)

For the decision label L, since its values are discrete, a sam-
ple can be granulated into a decision equivalent granule that
is expressed as g0L(x) = {y|x, y ∈ S,1L(x, y) = 0}, which is
the case where the neighborhood granulation parameter δ is
equal to 0. When the granule is an empty set, it is called an
empty granule that is marked as null; when the granule is a set
of all samples, it is called a full granule that is noted as full.

According to the description of neighborhood granule,
the δ-neighborhood granule of x on a is gδa(x), which satisfies
the following properties:

(1) gδa(x) 6= ∅;
(2) x ∈ gδa(x);
(3) y ∈ gδa(x)⇔ x ∈ gδa(y);
(4) ∪x∈Sgδa(x) = S.
For a neighborhood granule gδa(x) in the classification sys-

tem, its size is expressed as:

Size(gδa(x)) = |g
δ
a(x)|, (3)

where |.| represents the cardinality of a set. It is easy to
know that the size of the neighborhood granule satisfies:
1 ≤ Size(gδa(x)) ≤ |S|.

III. GRANULE VECTORS
Traditional vectors are quantities of both size and direction,
so they are successfully applied in the machine learning field.
The neighborhood granules are sets essentially, but sets have
no vector representation. Therefore, the granules are difficult
to be employed in the machine learning field. For solving this
problem, we construct granule vectors in the follows.
Definition 1: Suppose a classification system is CS =

(S,F,L) and a neighborhood granulation parameter is δ,
for any sample x ∈ S, any feature subset P ⊆ F , and
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P = {a1, a2, . . . , am}, then a δ−neighborhood granule vector
of x on the feature subset P is defined as:

vgδP(x) = (gδa1 (x), g
δ
a2 (x), . . . , g

δ
am (x)), (4)

where gδa(x) is a δ−neighborhood granule of the sample x on
the feature a, which is called an element of the granule vector,
referred to as a granule element. vgδP(x) is a granule vector
composed of granule elements. Therefore, the elements of the
granule vector are sets. Unlike other vectors, the elements of
a traditional vector are real numbers. When the elements of
a granule vector are all empty granules, it is called an empty
granule vector that is denoted as vnull; when the elements of
a granule vector are full granules, it is called a full granule
vector that is noted as vfull.
Definition 2: Suppose a classification system is CS =

(S,F,L) and a neighborhood granulation parameter is δ,
for any sample x ∈ S, any feature subset P ⊆ F , and
P = {a1, a2, . . . , am}, then the size of a δ−neighborhood
granule vector vgδP(x) of the sample x on the feature subset P
is defined as:

|vgδP(x)| =

√√√√ m∑
i=1

|gδai (x)|
2. (5)

The size of granule vector vgδP(x) is also called themodulus
of a granule vector.
Theorem 1: Let a classification system be CS = (S,F,L),

for any sample x ∈ S and a single feature a ∈ F ,
suppose gγa (x), gδa(x) are two neighborhood granules of x on
a respectively, if 0 ≤ γ ≤ δ ≤ 1, then gγa (x) ⊆ gδa(x).

Proof: For ∀x ∈ S, according to the definition of
neighborhood granule, there are gγa (x) = {y|x, y ∈ S,
1a(x, y) ≤ γ } and gδa(x) = {y|x, y ∈ S,1a(x, y) ≤ δ}.
Because of 0 ≤ γ ≤ δ ≤ 1, it is easy to know gγa (x) ⊆ gδa(x).
Theorem 2: Let a classification system be CS = (S,F,L),

for any sample x ∈ S and a feature subset P ⊆ F , suppose
vgγP(x), vg

δ
P(x) are two neighborhood granule vectors of x on

P respectively. If 0 ≤ γ ≤ δ ≤ 1, then |vgγP(x)| ≤ |vg
δ
P(x)|.

Proof: For ∀a ∈ F and 0 ≤ γ ≤ δ ≤ 1,
according to Theorem 1, then gγa (x) ⊆ gδa(x). Therefore,
|gγa (x)| ≤ |gδa(x)| is established. For ∀P ⊆ F , according

to Definition 2, we know that |vgδP(x)| =
√∑m

i=1 |g
δ
ai (x)|

2,

|vgγP(x)| =
√∑m

i=1 |g
γ
ai (x)|2. By gγa (x) ⊆ gδa(x), then

|vgγP(x)| =
√∑m

i=1 |g
γ
ai (x)|2 ≤

√∑m
i=1 |g

δ
ai (x)|

2 = |vgδP(x)|.

