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ABSTRACT In order to plan the robot path in 3D space efficiently, a modified Rapidly-exploring Random
Trees based on heuristic probability bias-goal (PBG-RRT) is proposed. The algorithm combines heuristic
probabilistic and bias-goal factor, which can get convergence quickly and avoid falling into a local minimum.
Firstly, PBG-RRT is used to plan a path. After obtaining path points, path points are rarefied by the
Douglas-Peucker algorithm while maintaining the original path characteristics. Then, a smooth trajectory
suitable for the manipulator end effector is generated by Non-uniform B-spline interpolation. Finally,
the effector is moving along the trajectory by inverse kinematics solving angle of joint. The above is a
set of motion planning for the manipulator. Generally, 3D space obstacle avoidance simulation experiments
show that the search efficiency of PBG-RRT is increased by 217%, while search time is dropped by 168%
compared with P-RRT (Heuristic Probability RRT). After rarefying, the situation where the path oscillated
around the obstacle is corrected effectively. And a smooth trajectory is fitted by spline interpolation.
Ultimately, PBG-RRT is verified on the ROS (Robot Operating System) with the Robot-Anno manipulator.
The results reveal that the validity and reliability of PBG-RRT are proofed in obstacle avoidance planning.

INDEX TERMS Bias-target factor, manipulator, motion planning, rapidly-exploring random trees, rarefy,
heuristic probability, ROS, non-uniform B-spline.

I. INTRODUCTION
Motion planning is divided into path planning and trajectory
planning [1]–[3]. Path planning focuses on generating a path,
and trajectory planning gives information of time to a path
[4]. Research on the manipulator end-effector, the main prob-
lem of path tracing is studied in path planning. Moreover,
in trajectory planning, the practical application of kinematics
inverse solution (inverse attitude, velocity and acceleration
inverse solution) is realized according to the requirements of
the task [5], [6]. In view of modern development, the manip-
ulator is widely used in modern manufacturing and education
industry, which are shown in Figure 1. Therefore, systematic
motion planning is important for solving practical problems.

The Rapidly-exploring Random Trees (RRT)algorithm is
a fast algorithm of path planning based on random sam-
pling. It is widely used by researchers because RRT can
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FIGURE 1. The application of the manipulator in teaching and industry.
(a) The manipulator has been used for teaching and studying in the
university laboratory. (b) The manipulator has become an important
component of the assembly line in the industry.

search in high-dimensional space and avoid the difficulty
of 3D modeling effectively [7]–[9]. Due to the randomness
and blindness of RRT [6], many scholars have proposed
improved RRT algorithms for different research objects and
performance requirements. Among them, LaValle introduced
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probability-based sampling, which improved the search effi-
ciency of the basic RRT algorithm. But at the same time,
it was easy to fall into the local minimum [10]. Kuffner and
LaValle proposed the RRT-Connect algorithm to increase the
path generation speed by increasing the number of exten-
sional trees [11]. Boyaciogl proposed time of optimal RRT
algorithm that combined the actual path and verified the
feasibility [12]. Karaman proposed the path optimized RRT
algorithm, which had high stability and neared optimally, but
it took a lot of time [13]. Cao X employed the idea of target
gravity to search path and used the genetic algorithm (GA)
to smooth processing. The optimized path length was short-
ened [14]. Zhang H introduced a regression mechanism to
prevent over-searching configuration space, adopted an adap-
tive expansion mechanism. To some extent, the path was
improved efficiently [15]. Xinyu W integrated the bidirec-
tional artificial potential field into the rapidly exploring ran-
dom tree star (RRT∗). There was a significant improvement
in search time and the number of iterations in path planning
[16]. Moon C proposed dual-tree rapidly exploring random
tree (DT-RRT), which showed great advantages on time and
success rate. It also generated a quality trajectory without
considering robot kinematics [17]. Wei K proposed a path
based on the maximum curvature constraint and achieved
the smoothness of the generation path better. However, there
were certain limitations in the dynamic obstacle avoidance
tracking process [7].

