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ABSTRACT Focusing on the energy efficiency (EE) improving problem in a densely deployed cellular
network with partial conventional base stations (BSs) that cannot be frequently switched on/off, this paper
jointly optimizes the switching on/off strategy and user association policy with the consideration of quality-
of-service (QoS). By applying a modified switching cost model, we formulate the EE improving problem as
an energy efficiency maximization problem (EEMP). To solve the EEMP efficiently, we first concentrate on
the EEMP with a constant user distribution where switching cost is omitted temporarily, i.e., static- EEMP,
and then the EEMP can be settled by using the results of the static-EEMP. After analyzing the hardness
of solving the static-EEMP directly, several sub-optimal strategies are proposed for the static-EEMP to
optimize the BSs working states and user association policy.With the results obtained from solving the static-
EEMP, we propose a QoS First Maximum EE (QFMEE) scheme to solve the EEMP in two steps. In the first
step, necessary BSs are switched on when the user distribution changes to ensure user QoS. In the second
step, we judge the extra cost and the energy saving caused by the switching off operations to improve the
network EE. Simulation results verify the effectiveness of our proposed strategies for static-EEMP and show
that QFMEE can improve the network EE and reduce switching cost significantly when the switching cost
occupies a considerable proportion in the total energy consumption.

INDEX TERMS Switching strategy, switching cost, dense cellular networks, energy efficiency.

I. INTRODUCTION
With the exponentially increasing of the mobile devices
such as smart phones, tablets and hand-held terminals,
the densification of small base stations (BSs) is one of the
key approaches to meet the exponentially growing demand
in high data rate and thus energy consumption is grow-
ing tremendously in wireless networks [1]–[3]. Naturally,
improving the energy efficiency (EE) for wireless commu-
nication has become a burning issue from now on. It is
worth noting that most of the energy resources in wireless
networks are consumed by BSs and it has been revealed
that BSs consume approximately 58% of the total power
consumption in a typical wireless cellular network [4], [5].
Further, according to the report from China Mobile, a BS at
the idle state with no traffic load consumes about 50%-60%
of the energy that cost at the laden state with the maximum
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traffic load, and 40% of the energy consumption of a BS can
be saved if it is switched off (i.e., in the sleeping state) [6].
Therefore, an effective way to achieve energy saving and EE
improvement in wireless cellular networks is to dynamically
switch off BSs, especially for low traffic load cases where a
small part of BSs can guarantee the service of all users. Since
nowadays more and more small BSs are densely deployed
in the urban area to meet the peak traffic demand and the
coverage is always overlapped, switching off some of them
will not affect the coverage of the entire network [7].

Many works have studied the switching on/off (or called
sleeping) strategies for different network architectures and
verified the resulting benefit in terms of energy saving or EE
improving [8]–[10]. In reference [11], the minimal energy
consumption problem is formulated as an integer program-
ming (IP) model to minimize the number of active BSs while
the quality-of-service (QoS) can be preserved. Then two
low-complexity approximation algorithms are proposed for
solving the formulated problem, but the switching cost is
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not considered. In reference [12], coalition-based sleep-
ing strategy and power allocation are jointly optimized to
improve the dense small cell network EE while the QoS,
i.e., the minimum rate for a user, is satisfied, however,
the switching cost is omitted as well. Reference [13] min-
imizes the energy cost with the consideration of switching
cost by jointly determining the set of BSs to be active and
the levels of transmit power with a predictable traffic flow,
however, the switching cost of a BS is modeled as linear with
its workload, which is not accurate enough.

Some methods or techniques are commonly used for
analyzing the performance in switching on/off strategies
designing. Stochastic geometry tools, as one of them, are
used in several references to model the BS and/or user
distribution and derive tractable analytical expressions for
the network performance analyzing under simple sleeping
strategies [14]–[16]. Authors in [14] investigate the opti-
mal percentage of deep-sleep BSs to maximize network EE
without sacrificing the performance on network converge
probability, BS overload probability and transmit power. Four
working states for BS (i.e., on, standby, sleep, and off) are
considered in [15] and the percentage of BSs in each mode
under random sleeping strategy is optimized on the basis of
the tractable expression of average achievable rate and cover-
age probability. After the analysis of random sleeping, strate-
gic sleeping approach is proposed to improve the EE further
more. In reference [16], the reinforcement learning technique
is applied to the sleep/wake-up algorithm designing. By using
a stochastic geometry approach, analytical expressions for
the coverage probability and service success probability are
derived to formulate the network EE and a Fuzzy Q-Learning
based energy-efficient sleep/wake-up mechanism is proposed
for energy saving and EE improving.

Then, queuing theory is also frequently used for the analy-
sis of the network performancewith sleepingmode [17]–[19].
In reference [17], each BS in the cellular network is mod-
eled as an M/M/1/k-Processor Sharing queue with vacations,
where the network power consumption is optimized. Per-
formances are evaluated for different sleeping schemes in
terms of the tradeoff between energy saving and user QoS
(including delay and blocking probability). In reference [18],
the transition of BS state is modeled as a two-dimensional
Markov model and the users are modeled as a discrete-time
queue. After that, different sleeping strategies along with
power control are analyzed to optimize the energy saving
under the constraints of QoS and fronthaul capacity, and a
Lyapunov method is applied to guarantee the queue stability.
In reference [19], BSs are equipped with energy harvesting
devices, batteries and interfaces of external power grid at the
same time. Energy scheduling and sleep control are jointly
optimized to minimize the system cost while the stability of
workload queues and battery queues are ensured by using a
Lyapunov optimization based two-timescale approach.

Energy harvesting is considered in quite a few references
besides [19], and making best of the renewable energy may
help with minimizing the system cost. In reference [20], BSs’

work modes, and the allocation of harvested energy as well
as subcarriers are jointly optimized to minimize the weighted
energy consumption. A two-stage dynamic programming
algorithm is proposed to solve the formulated problem with
low computational complexity. In reference [21], small BSs
are classified into three different types, i.e., conventional
small BSs, renewable small BSs and hybrid small BSs.
An energy efficient scheme that jointly considers BS switch-
ing strategy and user association is proposed which aims at
making the best of the harvested energy to serve more users
and reducing the on-grid power consumption.