Therefore, |vgγP(x)| ≤ |vg
δ
P(x)| is founded.

Example 1: A classification system CS = (S,F,L) is
shown in Table 1. Suppose S = {x1, x2, x3, x4} is a sample
set, F = {a, b, c} is a feature set, and L = {l} is a label set.
The neighborhood granulation parameter is δ = 0.1.
For the sample set S = {x1, x2, x3, x4}, if a neighborhood

granulation is performed on feature a, the neighborhood gran-
ules are:

g1 = g0.1a (x1) = {x1, x2}, g2 = g0.1a (x2) = {x1, x2, x3},

g3 = g0.1a (x3) = {x2, x3} and g4 = g0.1a (x4) = {x4}.

TABLE 1. A classification system.

If a neighborhood granulation is performed on feature b,
the neighborhood granules are:

g5 = g0.1b (x1) = {x1, x3, x4}, g6 = g0.1b (x2) = {x2},

g7 = g0.1b (x3) = {x1, x3} and g8 = g0.1b (x4) = {x1, x4}.

If a neighborhood granulation is performed on feature c,
the neighborhood granules are:

g9 = g0.1c (x1)={x1, x2}, g10=g0.1c (x2) = {x1, x2, x3, x4},

g11 = g0.1c (x3)={x2, x3, x4} and g12=g0.1c (x4)={x2, x3, x4}.

If a granulation is performed on label l, the decision equiv-
alent granules are:

d1 = g0l (x1) = {x1, x2}, d2 = g0l (x2) = {x1, x2},

d3 = g0l (x3) = {x3, x4} and d4 = g0l (x4) = {x3, x4}.

If P = {a, b, c}, then the granule vector of x1 on P is:

vgδP(x1) = (g1, g5, g9) = (g0.1a (x1), g0.1b (x1), g0.1c (x1))

= ({x1, x2}, {x1, x3, x4}, {x1, x2}).

The size of the granule vector is:

|vgδP(x1)| =
√
(2 ∗ 2+ 3 ∗ 3+ 2 ∗ 2) = 4.123.

Then the granule vector of x2 on P is:

vgδP(x2) = (g0.1a (x2), g0.1b (x2), g0.1c (x2))

= ({x1, x2, x3}, {x2}, {x1, x2, x3, x4}).

The size of the granule vector is:

|vgδP(x2)| =
√
(3 ∗ 3+ 1 ∗ 1+ 4 ∗ 4) = 5.099.

Further the granule vector of x3 on P is:

vgδP(x3) = (g0.1a (x3), g0.1b (x3), g0.1c (x3))

= ({x2, x3}, {x1, x3}, {x2, x3, x4}).

The size of the granule vector is:

|vgδP(x3)| =
√
(2 ∗ 2+ 2 ∗ 2+ 3 ∗ 3) = 4.123.

And the granule vector of x4 on P is:

vgδP(x4) = (g0.1a (x4), g0.1b (x4), g0.1c (x4))

= ({x4}, {x1, x4}, {x2, x3, x4}).

The size of the granule vector is:

|vgδP(x4)| =
√
(1 ∗ 1+ 2 ∗ 2+ 3 ∗ 3) = 3.742.
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IV. THE GRANULAR CONVOLUTIONAL MODEL
We use neighborhood relations to granulate samples into
neighborhood granules according to different features in
a classification system, and these neighborhood granules
construct a granule vector. At the same time, the samples
according to their labels can also be granulated into decision
granules by an equivalence relation. Vectors in traditional
convolutional operations are real number-based operations
and are not suitable for operations with a set form. The
neighborhood granule is a form of set. Firstly, we present
some set operations for granules and granule vectors. Then
we propose a model of granular convolution based on these
operations.