Path planning and manipulator motion evaluation indica-
tors are combined in the abovementioned studies. Further-
more, these methods are made based on the RRT algorithm
or RRT-derived algorithm, and some satisfactory results are
obtained. Overall, the problems are divided into the following
five parts: (1) The local minimum situation, which is the main
reason for failure in the search process, cannot be solved
well. (2) Similarly, the phenomenon of oscillatory motion
near obstacle increases in planning time. That means the
algorithm is unreliable for motion planning. (3) In otherwise,
motion planning is separated in most studies. Hardly studies
have proposed a complete solution to solve the manipulator
motion planning problem. (4) In researches, complementarity
is rarely considered in algorithms, which can help to improve
the reliability of the motion planning system. So, the disad-
vantage caused by a single algorithm is averted. For example,
the path point of PBG-RRT is denseness at the beginning
but is sparseness when approaching the goal. According to
the case, the Non-Uniform B-Spline is used for fitting, and
the manipulator trajectory can be obtained more accurately.
(5) The most of manipulator motion planning is simulated in
the 2D environment. Comparing 2D environment simulation,
the 3D environment can reflect the feasibility of the algorithm
more directly. At the same time, other path planning problems
can be applied in 3D space for PBG-RRT, especially in
Unmanned Aerial Vehicle problems.

In this paper, an improved RRT path planning with robust
performance in complex environments. Foremostly, com-
bined with the heuristic probability and bias-goal factor,

FIGURE 2. Simplified collision detection diagram. The cylinder is a
simplification of the mechanical arm in the configuration space, the
radius is r. The sphere is a simplification of the obstacle in the
configuration space, the radius is R. The distance between the sphere
center and the center axial is d.

the PBG-RRT algorithm is proposed. which can avert the
local minimum and time-consuming situations. After that,
the Douglas-Peucker algorithm is adopted for generating path
points to cut down the control point which is reversed by the
path point. After rarefying the path points, a trajectory curve
is fitted by Non-Uniform B-Spline. Finally, the validity and
reliability of the whole motion planning strategy are verified
on ROS. Also, the feasibility and advantages of the PBG-RRT
algorithm are verified.

The remainder of this paper is as follows. Section II,
collision detection is introduced base on the problems
with maps. Then the improved RRT algorithm (PBG-RRT)
is introduced in section III. The trajectory is fitted
by Non-Uniform B-Spline after rarefying path points in
section IV. In Section V, simulation and verification are
carried out used by Matlab and ROS to verify the whole
motion planning strategy. Finally, a conclusion is summarized
in section VI.

II. COLLISION DETECTION AND MAP SETTING
A. COLLISION DETECTION PROBLEMS AND SOLUTIONS
Collision detection usually simplifies the obstacle andmanip-
ulator model by geometric envelope method in space [18].
As shown in Figure 2, set the coordinate of the sphere
center (x, y, z). The distance from the sphere center to
the center axial of the cylinder is d . And the sphere
radius is R. Also, the radius of the cylinder is r . Thus,
a simplified collision problem converts into when d >

r + R the manipulator does not collide with an obsta-
cle, otherwise, it collides. Although this approach takes up
a certain amount of effective space, calculation efficiency
is improved.
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FIGURE 3. The simulation maps in Matlab. (a) Map-1 is used to compare
search capabilities with different algorithms. (b) Map-2 is used to verify
the PBG-RRT tracing capabilities in complex space. Coordinate space is
set as 500 × 500 × 500. The blue point is the start. The red point is the
goal. Black geometry is an obstacle.

B. MAPS SETTING
Maps are established according to the comparison and verifi-
cation with PBG-RRT, which is shown in Figure 3. Map-1 is
used to prove the validity of the algorithm. And Map-2 is
used to verify the PBG-RRT algorithm reliability in complex
space.

III. IMPROVED RRT PATH PLANNING
A. THEORY OF RRT ALGORITHM
RRT algorithm is traversing the whole graph by probability.
And it facilitates searching in high-dimensional space [19],
[20]. Figure 4 shows the growth process of RRT.