Problems are also analyzed from unique perspectives.
In references [22] and [23], BSs are clustered and the on/off
strategies are closely related with the clustering results. In ref-
erence [22], switching on/off operation for hotspot areas is
analyzed. Active remote radio heads (RRHs) are located close
to the hotspot areas by being mapped to the cluster centroids
of a clustering process. Different strategies under different
infrastructure conditions and information availabilities are
proposed to find the cluster centroids on the basis of a com-
plete framework. In reference [23], BSs are clustered based
on the work load and distance between them and then an
intra-cluster switching on/off strategy is proposed for energy
saving. Authors in [24] consider the instants of time at which
the BS switching operations must be executed to adjust to the
changed user distribution. A risk-aware probabilistic manner
is adopted to determine the states updating time for the BS
and then the BS configuration to minimize the total power
consumption of the network is determined while ensuring the
QoS with high probability. In reference [25], the direction of
arrival (DOA) estimation is creatively used for BSs to accu-
rately get the directions of areas with high traffic levels which
help with the switching decisions to be made appropriately.

In general, most of these existing works either omit the
switching cost during the switching operation or consider the
switching cost with inaccurate models. Actually, switching
on/off operations will cause extra handovers and delay for
users besides the intrinsic energy cost for a BS to power
on/off the corresponding components. Thus, the switching
cost should be an important consideration. In addition, pre-
dictable traffic flows are adopted for most of these algorithms
designing which may impact the accuracy.

In this paper, we study the problem of maximizing the
EE of dense cellular networks with partial conventional BSs
by proposing a dynamically switching on/off strategy. The
energy efficiency maximization problem (EEMP) is for-
mulated as a complex combinational optimization problem
which is hard to solve directly, and a two-step sub-optimal
algorithm is proposed to solve the EEMP efficiently. Firstly,
the EEMP under a constant user distribution case is studied.
Then, as the user distribution changes, switching cost is
considered. The main contributions of this paper are listed
as follows:

1) With the developing of wireless communications, mil-
lions of new BSs are built and quite a part of the conventional
BSs are not updated yet. Thus, a theoretical dense cellular
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network is developed where BSs are classified into two kinds:
one is new type BSs that can be switched on/off as needed;
the second is conventional BSs that cannot be switched off/on
frequently. Different with previous works, switching cost in
this paper is remodeled with two parts: a constant part for
BS energy cost itself and a linear part related with the BS
load. After the analysis of transmission model and power
consumption model, the network EE is obtained. Then the
EEMP is formulated and the problem hardness is discussed
as well.

2) To solve the EEMP efficiently, this paper deals with the
NP-hard problem in two stages. In the first stage, the EEMP
with a constant user distribution, i.e., static-EEMP, is con-
sidered. In this case, switching cost can be omitted when
calculating the network EE and only an ideal BSs working
state under a constant user distribution is concerned. Several
strategies are proposed for the static-EEMP where different
user association policies are applied. A Two Distance Based
Strategy (TDBS) is proposed as a modification scheme for
distance based algorithms proposed in previous works where
users access the closest BS and then an Energy Saving Based
Strategy (ESBS) is proposed where users access the BS
offering the best SINR. In these two strategies, the distance
between a user and the nearest BS except its serving BS is
also considered. Then two random switching strategies are
proposed as comparison. In the second stage, a QoS First
Maximum EE (QFMEE) scheme is proposed to solve the
EEMP on the basis of the results from static-EEMP. The
QFMEE is executed in two steps: firstly, the necessary BSs
are switched on to ensure the user QoS; secondly, some of the
unnecessary BSs are switched off in specific order to improve
the network EE. These necessary and unnecessary BSs can be
found from solving static-EEMP. At last the performance of
the proposed strategies is evaluated. Simulation results show
that the ESBS performs best and can be chosen for solving
the EEMP. Then the effectiveness of QFMEE is shown in
improving EE and reducing switching cost.

The remainder of this paper is organized as follows.
In Section II, we describe the system model. In Section III,
the energy efficiency maximization problem is formulated
and the problem hardness is analyzed. Algorithms design and
analysis are given in Section IV. In Section V, the simulation
results are shown and discussed. Finally, concluions are given
in Section VI.

II. SYSTEM MODEL
In this section, the system model adopted in our work is
presented and the transmission model and power consump-
tion model are introduced separately. Table 1 shows the main
notations to be used in the following sections.

A. NETWORK MODEL
In this paper, a downlink dense cellular network with two
kinds of BSs deployment is considered. Denote bs = b1 ∪ b2
as the set of all BSs, where b1 = {1, 2, . . . ,N1} is the set of
N1 new type BSs that can be switched on/off as needed for

TABLE 1. Notations.

energy saving, and b2 = {N1 + 1,N1 + 2, . . . ,N1 + N2}

is the set of N2 conventional BSs which are not suitable
for switching on/off frequently due to the lagging of man-
ufacturing technology. Then we denote S = {sj|j ∈ bs} as
the state of these BSs, where sj = 1 means BS j is active
and sj = 0 otherwise. Obviously, sj = 1 for j ∈ b2. Let
U = {1, 2, . . . ,K } denote the user set of the system with
K users which are randomly distributed, and each user has a
minimum requirement of data rate Rmin as a QoS constraint.
Binary variable set {xk,j} describes the user-BS association,
which takes the value of 1 if user k is associated with BS j
and 0 otherwise. Here we consider the full frequency reuse
case in the downlink orthogonal frequency division multiple
access (OFDMA) system. The spectrum used by the BSs is
overlaid and all BSs share the same bandwidth with Nmax
sub-channels where the bandwidth per sub-channel is B kHz.
We denote the one sub-channel along with a unit slice of time
as a unit time-spectrum resource block (RB) and thus the
number of RBs available for a BS is Nmax . We assume that
a user can only be served by one BS but may be allocated
with multiple RBs to satisfy its QoS requirement.