A. OPERATIONS OF GRANULES AND GRANULE VECTORS
Suppose a classification system is CS = (S,F,L) and a
neighborhood granulation parameter is δ. For any two sam-
ples x, y ∈ S, a single feature a ∈ F , let s = gδa(x),
t = gδa(y) be two neighborhood granules of x, y on a,
the union, intersection, subtraction and XOR operations of the
two granules are represented as follows:

s ∪ t = gδa(x) ∪ g
δ
a(y). (6)

s ∩ t = gδa(x) ∩ g
δ
a(y). (7)

s− t = gδa(x)− g
δ
a(y). (8)

s⊕ t = gδa(x) ∪ g
δ
a(y)− g

δ
a(x) ∩ g

δ
a(y). (9)

Since sets of samples constitute neighborhood granules,
the operations of intersection, union, subtraction and XOR
between neighborhood granules are those of intersection,
union, subtraction and XOR between sets. The result of XOR
operation also represents the distance between two neighbor-
hood granules.

In a classification system CS = (S,F,L), for any two
samples x, y ∈ S, there exists two δ−neighborhood granule
vectors vgδF (x) = (gδa1 (x), g

δ
a2 (x), . . . , g

δ
am (x)), vg

δ
F (y) =

(gδa1 (y), g
δ
a2 (y), . . . , g

δ
am (y)) onF , then the union, intersection,

subtraction andXOR operations of the two granule vectors are
represented as follows:

vgδF (x) ∪ vg
δ
F (y)

= (gδa1 (x) ∪ g
δ
a1 (y), g

δ
a2 (x) ∪ g

δ
a2 (y), . . . , g

δ
am (x) ∪ g

δ
am (y)).

(10)
vgδF (x) ∩ vg

δ
F (y)

= (gδa1 (x) ∩ g
δ
a1 (y), g

δ
a2 (x) ∩ g

δ
a2 (y), . . . , g

δ
am (x) ∩ g

δ
am (y)).

(11)
vgδF (x)− vg

δ
F (y)

= (gδa1 (x)− g
δ
a1 (y), g

δ
a2 (x)− g

δ
a2 (y), . . . , g

δ
am (x)− g

δ
am (y)).

(12)
vgδF (x)⊕ vg

δ
F (y)

= (gδa1 (x)⊕ g
δ
a1 (y), g

δ
a2 (x)⊕ g

δ
a2 (y), . . . , g

δ
am (x)⊕ g

δ
am (y)).

(13)

A granule vector is an ordered sequence. The operational
result of two granule vectors is a granule vector that is also
an ordered sequence.

B. GRANULAR CONVOLUTION
A classification system is CS = (S,F,L), where a sample
set is S = {x1, x2, . . . , xn}, and a feature set is F = {a1, a2,
. . . , am}. For ∀x ∈ S, an extended δ−neighborhood granule
vector of x onF is vgδF (x) = (gδa1 (x), g

δ
a2 (x),. . . , g

δ
am (x), full).

Suppose a weighted granule vector shared by feature sets is
vqF = (wa1 ,wa2 , . . . ,wam , b), the convolutional operation of
two granule vectors is expressed as:

gδF,w(x) = vgδF (x) • vqF = (gδa1 (x) ∩ wa1 )

∪ (gδa2 (x)∩wa2 ) ∪ (...)∪(g
δ
am (x) ∩ wam )∪(full ∩ b).

(14)

For a traditional convolutional operation, the convolutional
result of two vectors is a real scalar. Granular convolution
also has this characteristic that the convolutional result of two
granule vectors is a granular scalar. It induces a new granule
named a predicted granule, since two granule vectors are con-
verted into a granular scalar by a granular convolutional oper-
ation. This indicates that the granular convolution also has the
function of feature extraction. At the same time, samples with
category labels in a classification system can be granulated
into granular scalars called decision granules. Therefore, two
granules (a predicted granule and a decision granule) can be
measured, and the comparison result is propagated back to
the weighted granule vector, then the sharedweighted granule
vector is modified, so as to achieve more accurate results of
feature extraction and classification. The process of granular
convolution and back propagation is illustrated in Figure 1.

FIGURE 1. The process of granular convolution and back propagation.