According to Algorithm 1, set a start point qstart and store
qstart in qnodes. The random sampling point of the whole map
in space is qrand . Find the nearest point in qnodes to qrand
as qnear . Then, advance to qnew in a certain step δ in the
direction of qnear to qrand . Collision detection is executed
during this process. If the collision is not detected, store qnew
in qnodes. If the collision is detected, it will re-sampling to
repeat the above process. When

∣∣qnew − qgoal ∣∣ < Error it is
considering finding a goal and Store qgoal in qnodes. Finally,
according to the parent-child relationship of each node in
qnodes, the reverse search finds the planned path [21], [22].
Algorithm 1 presents the pseudo-code of RRT. There are four
return values in the algorithm: ‘‘Advanced’’ means that a new
node is searched but it is not known whether it is near the goal

FIGURE 4. RRT growth process diagram. Black circles are obstacles. Black
points are RRT path points. δ is the step of the RRT tree movement. qstart
is the beginning of the RRT tree. qrand is a random point based on spatial
sampling. qnear is the closest point in the RRT tree to qrand. qnew is a
new path point that RRT tree in δ step size along with the random point.

Algorithm 1 Base RRT
Input:

Initial configuration qstart qgoal obstacle
Number of sampling point K
Step size δ

Output:
RRT graph G
Vertices of tree nodes

1 Initialize all Parameters ;
2 nodes = qstart ;
3 for i = 1 to K do
4 qrand = Sample();
5 qnear ← Nearest(nodes, qrand );
6 qnew← Steer(qnear , qrand , δ);
7 if ObstacleFree( qnear , qnew) then
8 nodes.add(qnew);
9 return Advanced;

10 if dist(qnew − qgoal) < Error then
11 return Reached;

12 else
13 return Trapped

14 final ;
15 return Graph;

FIGURE 5. RRT search space expansion process. The blue point is the
start. Red big-point is the goal. Red small-points is search tree nodes.
Black geometry is an obstacle. The green lines are the growth path of the
RRT tree search in space. The red line is the path that the RRT searches
for the goal.

error interval; ‘‘Reached’’ means that the new node reaches
the error interval of the goal node, that is, the path planning
is completed; ‘‘Trapped’’ represents a collision during the
expansion process, the expansion fails; ‘‘Graph’’ represents
the generation of the search tree path map [23]

The searchability of RRT is powerful. However, the ran-
domness and blindness caused by random sampling have
obvious shortcomings. Figure 5 shows the search process of
the RRT in 3D space. As space expands, the RRT tree needs
to traverse the entire space. Although the algorithm can trace
the path, a lot of computing resources and time are consumed.
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B. HEURISTIC PROBABILITY STRATEGY
Heuristic probability is referred by heuristic strategy in the
process of random sampling. In order to avoid searching for
invalid areas, the RRT tree is extending to the goal within the
probable range. If the collision is not detected in the direction,
it will be stored in the RRT tree as a new node [24]–[26].

Although the method has clear directivity to the goal, it is
easy to collide around obstacles or search failure when space
has bigger obstacles. In order to avoid such a situation, a bias-
goal factor is proposed to influence the distribution of random
points in the path planning process.

C. BIAS-GOAL FACTOR STRATEGY
In basic RRT, the process of growing a new node qnew is
configuring as

qnew = qnear + δ
−−→qrand −

−−→qnear
|qrand − qnear |

(1)

The bias-goal factor ϕ is used to control the direction and
distance of random points. The idea of the artificial potential
field is combined in this strategy [27]. When the RRT tree
is far away from the goal, the heuristic probability is used as
guidance to avoid oscillating obstacles. When approaching
the goal, the bias-goal factor can guide and quickly converge.
So, adding bias-goal factor ϕ, the new node qnew is reconfig-
ured as

qnew = qnear + δ
−−→qrand −

−−→qnear
|qrand − qnear |

+ ϕ

−−→qgoal −
−−→qnear∣∣qgoal − qnear ∣∣ (2)

Let the angle between −−−−−−→qrandqnear and −−−−−−→qgoalqnear is β. And
the angle between (−−−−−→qnewqnear +