B. TRANSMISSION MODEL
For simplicity, we assume that the transmit power of a BS
is constant and equally allocated to each RB [26]. Then the
received signal to interference and noise ratio (SINR) per RB
of user k that is served by an active BS j can be modeled as:

SINRk,j =
ptx,jhk,j∑

i∈bs\j ptx,isihk,i + σ
2 , (1)

where ptx,j is the transmit power per RB of BS j, hk,j is the
channel fading gain (including path loss and shadow fading)

VOLUME 8, 2020 9135



Z. Jian et al.: Energy-Efficient Switching ON/OFF Strategies Analysis for Dense Cellular Networks

of user k with respect to BS j and σ 2 denotes the thermal noise
power. The denominator part in (1) indicates that switching
off necessary BSs will not only save the cost of the sleeping
BS itself, but also mitigate the interference to other active
BSs. Thus, we can roughly get that switching off BSs in b1
as many as possible with the premise of guaranteeing user
QoS will contribute to the energy saving and then help with
improving the network EE.

According to Shannon capacity formula, the received data
rate per RB of user k from BS j is:

rk,j = B log(1+ SINRk,j). (2)

Then the number of RBs required to support Rmin for UE
k from BS j can be computed as follows:

nk,j = xk,j
⌈
Rmin/rk,j

⌉
. (3)

Thus, we can get the transmit power of BS j by accumulat-
ing the transmit power of all used RBs in this BS:

Pt,j = ptx,j
∑
k∈U

nk,j = ptx,jlj, (4)

where lj =
∑

k∈U nk,j denotes the load of BS j i.e., the
number of RBs that have been occupied in this BS. The
definition of lj considers the resources occupation and user’s
SINR, which is much more reasonable and practical than a
simple definition of serving users number.

C. POWER CONSUMPTION MODEL
To evaluate the energy consumption during different states for
a BS, we refer to [27] to build the power consumption model
within a constant state as:

Pj = sj(Pc,j + Pt,j)+ (1− sj)Ps,j, (5)

where Pc,j is the constant power consumption (i.e., circuit
cost, air conditioner consumption and so on) for BS j to
maintain the active mode, Ps,j is the energy cost when BS j is
in sleep mode.

Except the power consumption of BS under a constant state
during a period of time, the BS switching on/off operation
will cause extra energy cost. In most cases, switching cost
in the previous work is considered to be constant. Actually,
other than the energy cost that is needed to power on/off
the components of a BS, the change of the BS state will
also cause users’ handovers and re-associations or even extra
resources cost for some new architecture such as Mobile
Cloud Computing (MCC) system and Cloud-Radio Access
Network (C-RAN). Here we roughly think that the latter cost
is linear with the number of users associate with the BS.
Based on the above analysis, we introduce a novel switching
power consumption model as follows:

Pswj = |sj − s
new
j |(p

sw
c + ϕ|

∑
k∈U

xk,j −
∑
k∈U

xnew
k,j
|), (6)

where sj and xk,j are the state mode and user association for
BS j and user k before the switching occurs, snewj and xnewk,j
are the new state mode and user association for BS j and

user k after switching. pswc is the constant energy cost for
powering on/off the components of a BS and ϕ is the extra
re-association cost per user.

III. PROBLEM FORMULATION
In this section, the EEMP is formulated in which variables
are intricately coupled and thus it is hard to solve directly.
Then a static-EEMP is introduced to help with solving the
EEMP efficiently. After that the hardness of static-EEMP is
analyzed.

A. EEMP FORMULATION
Switching on/off frequently too much is not conducive to
energy saving and may damage the components inside BSs
either. Here, we uniformly divide a period of time into several
time slots where the length of each time slot is T. BSs are
allowed to change their states at a specific time clock, specif-
ically, the BSs in b1 could change their states at the begin-
ning of every time slot to suit the changed user distribution
which is also varied every time slot in this paper. In addition,
we assume that the switching on/off operations will be done
within a sufficiently small time which can be omitted.

Similar with [14], the overall network EE is measured in
terms of bits/joule like this:

EE =
Rtotal
Ptotal

, (7)

where Rtotal and Ptotal denote the total network throughput
the whole network energy consumption in a given period of
time, respectively.

Under a short term predictable traffic flow case, we think
that not only the user distribution in the current time slot
is known but also the user distribution in the next time slot
can be accurately predicted. Here we consider an energy
efficiency maximization problem (EEMP) in a typical period
of L time slots andm = 1, 2, . . . ,L is the time slot index, thus
the time slot m means the period of [(m-1)×T, m×T ). At the
beginning of each time slot, i.e., the moment t =(m-1)×T ,
BSs choose to keep the states or execute the switching on/off
operations. Typically, we think the executions at the moment
t = 0. The on/off decisions are made based on the present
BSs states, i.e., the BSs states during [-T , 0), the changed
user distribution, i.e., the user distribution during [0, T ) and
the predicted user distribution during [T , 2T ), to maximize
the network EE. The rest on/off decisions on other time slots
are similarly made. Hence, from (7) the EEMP in a typical L
time slots can be formulated as:

maxEE =

T (
L∑

m=1

∑
k∈U

∑
j∈bs

x(m)k,j r
(m)
k,j )

T
L∑

m=1

∑
j∈bs

P(m)j +

L∑
m=1

∑
j∈b1

Psw(m)j

s.t.C1 : x(m)k,j ∈ {0, 1},

C2 : s(m)j ∈ {0, 1},∀j ∈ b1,

C3 : s(m)j = 1,∀j ∈ b2,
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C4 :
∑
k∈U

n(m)k,j ≤ Nmax,∀j ∈ bs,

C5 :
∑
j∈bs

x(m)k,j = 1,∀k ∈ U, (8)

where the variables with the superscript (m) indicate their
corresponding representations in the time slot m.
Constraint C1 can be got from Section II.A. Constraints

C2 and C3 are state constraints for new type BS and con-
ventional BS, respectively. Constraint C4 is the RB capacity
constraint for a BS. Constraint C5 specifies that a user can
only associate with one BS.