In a classification system CS = (S,F,L), for ∀x ∈ S,
an extended δ−neighborhood granule vector of x on F
is vgδF (x) = (gδa1 (x), g

δ
a2 (x), . . . , g

δ
am (x), full). Suppose a

weighted granule vector shared by feature sets is vqF = (wa1 ,
wa2 , . . . ,wam , b), then the convolution of granule vector of
x and weighted granule vector forms a predicted granule
that is gδF,w(x). And the sample x according to its label is
granulated into a decision granule that is g0L(x), then the
residual errors between the predicted granule and the decision
granule, named as positive and negative residual granules, are
expressed as:

g+(x) = gδF,w(x)− g
0
L(x);

g−(x) = g0L(x)− g
δ
F,w(x). (15)
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C. BACK PROPAGATION OF RESIDUAL GRANULES
The convolutional operation of a feature granule vector and
a weighted granule vector forms a predicted feature granule,
and the measure between the predicted granule and a deci-
sion granule induces positive and negative residual granules.
How to propagate these residual granules for correcting the
weighted granule vector? It is a critical problem in granular
classifiers. Therefore, we define some back propagation rules
for residual granules in the follows.

Suppose a classification system is CS = (S,F,L), where
a sample set is S = {x1, x2, . . . , xn}, and a feature set is F =
{a1, a2, . . . , am}. For ∀x ∈ S, an extended δ−neighborhood
granule vector of x on F is vgδF (x) = (gδa1 (x), g

δ
a2 (x), . . . ,

gδam (x), full), and a weighted granule vector is vqF = (wa1 ,
wa2 , . . . ,wam , b). Let a positive residual granule of x be
g+(x), and a learning rate is r , then some back propagation
rules about the positive residual granule are:

1. p = |g+(x)| ∗ r ;
2. Randomly select p granule elements from g+(x) to

form a new positive residual granule that is e+(x) =
{x1, x2, . . . , xp};
3. Loop from a1 to am: If e+(x) ∩ gδai (x) ∩ wai is not null,

then wai = wai − e
+(x) ∩ gδai (x);

4. b = b− e+(x).
Let a negative residual granule of x be g−(x), and a learning

rate is r , then some back propagation rules about the negative
residual granule are:

1. p = |g−(x)| ∗ r ;
2. Randomly select p granule elements from g−(x) to

form a new positive residual granule that is e−(x) =
{x1, x2, . . . , xp};
3. Loop from a1 to am: If e−(x) ∩ gδai (x) is not null, then

wai = wai ∪ (e
−(x)∩gδai (x)), e

−(x) = e−(x)−e−(x)∩gδai (x);
4. b = b ∪ e−(x).
Rule 1 and Rule 2 induce new residual granules based

on a learning rate, and the learning rate is generally small,
with values between 0 and 0.05. Rule 3 corrects wa1 of the
weighted granule vector vqF , and Rule 4 corrects b of the
weighted granule vector vqF .

V. GRANULAR CONVOLUTIONAL CLASSIFIERS
The traditional classification models in machine learning are
regression and classification, which mainly deal with real
numbers. In this paper, both granules and granule vectors are
forms of sets. We propose a granular convolutional classifier,
which is a form of set operations, including granulation,
granular learning and granular classification. The principle of
granular convolutional classifiers is proposed, and a specific
granular convolutional learning and a classification algorithm
are designed.

A. PRINCIPLE OF GRANULAR CONVOLUTIONAL
CLASSIFIERS
The granular convolutional classifier involves granu-
lation, granular convolutional training, and granular
classification. The granulation process includes three steps:

data preprocessing, dividing training and test sets, and gran-
ulating the training set into granule vectors. The training
process includes: initialization of weighted granule vector,
convolutional operations on granule vectors, measurement of
decision granules, back propagation of residual granules and
correction of the weighted granule vector. The classification
process includes: granulating the test set into granule vectors,
convolutional operations on test granule vectors, and deter-
mining the labels of test granules. The granulation, training
and classification processes are described in detail as follows.

1. Data preprocessing: Deleting data with missing values
and normalizing the dataset between 0 ∼ 1.

2. Divided into training and test sets: The training set
is 80% and the test set is 20%.

3. A granulation for the training set: According to a neigh-
borhood parameter and single features, transforming each
training sample into a feature granule vector; meanwhile,
labels are granulated into a decision granule set.

4. Weight initialization: The weighted granule vector is
randomly initialized.

5. Convolutional operation of granule vectors: The feature
granule vector is convoluted with the weighted granule vector
to form a new feature granule.

6. Measurement of residual errors: Feature granules are
compared with decision granules to induce positive and neg-
ative residual granules.