−−−−−−→qgoalqnear ) and −−−−−−→qgoalqnear
is α. In the process of random sampling, it can be divided
into the following three cases without obstacles as shown
in Figure 6. When β ∈ (0, π

/
2] qnew is closer to qgoal than

qrand . The search point can be more biased toward the goal,
thereby improves search efficiency.When β ∈ (π

/
2, π) qnew

is closer to qgoal than qrand . The moving step size will be
reduced but the search invalid space can also be dropped.
When β = π which is the same as β ∈ (π

/
2, π). It is

necessary to control δ > ϕ to avoid the local minimum
solution. In this way, the gravitational potential field will not
lead to local minimum solutions in a complex environment.
Meanwhile, it also improves the efficiency of the search
process.

The bias-goal factor ϕ is configuring as

ϕ =

n∑
i=1

aiebix (3)

where x is
∥∥−−−−−−→qgoalqnear

∥∥.
PBG-RRT algorithm pseudo-code is shown in

Algorithm 2. ‘‘Steer’’ is counted according to the heuristic
probability strategy, and ‘‘MixSteer’’ is calculated according
to the bias-goal factor strategy.

Algorithm 2 BG-RRT
Input:

Initial configuration qstart qgoal obstacle
Number of sampling point K
Heuristic probabilistic P
Step size δ
Bisa ϕ

Output:
RRT graph G
Vertices of tree nodes

1 Initialize all Parameters
2 nodes = qstart ;
3 for i = 1 to K do
4 qrand = Sample();
5 qnear ← Nearest(nodes, qrand );
6 if p > P then
7 qnew← Steer(qnear , qgoal , δ);

8 else
9 qnew←MixSteer(qnear , qgoal , qrand , ϕ, δ);

10 if ObstacleFree( qnear , qnew) then
11 nodes.add(qnew);
12 return Advanced;

13 if dist(qnew − qgoal) < Error then
14 return Reached;

15 else
16 return Trapped

17 final ;
18 return Graph;

IV. ITRAJECTORY PLANNING
A. RAREFY TREATMENT
RRT tree nodes are increasing as space expands and
path points of the trajectory plan are increasing accord-
ingly. This is especially noticeable in 3D space. Moreover,
the concavity and convexity of the curve are increased
as the control points increase by B-spline fitting. So that
the distance, time and manipulator energy consumption
of a trajectory plan is also increasing accordingly. There-
fore, it is important to minimize the control points for
trajectory planning while maintaining the original curve
characteristics.

In this paper, the Douglas-Peucker algorithm is adopted,
and the algorithm steps are as follows. As shown in Figure 7,
the AG is connected by a straight line between the first and
last points of path planning. The point where other path
points reached the maximum distance of line AG is C. And,
the distance between point C and AG line is d. Given rarefy
coefficient λ and d, if d is small, point C will be deleted. If d is
large, point C will be reserved as a key point. Then C divides
the original path into two segments AC and CG. Repeated
the above steps. The resulting points are the path points after
rarefying.
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FIGURE 6. Three cases are combining with the bias-goal factor. qnew is the point of combining δ and ϕ. (a) Ability to approach
the goal while increasing search efficiency under the influence of bias-goal factor. (b) Correct the direction of random point as
much as possible toward the goal. (c) Need to control ϕ > δ to avoid falling into the local minimum.

B. NON-UNIFORM B-SPLINE FITTING
Due to the randomness and blindness of RRT, the continu-
ous segments of planned path points are usually sawtooth.
In this case, the manipulator moves unstable and oscillatory.
So that the drive motor is impaired by a sudden change in
acceleration [28].

Under the PBG-RRT algorithm, path points distribute
dense at the beginning process, but end process sparse. In this
paper, three-order Non-Uniform B-Spline interpolation is
used to optimize trajectory. It applies to high-dimensional
space that manipulator effectively solves joint smoothing
problems. The foundation is laid for the manipulator to exe-
cute complex work tasks.