Consider that the user-BS association variable set {x(m)k,j }
is coupled with the working states of BSs, thus the network
throughput is directly related with {s(m)j } under a given QoS

requirement. As for P(m)j , the static power consumption is
coupled with working states of BSs, and the transmit power
consumption that depends on the BS load, is coupled with
the configurations of its neighboring that impact the SINR of
its associated users. The switching operations directly decide
the working states of BSs, so the switching energy cost is
strongly coupled with {s(m)j } either. All in all, the operations
of different BSs are strongly coupled and the EEMP is hard
to be solved directly.

B. DEFINITION OF STATIC-EEMP
To solve the EEMP efficiently, we omit the switching energy
cost temporarily to get an ideal state set and user association
set under a constant user distribution in a typical time slot
(i.e., m = 1 and m is omitted in this sub-section for simplic-
ity). Then, we use the static result as a reference to go a step
further. The static-EEMP is formulated as:

maxEEstatic =

∑
k∈U

∑
j∈bs

xk,jrk,j∑
j∈bs

Pj

s.t.C1− C5. (9)

Given the solutions obtained from solving the static-EEMP,
we can get that some BSs is necessary to keep on for guar-
anteeing the QoS, and some others could be switched off in
terms of energy saving. After switching on the BSs that must
be active, the user QoS would be satisfied. In other words,
the network throughput could be considered constant. And
thus, we can concentrate on the switching operations, i.e., the
tradeoff between promoting the energy saving and lightening
the extra switching cost.

C. PROBLEM HARDNESS DISCUSSION
Theorem 1: The static-EEMP is NP-hard.
From (1), we can see that users suffer the interference

from all active BSs, thus each BS can determine the set of
associated users. Here we denote the user set of BS j as U j,
then U = {U1,U2, . . .U j, . . . ,UN1+N2}. We assume that
the RBs of BSs are sufficient for satisfying the QoS of all
users. Then with a given Rmin, the throughput of the network

is constant and the static-EEMP will convert to a minimum
energy consumption problem. In other words, the optimizing
objective is to find a set cover U∗ =

∑
j∈bs U

∗
j , and the

cost of U∗ is minimized. Hence, the static-EEMP can be
equivalent to a minimal set cover (MSC) problem, and the
MSC problem is a known NP-hard problem [28]. Thus, the
static-EEMP is NP-hard.

Since the static-EEMP can be considered as a special case
of EEMP when the reference time T is long enough, it is
easy to get that EEMP is NP-hard either. Thus, it is neces-
sary and significant to propose an efficient algorithm with
low-complexity and relatively good performance to solve the
formulated EEMP.

IV. ALGORITHM DESIGN
In this section, we solve the EEMP in two steps. In the first
step, we analyze the static-EEMP separately with omitting
the switching cost and propose several heuristic algorithms
as candidates for comparison. In the second step, necessary
BSswhich are obtained from the solutions of the static-EEMP
should be switched on to ensure the user QoS requirement,
and after that we can maximize the total network EE by
concentrating on the tradeoff between the extra switching off
cost and the energy saving, both of which are related to the
switching off operation directly.

A. STATIC-EEMP ALGORITHM
Although static-EEMP is simplified from the EEMP, user
association and BSs states are strongly coupled with the
network energy consumption or even network throughput.
Different user association and BSs switching on/off strategies
impact the network EE and the user QoS directly. Switching
off a BS will affect not only its own serving users but also
the neighboring BSs and their serving users. For a given
user association policy, switching off a BS should improve
the network EE while maintaining the user QoS. Taking
this as the basis for strategy designing, we choose two user
association policies and propose four heuristic BSs switching
on/off strategies.

1) TWO DISTANCE BASED STRATEGY
In this algorithm, a user k chooses the closest BS who has
enough RBs to satisfy the user’s QoS as the target BS for
accessing, this candidate user association policy is motivated
by Algorithm 2 in [12]. As the user distribution is known,
a BS j in b1 not only has the distance between it and its serving
users but also knows the distance between its serving users
and other BSs. Once BS j is switched off, its serving users
will re-associate to the neighboring BSs, thus the distance
between them will impact the power consumption of these
neighboring BSs directly. Because of the path loss in the
channel gain, users that re-associate to farther BSs will likely
cause extra transmit power and weaken the energy saving
of the switching off operation. Thus, switching off a proper
BS can lighten the extra transmit power consumption and
contribute to the improvement of the network EE. A simple
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FIGURE 1. A sketch for Algorithm 1.

sketch is shown in Fig.1. From the sketch we can see User1
accesses BS 1 and User 2 accesses BS 2 where d1,1 = d2,2
and d1,2 < d2,1. When one of these two BSs is switched off,
the two users will access the rest active BS. Based on above
analysis, in which shadowing and fading are omitted and only
the path loss is considered, switching off BS 1 will probably
cause more extra transmit power than that of switching off
BS 2, thus BS 2 is the better choice to be switched off. To find
the proper BS, we define the distance impact factor of a user
k for its associated BS j as:

ωk,j = xk,j(PL ′k,j − PLk,j), (10)

where PLk,j is the path loss between user k and its associated
BS j, PL ′k,j is the path loss between user k and the nearest BS
except BS j. Thus, the weighted distance load for BS j can be
calculated as:

�j =
∑
k∈U

ωk,j. (11)

A small ωk,j means little extra transmit power consump-
tion after the re-association and thus a BS with the smallest
weighted distance load is preferred to be switched off. The
main steps of TDBS are shown in Algorithm 1. All

BSs are set to be active in the initialization and user
accesses the closest BS who has enough RBs to satisfy its
QoS requirement. Then we concentrate on the BS in b1. To be
more specific, BSs with no users are switched off and the
weighted distance load is calculated in each active BS in b1.
In each iteration for the loop of step 13-19, the BS with
minimal weighted distance load in b1 is switched off and its
associated users are assigned to these neighboring BSs just
like step 3-6. This loop terminates when no more BSs in b1
can be switched off to achieve further promotion of network
EE or user QoS cannot be satisfied.