7. Back propagation and weight correction: According to
the back propagation rules, the weighted granule vector is
updated by a learning rate.

8. Go to Step 5 and loop: Iteratively multiple times until
the residual errors are converged.

9. A granulation for a test set: Take a test sample, compute
the distance between the test sample and each training sample
on a single feature, then obtain a test granule vector, and
granulate all the test samples into test granule vectors.

10. Convolutional operation for a test granule vector: A test
granule vector is convoluted with the previously trained
weight vector to achieve a new feature granule.

11. The label judgment of a test granule vector: Comparing
the distance between the feature granule and each decision
granule, then the test granule vector is determined to be the
class with the minimum distance.

12. Classification of next test granule vectors: Go to Step
10 and perform the classification of the next test granule
vector until all test granule vectors are classified.

From the above analysis, a granular convolutional classi-
fier is mainly divided into two processes: a training process
and a test process. The training process is iterated until the
residual errors are converged, so that the weighted gran-
ule vector revised in the training process is suitable for a
subsequent granular classifying.

B. GRANULAR CONVOLUTIONAL TRAINING AND
CLASSIFICATION ALGORITHMS
We give the principle and steps of a granular convolutional
classifier in the above subsection. The granular convolutional
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Algorithm 1 Granular Convolutional Learning (GCL)
Input: a training set CS = (Tr,F,L), a neighborhood

parameter δ and a learning rate r .
Output: a weighted granule vector vqF =

(wa1 ,wa2 , . . . ,wam , b).
(1) Normalization for a training set: Tr ∈ [0, 1];
(2) Initialization for the learning rate r and the weighted

granule vector vqF = (wa1 ,wa2 , . . . ,wam , b);
(3) Iterate s times from Step (4) to Step (13):
(4) The residual error is assigned an initial value: e =

0;
(5) Perform Steps (6)-(12) for each training sample

x ∈ Tr ;
(6) According to the neighborhood parameter δ

and each single feature ai ∈ F , we granulate sample x into
a feature granule gδai (x);
(7) Form an extended δ−neighborhood granule

vector vgδF (x) = (gδa1 (x), g
δ
a2 (x), . . . , g

δ
am (x), full) of x;

(8) The label of x is granulated into a decision
granule d0L(x);
(9) A convolutional operation of feature granule

vector and weighted granule vector induces a new feature
granule: gδF,w(x) = vgδF (x) • vqF ;
(10) Make ameasurement between feature granule

gδF,w(x) and decision granule d
0
L(x) to form a positive resid-

ual granule e+(x) and a negative residual granule e−(x);
(11) Modify the weighted granule vector vqF

according to the back propagation rules;
(12) Cumulate residual errors e = e + |e+(x)| +
|e−(x)|;
(13) Exit the iteration if the residual error ratio e/emax

converges;
(14) Output weighted granule vector vqF =

(wa1 ,wa2 , . . . ,wam , b).

classifier can be designed into two parts: the Granular
Convolutional Learning (GCL) algorithm (training) and the
Granular Convolutional Classification (GCC) algorithm. The
details are described as follows.

In the algorithm GCL, it mainly involves the process of
neighborhood granulation. In Step (6), hash sorting algo-
rithm [48] is used for the neighborhood granulation of
training set. Its time complexity is O(m ∗ n), where m
is the number of features and n is the number of train-
ing samples; in Step (7), the time complexity is O(m);
in Steps (8), (10), the time complexity is O(n); and in
Steps (9), (11), the time complexity is O(m ∗ n). Since they
are n loops in Steps (6)-(12), so the time complexity for them
is O(m ∗ n2). It iterates s times from Step (4) to Step (13).
Therefore, in the worst case, the time complexity of GCL
algorithm is O(s∗m∗n2). As for the GCC algorithm, its time
complexity is O(m ∗ n).

VI. EXPERIMENTAL ANALYSIS
In this paper, Iris and Wine from the UCI dataset are used
for experimental tests, and detailed results are made from

Algorithm 2 Granular Convolutional Classification (GCC)
Input: a training set CS = (Tr,F,L), a test sample

t , a neighborhood parameter δ, a weighted granule vector
vqF = (wa1 ,wa2 , . . . ,wam , b).