The B-spline curve equation as

p(u) =
n∑
i=o

diNi,k (u) (4)

where di(i = 1, 2, · · · , n) are control points. Ni,k is
the K-order normal B-spline basis function. The non-
uniform node vector is parameterized by chord length to
implement the parameterization process for control points.
Figure 8 is a comparison of uniform nodes and non-uniform
nodes.

The first node and the last node have k+1 repetition
in Figure 8 (b). Different types of B-spline curves have dif-
ferent node vectors U.

According to the Riesenfeld method, let the sides of the
polygon are in order: li = |di − di−1| (i = 1, 2, . . . , n).

The total side length is L =
n∑
i=1

li. The even-order (5), as

FIGURE 7. Schematic diagram of the Douglas-Peucker algorithm. Green
points are path points. Point A is the start of the path. Point B is the end
of the path.

shown at the bottom of this page. The odd-order (6), as shown
at the bottom of the next page. The basic function of B-spline
is usually the Cox-deBoor recursion formula as

Ni,0(u) =

{
1, ui ≤ u ≤ ui+1
0, others

Ni,k =
u− ui

ui+k − ui
Ni,k−1(u)+

ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u)

0
0
= 0;

0×∞ = 0
(7)

U =

0,0, . . . ,0,︸ ︷︷ ︸
k+1

(
k/2∑
j=1

lj)+
lk/2+1

2

L
,

(
k/2+1∑
j=1

lj)+
lk/2+2

2

L
, . . . ,

(
n−k/2−1∑

j=1
lj)+

ln−k/2
2

L
, 1,1, . . . ,1︸ ︷︷ ︸

k+1

 (5)
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FIGURE 8. The different between uniform node and non-uniform node.
(a) The uniform nodes are divided equally on the number axis of the unit.
(b) Non-uniformity means that the range of influence vertices can be
changed. Used to fit irregular curves with uneven distribution points.

Path points are obtained during the path planning process.
After rarefying, control points di(i ∈ qcurve) need to be treated
in the reverse solution. The three-time B-spline of reverse
solution equation is as


N1,3(u3) N2,3(u3) N0,3(u3)
N1,3(u4) N2,3(u4) N3,3(u4)
. . .

. . .
. . .

Nn−4,3(un) Nn−3,3(un) Nn−2,3(un)
Nn-1,3(un+1) Nn−3,3(un+1) Nn−2,3(un+1)



×


d1
d2
...

dn−3
dn−2

 =


q0
q1
...

qn−4
qn−3

 (8)

where qi are path points.
As for the elements are values of the basic function in the

coefficient matrix, they are only related to the node vectors
U. Equation (8) is simplified as


b1 c1 a1
a2 b2 c2
. . .

. . .
. . .

an−3 bn−3 cn−3
cn−2 an−2 bn−2

 (9)

FIGURE 9. The track after optimization by non-uniform B-spline. The red
line is a path planning trajectory. The blue line is path point line drawing
after rarefying. The cyan line is the three-order Non-Uniform B-spline
fitting trajectory. Green points are path points.

Each parameter as

ai =
(1i+2)

2

1i +1i+1 +1i+2

bi =
1i+2 (1i +1i+1)

1i +1i+1 +1i+2
+
1i+1 (1i+2 +1i+3)

1i+1 +1i+2 +1i+3

ci =
(1i+1)

2

1i+1 +1i+2 +1i+3
ei = (1i+1 +1i+2) qi−1,

i = 1, 2, . . . , n− 2

Then a smooth trajectory is generated by control points.
As shown in Figure 9, trajectory optimization is realized on
the original path planning.

After fitting by Non-Uniform B-spline, the question which
obtained trajectory fromfitting collides with the obstacle may
exist. This case which is defined as planning failure happens
in a pretty complex environment. As far as a large number
of simulations in this paper, the success rate of planning is
nearly closing to 100% .

V. SIMULATION AND EXPERIMENT
In this section, in order to verify the validity and reliability
of PBG-RRT, set two 500 × 500 × 500 maps. The validity
is verified in Map-1, and the reliability is proved in Map-2.
All experiments are performed on an Intel Core i5-8265U
1.8GHz computer with 8GB of memory. Set start point as
(40, 40, 40) and goal point as (460, 460, 460). Set heuristic
probability P = 0.1.