2) ENERGY SAVING BASED STRATEGY
Path loss is only a part of the channel fading and a user
accesses the closest BS will not always have the best SINR.
In this algorithm, a user accesses the BS with the best SINR
who has enough RBs to satisfy the user’s QoS. Similar with
Algorithm 1, we try to find the proper BS that the switching
off operation can save as much energy as possible and lighten

Algorithm 1 Two Distance Based Strategy (TDBS)
1: Input: bs = b1 + b2, U , Rmin, Pc,j , ptx,j, Ps,j
2: Initial: sj = 1, xk,j = 0, Nj = Nmax , ∀j ∈ bs, ∀k ∈ U
3: For each user k do
4: Find BS j∗ = arg min dk,j that satisfies nk,j∗ < Nj∗;
5: xk,j∗ = 1, Nj∗ = Nj∗− nk,j∗;
6: End for
7: For each BS j ∈ b1 do
8: If no users are associated to j
9: sj = 0;
10: Else
11: Calculate the weighted distance load �j;
12: End if
13: End for
14: Repeat
15: Find an active BS j ∈ b1 that has minimum

weighted distance load and switch it off;
16: Assign the users that are served by BS j to

neighboring BSs with enough RBs;
17: Update xk,j, Nj, �j;
18: Check the network EE and user QoS;
19: Until user QoS cannot be satisfied or the network

EE won’t increase anymore

the extra transmit power consumption at the same time, and
thus contribute to the improvement of the network EE. Here,
we analyze this problem from two aspects. On one hand,
we consider the energy saving of the switching off operation.
From (4), we can see that the transmit power is related with
the RBs occupied for maintain the QoS requirement, thus we
can use lj as a representation for the energy saving when the
BS is switched off. On the other hand, we concentrate on
lightening the extra transmit power consumption for neigh-
boring BSs caused by the switching off operation. Inspired by
Algorithm 1, we roughly think that when a user k that served
by a BS j is near to a neighboring BS i, the extra transmit
power consumption for BS i to serve user k which is caused
by switching off BS j can be lightened to some extent. Based
on the above analysis, we define the energy saving weighted
load for a BS j as:

8j =

∑
k∈U

xk,j(nk,j + κ/d ′k,j)∑
k∈U

xk,j
, (12)

where κ is the impact factor which represents the tradeoff
between energy saving and extra consumption lightening.
When the value of 8j is large, a BS j can be switched off
to save considerable energy without causing a serious extra
consumption. In other words, the BS with the maximum8 is
the proper one to be switched off. The main steps of ESBS
are shown in Algorithm 2.

In addition, Algorithm 2 is still feasible for the case in
which accurate user locations are not available. In some
scenarios such as some complicated channel conditions or
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Algorithm 2 Energy Saving Based Strategy (ESBS)
1: Input: bs = b1 + b2, U , Rmin, Pc,j , ptx,j, Ps,j
2: Initial: sj = 1, xk,j = 0, Nj = Nmax , ∀j ∈ bs, ∀k ∈ U
3: For each user k do
4: Find BS j∗ = arg max SINRk,j that satisfies

nk,j∗ < Nj∗;
5: xk,j∗ = 1, Nj∗ = Nj∗− nk,j∗;
6: End for
7: For each BS j ∈ b1 do
8: If no users are associated to j
9: sj = 0;
10: Else
11: Calculate the energy saving weighted load 8j;
12: End if
13: End for
14: Repeat
15: Find an active BS j ∈ b1 that has maximum

energy saving weighted load and switch it off;
16: Assign the users that are served by BS j to other

active BSs with best SINR and enough RBs;
17: Update xk,j, Nj, 8j;
18: Check the network EE and user QoS;
19: Until user QoS cannot be satisfied or the network

EE won’t increase anymore

indoor environments, user location information cannot be
accurately obtained by its serving BS and Algorithm 1 is no
more workable. However, when we omit the user location
related part in (12) i.e., κ/d ′k,j, the Algorithm 2 is effective
to some extent.

3) RANDOM SLEEP STRATEGY
Here we consider the simplest strategy without relevant com-
putation inside the BS, in which the user distribution and the
traffic load are not cared either. For simplicity, the maximiza-
tion of the network EE is roughly treated as switching off
as many BSs in b1 as possible on the premise of satisfying
user QoS. In this strategy, BSs in b1 are randomly selected
to be switched on/off according to different initializations.
Specifically, when all the BSs are set to be active in the
initialization just like the former two algorithms, the BSs in
b1 are randomly selected to be switched off until the user
QoS cannot be satisfied or no more BS can be switched
off, and this strategy is dented as Random Sleep Strategy 1
(RSS1). In the other case, all of the BSs in b1 are set to
be in sleep mode in the initialization, then these BSs are
randomly selected to be switched on until all users’ QoS are
satisfied or all BSs have been switched on, and this strategy
is dented as Random Sleep Strategy 2 (RSS2). The main
steps of RSS1 and RSS2 are shown in Algorithm 3 and
Algorithm 4, respectively. In these two algorithms, the BSs
in b1 only need to receive the switching on/off signals and
check for the existence of users that out of service while no
other information is required.