Output: the label of a test sample label.
(1) Normalization for the training set and the test sam-

ple: Tr ∈ [0, 1], t ∈ [0, 1];
(2) According to the neighborhood parameter δ and the

training set, the test sample is granulated into gδai (x);
(3) Form an extended neighborhood granule vector

vgδF (t) = (gδa1 (t), g
δ
a2 (t), . . . , g

δ
am (t), full);

(4) A convolutional operation of feature granule vector
and weighted granule vector forms a new feature granule
gδF,w(t) = vgδF (t) • vqF ;
(5) The m labels are granulated into decision granules

d1, d2, . . . , dm in the training set;
(6) Compute the distance between the feature granule

gδF,w(t) and each decision granule di: disi(t) = |gδF,w(t)⊕
di|;
(7) Determine the label of the test sample t as that of

decision granule with the minimum disi(t);
(8) Output the label.

neighborhood parameters, learning rate, convergence and
classification accuracy. Due to the different value ranges of
datasets, the datasets need to be normalized. We employ
the maximum and minimum method to ensure that all data
are converted to values between [0, 1]. The maximum and
minimum normalization formula is:

f (xi) =
xi − xmin
xmax − xmin

. (16)

The datasets are randomly divided into two parts according
to 80% training samples and 20% test samples. The training
process of a granular classifier has a random initialization.
Each test result may be different. The test is performed
10 times under a same parameter, and the classification accu-
racy is the average of the 10 results.

A. INFLUENCES OF NEIGHBORHOOD PARAMETER
A dataset is granulated on each single feature by a neighbor-
hood parameter to form a granule vector. Some experiments
in this subsection mainly test the influences of varied neigh-
borhood parameters. In these experiments, the neighborhood
granulation parameters start from 0.05 to 0.5 with an interval
of 0.05. For comparison purposes, three different learning
rates are used, with Iris dataset at 0.06, 0.065, and 0.07,
and Wine dataset at 0.02, 0.025, and 0.03. The experimental
results are shown in Tables 2-3 and Figures 2-3. The horizon-
tal axis is the neighborhood parameter and the vertical axis
represents the classification accuracy.

It can be seen from Table 2 and Figure 2 that for Iris
dataset, the classification accuracy is better while the neigh-
borhood parameters are 0.1 and 0.15. When the learning rate
is 0.06, the classification accuracy is better than that at the
learning rates with 0.065 and 0.07. Further, the learning rate
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TABLE 2. Influences of neighborhood parameter for Iris dataset.

TABLE 3. Influences of neighborhood parameter for Wine dataset.

FIGURE 2. Influences of neighborhood parameter for Iris dataset.

FIGURE 3. Influences of neighborhood parameter for Wine dataset.

of 0.065 is better than 0.07. When the neighborhood param-
eter is 0.15 and the learning rate is 0.06, the classification
accuracy reaches the maximum value with 0.96. When the
neighborhood parameters are 0.1-0.15 and the learning rate is
0.06, the classification effects of the granular convolutional
classifier are better. And when the neighborhood parameter
values are larger, the classification effects are worse.

It can be seen from Table 3 and Figure 3 that for
Wine dataset, the classification effects are better while the
neighborhood parameters are 0.05-0.15. When the neigh-
borhood parameter is 0.05 and the learning rate is 0.025,

the classification accuracy reaches the maximum value with
0.9705. When the neighborhood parameters are smaller,
the classification effects of the granular convolutional clas-
sifier are better. And when the neighborhood parameters are
larger, the classification effects are worse.

B. INFLUENCES OF LEARNING RATE
The granular convolutional classifier is related to the learning
rate. If the learning rate is too large or too small, the training
process is difficult to converge and affects the classifica-
tion accuracy. In this subsection, the experiments test the
impact of the learning rate on the classification accuracy.
In these experiments, the learning rate of Iris dataset starts
from 0.055 to 0.075 with an interval of 0.002. The learning
rate of Wine dataset starts from 0.015 to 0.035 with an
interval of 0.002. The neighborhood parameters are the better
situations in the previous subsection. The Iris dataset uses
neighborhood parameters with 0.1, 0.15, and 0.2, while the
Wine dataset’s neighborhood parameters are 0.05, 0.1, and
0.15. The experimental results are shown in Tables 4-5 and
Figures 4-5, in which the horizontal axis is the learning rate
and the vertical axis represents the classification accuracy.