U =

0,0, . . . ,0,︸ ︷︷ ︸
k+1

(k+1)/2∑
j=1

lj

L
,

(k+1)/2+1∑
j=1

lj

L
, . . . ,

n−(k+1)/2∑
j=1

lj

L
, 1,1, . . . ,1︸ ︷︷ ︸

k+1

 (6)
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FIGURE 10. Compare with four algorithms of path planning. Green point is the start point. Red big-point is the goal. Red small-points is search
tree nodes. The green path is the echo algorithm search path. The red path is the path planning trajectory. (a)–(d) show the PBG-RRT searches
paths with different algorithms.

After verifying by Matlab, the whole motion planning
Strategy is simulated in ROS. Specifically, adjust experiment
parameters in the ‘‘src’’ files and set up the simulation envi-
ronment in Rviz. Finally, the feasibility of motion planning is
demonstrated by the above simulations.

A. ALGORITHM VALIDATION IN MATLAB
RRT search time increases with the complexity of space.
In order to verify the validity of PBG-RRT, other algorithms
are compared in Map-2. Such as RRT, P-RRT and BG-RRT
(BG-RRT is PBG-RRT without heuristic probability). Set
step size δ = 20 and simulation 1000 times. The average
data are shown in Table 1.

Table 1 indicates, RRT average search time is the least, and
then the P-RRT also shows good searchability. Though, RRT
is slow to search in complex space. Other algorithms com-
pared with PBG-RRT, the average length of path planning
is reduced by 11%-27%. Also, the average number of nodes
in the path is dropped by 16% -39%. Especially, the search
efficiency of PBG-RRT is increased by 217% compared
with P-RRT.

TABLE 1. Four algorithms experimental data.

Because the bias-goal factor converges quickly, PBG-RRT
has a significant improvement in searching valid space. Com-
paring with P-RRT, the average search time of PBG-RRT
increased by 168%. Likewise, comparing with BG-RRT, the
average search time of PBG-RRT is greatly increased. That
means the bias-goal factor performs poor at the beginning of
processing, but it is continuously enhanced in the process of
approaching. In 1000 simulation experiments, the variance of
BG-RRT search time is large. Result from in the early stage,
the bias-goal factor still has certain blindness.
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FIGURE 11. Compare with four steps of motion planning. The red line is the path planning trajectory. The cyan line is the three-order
Non-Uniform B-spline fitting trajectory. Green points are path points. (a)–(d) show path points are decreasing as δ increases. And the difference
between curves is also increasing.

According to Figure 10, other algorithms oscillate near
obstacles in the complex environment compared with
PBG-RRT. Searching does not have directivity, even lots of
sawtooth paths are planned and invalid spaces are searched.
Obviously, the number of nodes in the search process and
calculations in invalid space are dropped by PBG-RRT. Dur-
ing the search process, PBG-RRT is pointing to the goal
constantly and avoiding shocking around obstacles.

Through the above comparative analysis, PBG-RRT
combines the advantages of bias-goal factor and heuristic
probability and make up for each disadvantage. Enable to
converge instantly and avoid falling into the local minimum.
So, PBG-RRT has absolute advantages in complex environ-
ments. Compared with other algorithms, PBG-RRT meets
validity in a complex environment.

B. ALGORITHM RELIABILITY IN MATLAB
The reliability of PBG-RRT is proved by different step sizes.
Take 1000 times simulation with different δ in Map-1. The
results are shown in Table 2. Similar trajectories under differ-
ent δ are selected and shown in Figure 13.

On the basis of Table 2. When step size is longer, the
searchability is stronger, the average of nodes in a path is
fewer and the average path length is shorter. For rarefying,
path points are dropped by 78%-83% while ensuring the
original curve characteristics. Moreover, the average distance
after the trajectory planning is reduced by 7% -10% com-
pared with path planning.