Algorithm 3 Random Sleep Strategy 1 (RSS1)
1: Input: bs = b1 + b2, U , Rmin, Pc,j , ptx,j, Ps,j
2: Initial: sj =1, xk,j =0, Nj = Nmax , ∀j ∈ bs, ∀k ∈ U
3: For each user k do
4: Find BS j∗ = arg max SINRk,j that satisfies

nk,j∗ < Nj∗;
5: xk,j∗ = 1, Nj∗ = Nj∗− nk,j∗;
6: End for
7: For each BS j ∈ b1 that has no users do
8: sj = 0;
9: End for
10: Repeat
11: Randomly select an active BS j ∈ b1 and

switch it off;
12: Assign the users that are served by BS j to

neighboring BSs with enough RBs;
13: Update xk,j, Nj;
14: Check the user QoS;
15: Until user QoS cannot be satisfied or no more BS

can be switched off

Algorithm 4 Random Sleep Strategy 2 (RSS2)
1: Input: bs = b1 + b2, U , Rmin, Pc,j ptx,j, Ps,j
2: Initial: sj = 0, ∀j ∈ b1; sj = 1, ∀j ∈ b2; xk,j = 0,

Nj = Nmax , ∀j ∈ bs, ∀k ∈ U
3: For each user k do
4: Find BS j∗ = arg max SINRk,j that satisfies

nk,j∗ < Nj∗;
5: xk,j∗ = 1, Nj∗ = Nj∗− nk,j∗;
6: End for
7: Repeat
8: Check the user QoS;
9: If all users’ QoS are satisfied
10: End the algorithm;
11: Else
12: Randomly select a sleeping BS j ∈ b1

and switch it on;
13: Re-assign the users;
14: Update xk,j; Nj;
15: End if
16: Until all BSs have been switched on

B. EEMP ALGORITHM
With the solutions in static-EEMP, we can get the ideal BSs
working states without considering the switching cost, which
give an important reference for the switching operations.
Then, we can judge the extra cost along with the energy sav-
ing and EE improvement caused by the switching operations.
To deal with the EEMP efficiently, we introduce a QoS First
Maximum EE (QFMEE) Strategy. The QFMEE consists of
two stages: the first stage is to guarantee the user QoS and
the second stage is to maximize the network EE. That is the
reason for the strategy name, i.e., QFMEE, and the details of
QFMEE are presented in the following part of this subsection.
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Generally speaking, dense BSs means more RBs and better
channel conditions for users and that is one of the main
reasons for the deployment of 5G ultra-dense cellular net-
works [29]. Obviously, sufficient BSs should keep active to
guarantee the user QoS and the first stage is to switch on
these necessary BSs. For clarity of description, we denote
S′ = {s′j} as the states of the BSs in the last time slot,
i.e., the states before switching operations. Sidea1l = {sideal1j }
is defined as the solution of the static-EEMP in current time
slot. Similarly, Sidea12 = {sideal2j } is defined as the solution
of the static-EEMP in the next time slot based on the predicted
user distribution. Smid = {smidj } is defined as the state of the
BSs after stage 1 and S∗ = {s∗j } indicates the BS state after
stage 2, i.e., the final solution for the QFMEE. Sidea1l shows
the most EE efficient working states without switching cost
in current time slot, which also gives out the basic active BSs
to guarantee the users QoS. After comparing S′ with Sidea1l ,
we can find the BSs that are switched off in S′ but active in
Sidea1l , these BSs are necessary to be switched on to satisfy
the current user distribution which can be defined as Snec.
Thus, we have Smid = S′ ∪ Sidea1l and Snec = Smid − S′.
After switching on the target BSs, i.e., Snec, QoS is guaran-

teed and we begin to execute stage 2 to maximize the network
EE.With the satisfaction of user QoS, the network throughput
is roughly constant and the EE maximizing problem can be
converted to an energy cost minimizing problem. Similar
with stage 1, after the comparison between Smid and Sidea1l ,
we can find the BSs which are active in S′ but switched off
in Sideal1 and these unnecessary candidate BSs that could be
switched off as needed are concerned in this stage. Here we
define these BSs as Sunnec and thus Sunnec = Smid − Sidea1l .
Besides this, the comparison between Sunnec and Sidea12

will help us with lightening the switching cost in the next
time slot. In theory, the optimal choices for switching off
can be got by travelling through all of the combinations,
but it’s complicated as the BSs increasing. Here, we propose
a low-complexity strategy by jointly analyzing the constant
energy saving, extra transmit power saving and switching cost
for switching off these BSs. The switching off operations for
BSs in Sunnec impact the constant energy saving, transmit
power, and switching cost both in the current time slot and in
the next time slot. Besides the intrinsic switching cost which
is related to the number of serving users in the last time slot,
switching off a BS in Sunnec can save a constant part of energy
in current time slot. However, the impact on next time slot is
different for BSs in Sunnec − Sidea12 and Sunnec ∩ Sidea12,
respectively. On one hand, the BSs in Sunnecx − Sidea12 are
unnecessary in the next time slot either, thus the switching off
operations in the current time slot can not only avoid an extra
switching cost but also save a constant part of energy in the
next time slot; on the other hand, the BSs in Sunnec ∩ Sidea12

are necessary in the next time slot and the switching off oper-
ations in the current time slot will bring equivalent switching
on operations in the next time slot, additionally. Moreover,
the variety of transmit power consumption is bound up with

user SINR. To be more specific, the poorer user SINR is, the
more energy is saved for transmitting. Thus, we can define
the switching off factor like this:

0j =



(Pc,j − Ps,j)T − ϕ
∑
k∈U

xk,j′

+

∑
k∈U

γ

SINRx,j′
, j ∈ Sunnec − Sideal2

(Pc,j − Ps,j)T − 2pswc − ϕ
∑
k∈U

xk,j′

+

∑
k∈U

γ

SINRx,j′
, j ∈ Sunnec ∩ Sideal2,

(13)

where x ′k,j and SINR ′k,j are the user association indicator
and corresponding SINR before the user distribution changes,
respectively. And γ is the impact factor which represents the
influence of the variety of transmit power consumption before
and after switching. Based on the above analysis, we choose
the BS with maximum 0 as the target to be switched off and
check the network EE until S∗ = Sideal1 or the network EE
no more improves.

We execute the QFMEE at the beginning of each time slot
until all of the L time slots are completed and themain steps of
QFMEE are shown inAlgorithm 5. Steps 3-5 are to realize the
QoS first part and the rest steps are to maximize the network
EE. Although the BSs are switched off one by one, we think
the time consumed in this process can be omitted with respect
to the length of a time slot, i.e., T .