As it can be seen from Table 4 and Figure 4, for Iris dataset,
when the learning rates are varying from 0.057 to 0.065,
their classification accuracy is slightly better than that of the
learning rates varying from 0.071 to 0.075. It is illustrated
from Table 5 and Figure 5, for Wine dataset, the classifica-
tion effects are better when the learning rates are between
0.027 and 0.035; the classification effects are worse when
the learning rates are between 0.015 and 0.023. These indi-
cates that the granular convolutional classifier should tune
a suitable learning rate for the specific dataset. Therefore,
the values of learning rate play a key role in the learning
process of the granular convolutional classifier.

C. CONVERGENCE ANALYSIS
The training of a granular convolutional classifier is a process
of continuous iterative convergence. The experiments in this
subsection mainly analyze the convergence of a training of a
granular convolutional classifier. The neighborhood param-
eters and learning rates are the best situations in the previ-
ous subsection. The neighborhood parameter of Iris dataset
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TABLE 4. Influences of learning rate for Iris dataset.

TABLE 5. Influences of learning rate for Wine dataset.

FIGURE 4. Influences of learning rate for Iris dataset.

FIGURE 5. Influences of learning rate for Wine dataset.

is 0.15, while the learning rate is 0.065. The neighborhood
parameter of Wine dataset is 0.05, and the learning rate
is 0.025. The convergence index is a ratio of residual errors
with formula e/emax , where e is the current residual error,
and emax is the maximum residual error. The experimental
results are shown in Figures 6 and 7. The abscissa is a number
of iterations, and the ordinate represents a ratio of residual
errors.

It can be seen from Figures 6 and 7 that the learning
process of the granular convolutional classifier converges
fast. For Iris dataset, its residual error converges in the second
iteration. After that, it oscillates to a certain range. As for

FIGURE 6. Convergence for Iris dataset.

FIGURE 7. Convergence for Wine dataset.

Wine dataset, its residual error converges to a fixed value in
its eighth iteration.

D. ANALYSIS OF CLASSIFICATION ACCURACY
In order to test the classification accuracy of our proposed
method, we compared the Granular Convolutional Clas-
sifier (GCC) with traditional KNN [41] and SVM [42]
classifiers. We perform a five-cross validation method for
testing these classifiers. The experimental data is randomly
divided into five portions, four of which are used for training,
one for testing. Exchanging another portion for testing,
the remaining four portions are used for training. There are

VOLUME 8, 2020 2049



Y. Chen et al.: Granule Vectors and Granular Convolutional Classifiers

total five tests, and each test result is the mean classifi-
cation accuracy of testing samples. The results are shown
in Figures 8 and 9. The ordinate indicates the classification
accuracy and the abscissa presents the number of tests.

FIGURE 8. Classification for Iris dataset.

FIGURE 9. Classification for Wine dataset.

For Iris dataset from Figure 8, it can be seen that
the classification accuracy of GCC is better than that of
SVM. It is better than SVM algorithm in most cases. For
Wine dataset from Figure 9, it also can be seen that the
classification accuracy of the GCC is better than those of
KNN and SVM in most cases.

VII. CONCLUSION
The traditional classifier is a numerical calculation, which
does not involve operations of sets. Starting from the neigh-
borhood granulation of samples, we proposed a new gran-
ular convolutional classifier by some set operations. Firstly,
the neighborhood rough set mode is introduced, and the
neighborhood granules and granule vectors are constructed
in a classification system. The measures of granules and
operations of granule vectors are proposed. Furthermore,
the convolutional operation of the granule vector is defined
for extracting features, and the positive and negative residual
errors are achieved for a back propagation. We proposed
a classifier by designing some back propagation rules to

revise values of weights of granules. Finally, experiments
are carried out from the aspects of neighborhood parameter,
learning rate, convergence and classification accuracy. The
results show that the newly proposed granular convolutional
classifier can successfully classify samples and obtain a better
classification performance under the conditions of suitable
granulation parameters and learning rates. In the future work,
the mode of neural network will be introduced to develop new
parameter adjustment methods, and new back propagation
rules are studied for the constructions of granular neural
network classifiers. It is also possible to study the local
granulation method for constructing local granule vectors,
and apply the classification method proposed in this paper
to the big data systems.
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