When δ = 5, the consumption of average time has
increased sharply, which is caused by the bias-goal factor.
In other words, the bias-goal factor has little effect when
moving away from the goal. In this time, the heuristic prob-
ability mainly affects to proximity goal. When approach-
ing the goal, it is quickly converging by bias-goal factor.
Hence, suitable step size is important for the reliability
of PBG-RRT.

In Figure 11, the path point decreases along with δ

increases. But the deviation is brought on curves. At the
same time, as the step size increases, the length of the
interpolated trajectory is continuously reducing. Because of
the trajectory interpolated by Non-Uniform B-spline after
rarefying.
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TABLE 2. Four kinds of δ with PBG-RRT experimental data.

FIGURE 12. The Robot-Anno manipulator in Rviz. It shows the start and
goal of the manipulator pose. The white one is the manipulator start
pose. The yellow one is the manipulator goal pose. Black geometry is an
obstacle, which needs to avoid.

FIGURE 13. Manipulator motion planning process. Start state of
manipulator coincides with the goal state. This indicates that motion
planning is completed. The green line, which is smooth and less inflection
point, is the trajectory of motion planning.

The above methods can effectively avoid margin planning
caused by large-scale path planning. Meanwhile, the reliabil-
ity of PBG-RRT is proofed.

C. ROS EXPERIMENT
Robot-Anno manipulator is used as the research object in
this paper. In this case, the visualization tool Rviz for sim-
ulation is performed in ROS, which simulated with a com-
plete motion planning solution. Specifically, a manipulator
simulation environment is constructed in Rviz. Then, set
obstacles and poses as shown in Figure 12. Afterward, set the
start and goal pose of manipulator end-effector parameters

FIGURE 14. Changes in each joint of motion planning. The lines of six
colors in the figure represent the changes in the motion planning of each
joint. Each of the joint changes stable without sudden change.

TABLE 3. Each joint angle under the start pose and the goal pose.

TABLE 4. The average time of the different algorithms under the same
environment.

as (units: m)

Pstart =


0.0002 −1.0000 −0.0001 0.3113
1.0000 0.0002 0.0001 −0.2502
−0.0001 −0.0001 1.0000 0.2143

0 0 0 1

 (10)

Pgoal =


0.0002 −1.0000 −0.0001 0.3056
1.0000 0.0002 0.0001 0.2514
−0.0001 −0.0001 1.0000 0.2073

0 0 0 1

 (11)

The angle of each joint as shown in Table 3 (units: radian).
Using the PBG-RRT algorithm combined with three-order

Non-Uniform B-spline processing after rarefying. A smooth
path is gotten in simulation as shown in Figure 13. The
manipulator trajectory is smooth during the obstacle avoid-
ance process. Simultaneously, each angle of joint changes
smoothly during the simulation without any sudden change
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or shock in Figure 14. Also, the time of different algorithms
is simulated with twenty times in the same environment as
shown in Table 4.

VI. CONCLUSION
Several improvements have been proposed for shortcom-
ings of RRT and manipulator motion planning optimization.
Firstly, bias-goal factor and heuristic probability strategy
are combined for the PBG-RRT algorithm. The speed of
planning is greatly improved in 3D space with obstacles.
At the same time, the phenomenon of the local minimum
is averted. Then the path points are obtained by rarefying.
Redundant path points are minimized while maintaining the
original curve characteristics. The phenomenon of oscillating
near obstacles during path planning is avoided. Meanwhile,
the number of inflection points can be reduced generated
from Non-Uniform B-spline fitting. According to the density
distribution of the path point, a three-order Non-Uniform
B-spline is used. Hence, the smooth end-effector trajectory is
obtained. The whole set of motion planning strategy is basing
on the complementary of algorithms. This is rarely doing
by previous scholars, but it is important for a manipulator.
Finally, the simulation is performed on ROS. The motion
planning strategy is reliable from the time of planning and
the changes in each angle of the joint.

There are still many works worth studying about this
motion planning strategy. The obstacle expansion still
occupies a part of the effective space for path planning
search. In addition, combined with dynamic obstacle avoid-
ance, it can better meet more scenarios.
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