Algorithm 5 QoS First Maximum EE (QFMEE) Strategy

1: Input: bs = b1 + b2, U1, U2, Rmin, Pc,j, ptx,j , P s,j,
pswc , ϕ, S′,{x ′k,j}

2: Output: S∗, {xk,j }
3: Get Sideal1 and Sidea12 based on the changed user
distribution U1 and the predicted user distribution
U2 by applying proper static-EEMP algorithm.

4: According to S′ and Sideal1, find Snec.
5: Switch on corresponding BSs in Snec and get Smid ;
6: Let S∗ = Smid

7: If Smid 6= Sideal1

8: According to Smid and Sideal1, find Sunnec.
9: Calculate the switching off factors 0 of BSs in Sunnec;
10: Repeat
11: Switch off the BS j with maximal 0
12: Assign the users that are served by BS j to

neighboring active BSs with enough RBs;
13: Check the short term network EE within this

two time slots
14: Remove the BS that just be switched off from Sunnec;
15: Update S∗;
16: Until the short term network EE no more increases

or S∗ == Sideal1

17: Else
18: The algorithm comes to an end
19: End if
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V. SIMULATION RESULTS
In this section, we use Monte Carlo simulations to evaluate
the performance of our proposed strategies for static-EEMP
and EEMP. In the following, we firstly introduce the param-
eter settings, and then corresponding simulation results and
analysis are presented one by one.

A. PARAMETER SETTINGS
We consider a simulation scenario like following. N1 = 16
new type BSs and N2 = 5 conventional BSs are regularly
deployed in the area of 1×1 km2 as Fig.2 shows. Users are
randomly distributed in the same area and their distribution
changes at the beginning of every time slot. For the wireless
accessing, the total number of sub-channel is Nmax = 100
and each one is assigned with a bandwidth B = 180 kHz. For
the wireless channel condition, we set the pass loss model as
37.6×log(dist) + 148.1 similar to [30], the shadowing factor
is given by a log-normal function with standard deviation
of 8dB and small scale fading model is independently and
identically distributed (i.i.d.) Rayleigh fading with zero mean
and unit variance. As for the AWGN, we set the noise power
as σ 2

= −174 dBm/Hz. Other simulation parameters are
summarized in Table 2.

TABLE 2. Partial parameters.

B. EVALUATION OF STATIC-EEMP ALGORITHM
In this section, we evaluate the proposed strategies for
solving the static-EEMP. First of all, we introduce the min-
imum and maximum network load to reflect the load con-
dition of the network in a typical time slot. Considering
the interference that brought from switching on new type
BSs, we simulate the maximum throughput of the network
in n-BS-on case (i.e., n new type BSs are randomly switched
on, 0 ≤ n ≤ 16), separately. Thus, the minimum and maxi-
mum network loads correspond to the minimal and maximal
simulation results, respectively. Concretely, the maximum
throughput of the network is obtained as follows. We grad-
ually increase the amount of users and randomly distribute
these users in the network until any user is out of service.
This experiment is done 1000 times and a 10% trimmed
mean of the experiment results is calculated as the maximum
throughput. The result is shown in Fig.3, from which we get
the minimum network load as 120 users and the maximum
network load as 290 users. Actually, when the user number
is 290, all BSs are active no matter which strategy is applied

FIGURE 2. Simulation scenario with 280 users.

FIGURE 3. The maximum throughput for different number of active new
type BSs.

and there is no comparative significance. Thus, we evalu-
ate the performance of proposed TDBS, ESBS, RSS1, and
RSS2 by varying the user number from 120 to 280. The case
that all BSs keep active is used as the basic case for compar-
ison. 1000 times simulation is made where a corresponding
number of users are newly distributed in each time and the
average results are adopted.

Fig.4 shows the comparison of the average number of
BSs be switched off under different strategies. Particularly,
the ESBS under κ = 0 is simulated to show the effectiveness
of the usage of dk,j’ for lightening the extra consumption.
Obviously, ESBS is the most efficient one that can switch
off the most BSs and the gap between ESBS and ESBS
under κ = 0 is quite considerable. In other words, ESBS is
successfully designed and the tradeoff between energy saving
and extra consumption lightening is very significant.

Then, we can see that RSS2 performs worse than ESBS
but better than RSS1 or even ESBS under κ = 0, especially
in light network load case. This is because that in RSS2 the
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FIGURE 4. Average switched off BSs under different strategies.

FIGURE 5. Network EE under different strategies.

new type BSs are switched off in the initialization and then
switched on one by one. From a statistical point of view,
turning off BSs in descending order (as ESBS, TDBS, and
RSS1 execute) may lead to more BSs remaining active. Con-
sidering the dominating constant power consumption for an
active BS, RSS2 may have a relatively good performance.
However, this initialization will damage the user QoS at the
beginning in practice for the lacking of enough active BSs,
although we omit the time cost of switching operations in this
paper. In addition, it’s surprising that TDBS performs poorly.
This is due to its different user association policy with other
strategies in which the nearest BS is preferred rather than
the one with the best SINR. That means this user association
policy is not suitable. As the user number increasing, fewer
BSs can be switched off in the premise of guaranteeing the
QoS and the gaps between the strategies become narrow.
Notably, the performance of RSS2 is still better than that
of RSS1 or even ESBS under κ = 0 in Fig.5-7 which can
be ascribed to the similar reason and thus corresponding
analyses are omitted in following paragraphs.

Fig.5 illustrates the static network EE under different
strategies. Specific to a certain strategy that we proposed
(TDBS excepted), the EE gradually decreases as the number
of user increasing at first. This is because of the quickly
increasing of active BSs which can be seen from Fig.4.
However, with the increasing of network load, quite a few
BSs have been switched on and the changes of the active
BSs number are not obvious. That is to say, the increased
network throughput that contributes to the network EE is
more significant than the increased cost of switching on BSs.
This is why the EE rises slowly later. Then compare to Fig.4,
we can find that the strategy who switches off more BSs
can always get better EE. That is because a relatively huge
constant power consumption to maintain the active mode for
a BS and thus the number of BSs that are switched off impact
the network EE seriously. Then we can explain the curves of
TDBS and All On in which too many BSs keep active from
the beginning to the end compared with other strategies.

FIGURE 6. Energy saving under different strategies.

Fig.6 represents the percentage of saving in the power
consumption under different strategies comparedwithAll-On
case. For the dominating consumption of Pc,j, the energy
saving is related to the number of sleeping BSs directly.
Thus, the performance of each strategy is quite similar with
that in Fig.4. Generally speaking, the energy saving is quite
remarkable in a light network load case and as the net-
work load increasing the energy saving decreases gradually.
Fig.7 depicts the average energy consumption per active BS
under different strategies. Reference to Fig.4, we can see
that quite a few BSs are switched off in a light load case,
which means that the load for active BS is relatively heavy.
That is why the energy cost for the active BS is high at
the beginning in Fig.7. As the user number increasing, more
and more BSs are switched on rapidly, the average load for
active BSs is lightened and the energy cost per active BS
decreases naturally. However, when users are more than 220,
most of the BSs have been switched on and the BS load no
more keep lightening as the user number increasing. Taken
Fig.4 together, ESBS performs best and even ESBS under
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FIGURE 7. Energy consumption per active BS under different strategies.

FIGURE 8. Number of user in the network at different time slot.

κ = 0 performs well because BSs with better SINR are
switched on in priority. The curves of TDBS and All On are
unique and the reason is similar with that in Fig.5.

From above simulation results, we can see that ESBS
always outperforms other strategies and thus we choose
ESBS as the best static-EEMP algorithm to maximize the
network EE. RSS2 is second only to ESBS, but this strategy
may damage the user QoS at the beginning of every time slot
in practical situation. RSS1 is simple but mediocre. TDBS
performs poorly due to its unsuitable user association policy.
In addition, ESBS is still a better choice than RSS1 and
RSS2 when the accurate information of users’ positions is not
available for BSs, i.e., ESBS under κ = 0. However, TDBS
is no longer applicable without user’s location.

C. EVALUATION OF EEMP ALGORITHM
In this section, we evaluate the performance of our proposed
QFMEE algorithm in several time slots (i.e., L = 13), with
switching cost considered. Based on the simulation results
and analysis in Section IV.B, we choose ESBS as the strategy
for solving static-EEMP. The number and the distribution of

FIGURE 9. Network EE (a), switching frequency (b), and total switching
cost (c) of different schemes with varying switching cost per user.

user in the network vary every time slot and the range of
users number is set between 120 and 280, which is shown
in Fig.8. For the consideration of the switching cost and
its impacts on the network EE within the reference period,
ϕ and T are two key parameters. Thus, the influences caused
by these two parameters are discussed separately. To verify
the effectiveness of our proposed QFMEE, a Static-switching
algorithm (SSA) and a Travel-through algorithm (TTA) are
chosen as comparison.
SSA: In this scheme, switching operations are executed

according to the solution of static-EEMP entirely and the
tradeoff between the extra switching off cost and the energy
saving is not considered (i.e., let S∗ = Sideal1).
TTA: This algorithm is changed from the QFMEE. After

step 6 in Algorithm 5, all kinds of combinations of practical
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FIGURE 10. Network EE (a), switching frequency (b), and total switching
cost (c) of different schemes with varying T .

switching off operations are traveled through, and then the
one with best EE is chosen.

As ϕ increasing, network EE, switching frequency, and
total switching cost under T = 5 minutes are shown one
by one in Fig.9a, Fig.9b, and Fig.9c, respectively. We can
see that the network EE decreases with different slope for
different schemes in Fig.9a. Concretely, the TTA declines the
slowest and the SSA has the maximal dropping slope while
the QFMEE performs between them. This can be explained
by Fig.9b and Fig.9c. In Fig.9b, we can see that switching
frequency in QFMEE and TTA decrease gradually as ϕ grow-
ing while that of SSA remains constant and then Fig.9c gives
the corresponding total switching cost. This is due to the fact
that some BSs in QFMEE and TTA may keep active rather
than be switched off to avoid the over cost in switching off

operation when the user distribution changes. In addition,
TTA can find more of these BSs to switch off than that of
QFMEE at the cost of increasing computation complexity
significantly. Hence, we can conclude that TTA and QFMEE
can save energy from controlling the switching off operation
and contribute to the network EE and the bigger ϕ is the more
energy can be saved. When ϕ is small enough (i.e., less than
60 J per user), switching cost is just a bit part for the total
energy consumption and the energy saving from controlling
the switching off operation is of no significance.

Fig.10 illustrates the impact of T on the corresponding sim-
ulation results. From formula (8), the proportion of switching
cost in total energy consumption is becoming smaller and
smaller with the increasing of T . Thus, the network EE
improves either, which can be seen from Fig.10a. Specifi-
cally, when T is small (i.e., less than 5 minutes), TTA and
QFMEE can help with improving the network EE to varying
degrees. Fig.10b and Fig.10c show the switching frequency
and total switching cost during the whole L time slots. The
size of T does not impact the switching frequency and total
switching cost in SSA scheme but the switching frequency
and corresponding total switching cost in TTA and QFMEE
increase as T becomes longer. This is because the change of
user distribution depends on the number of T in the reference
period rather than the range of T itself, and so are the switch-
ing operations.

VI. CONCLUSION
In this paper, the EE improvement for dense cellular networks
with partial conventional BSs is analyzed, where partial new
type BSs can be dynamically switched on/off to save energy
and the rest conventional BSs always keep active. Switching
cost is remodeled and a short term predictable traffic flow
case is considered. We deal with the formulated EEMPwhich
is proved to be NP-hard in two stages. Firstly, the static-
EEMP with constant user distribution is considered and sev-
eral solution strategies are proposed. In the second stage,
a QFMEE scheme is proposed to solve the EEMP on the basis
of the results from static-EEMP. Simulation results show that
the ESBS for static-EEMP outperforms other proposed solu-
tion strategies in EE improving as well as energy saving and
the proposed QFMEE scheme can significantly improve EE
and reduce switching cost when the switching cost occupies
a considerable proportion in the total energy consumption.
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