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ABSTRACT In real-world automated manufacturing systems (AMSs), a breakdown of unreliable resources
in operation often makes most existing deadlock control policies inapplicable. This work focuses on robust
deadlock control problem in AMSs with multi-type and multi-unit unreliable resources. The unreliable
resource’s failure and repair activities are modeled by Petri nets. We introduce a concept of strong
controllable siphon basis, which can be seen as an extension of the controllable siphon basis proposed in our
previouswork. Then by adding a control placewith proper depth variable to each strict minimal siphon (SMS)
andR-type SMS in a strong controllable siphon basis, we successfully develop a small-scaled robust deadlock
controller for AMSs under consideration. Such a robust controller can guarantee that, as long as at least one
unit of each unreliable resource type is available, all types of parts can be processed smoothly through any
one of their routes even during downtime. Moreover, the number of control places of the proposed controller
is no more than that of the activity places in the Petri net model and its size grows polynomially with Petri
net model.

INDEX TERMS Automated manufacturing systems (AMSs), robust deadlock controllers, strong
controllable siphon basis, Petri nets, unreliable resources.

I. INTRODUCTION
Deadlock-free resource allocation problem in automated
manufacturing systems (AMSs) has been an active research
area and received increasingly attentions in both industry
and academia during the last decades [1]–[4]. In real-world
AMSs, resource failures occur unpredictably and may reduce
dramatically the resource utilization as it can result in dead-
locks which degrade the performance of AMSs greatly.
Therefore, it is essential to design an efficient deadlock con-
troller to ensure a smooth production even if resource failures
happen.

Three kinds of strategies are proposed to deal with dead-
lock problems: deadlock detection and recovery [5], deadlock
prevention [2], [6]–[13], and deadlock avoidance [14]–[16].
The first one uses a monitoring mechanism for detect-
ing deadlock occurrence and a resolution procedure for
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appropriately preempting some deadlocked resources. Pre-
vention method is usually achieved by establishing a static
resource allocation policy such that the system can never
enter a deadlock state. The last one is online control policies
that use feedback information on the current resource alloca-
tion status and future process resource requirements, keeping
the system away from deadlock states.

There have been tremendous works developed on the
deadlock control problems for AMSs without unreliable
resources. Petri nets are utilized to describe such sys-
tems [17]–[20], where deadlocks can be characterized by
strict minimal siphons (SMSs) or maximal perfect resource
transition circuits (MPCs) [21]–[25]. By adding a control
place to each empty SMS or saturated MPC, deadlocks can
be prevented from happening, and then various deadlock
control policies are developed for AMSs. Further, to obtain a
deadlock controller with small structures, the concepts of ele-
mentary siphon and controllable siphon basis are introduced
in [8] and [12], respectively.
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Note that resource failure is a common problem in a real
production system [26]–[29]. However, when an unreliable
resource fails, the existing deadlock control policies are
always no longer in force and deadlocks or blocked states
may rise in the disturbed system. Consequently, a challenge
is rising: how to control or avoid deadlocks or blocked states
in the operation of AMSs when unreliable resources fail.
To date, the existing robust control methods for AMSs with
unreliable resources mostly fall into deadlock avoidance.
Hsieh modeled the failure of resource as decrease of tokens
in Petri net models [30], [31]. Lawley and Sulistyono [32]
investigated the AMS with a single unreliable resource,
and combined some developed control policies with neigh-
borhood constraints to ensure the system continue produc-
ing the part types that do not require the failed resource.
Chew and Lawley [33] relaxed the assumption so that the
system may have some unreliable resources and every part
type at most required one unreliable resource on its route.
Their work ensures that when a subset of unreliable resources
fails simultaneously, all the type parts that do not require the
failed resource can be produced smoothly.

On the other hand, some Petri net-based robust deadlock
prevention policies are presented [34]–[42]. Most of them
deal with the manufacturing systems with a unique unreliable
resource type. In these systems, only one unit of unreliable
resources is assumed to fail at a time [36], [38]–[41]. For
example, for a class of manufacturing systems with one
unreliable resource type, Wang et al. [38] concentrated on
distributing parts requiring failed resource throughout the
buffer space of shared resources that the disturbed parts do
not block the production of part types not requiring failed
resource. Based on the concept of strong transition covers,
Feng et al. [39] developed a 1-robust deadlock controller for
the same AMSs. Later, Wu et al. extended these results to
general cases with multi-unit resource failures [41].

This paper concentrates on a robust deadlock prevention
policy for AMSs with multi-type and multi-unit unreliable
resources. Each resource type is composed of several identi-
cal units, and some resources may fail simultaneously even
though they belong to different types. The failed resources
can return to the system to continue processing parts after
their repair. Those AMSs can be modeled by a class of
Petri nets, namely, systems of simple sequential processes
with resources (S3PRs) in the absence of resource fail-
ures. Another Petri net called failure-repair nets are used to
model the resource failure and repair activities. Then S3PRu,
the composition of S3PR and failure-repair nets, can model
the whole behavior of AMSs under consideration. The main
contribution of this work is as follows.
(1) We propose two concepts of R-type SMS and strong

controllable siphon basis. An SMS is an R-type SMS if
its resource set contains at least one unreliable resource
type. A controllable siphon basis is strong if it includes
at least one R-type SMS.

(2) By adding a control place with a proper depth control
variable and suitable related arcs to each SMS in a

strong controllable siphon basis, we develop a robust
controller with small size.

(3) Compared with existing works [34], [36]–[41],
we believe that the robustness level of our proposed
controller is improved largely because it allows that
multi-type and multi-unit unreliable resources fail
simultaneously.

The rest of the paper is organized as follows. Section II
reviews preliminaries used throughout this paper. The con-
cepts of R-type SMS and strong controllable siphon basis are
introduced in Section III. Then the design of a robust con-
troller based on strong controllable siphon basis is developed
in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES
A. PETRI NETS
A Petri net is a 3-tuple N = (P,T ,F), where P and T are
finite, nonempty and disjoint sets. P is a set of places and T
is a set of transitions. F ⊆ (P×T )∪ (T ×P) is called directed
arcs. Given a Petri net N = (P,T ,F) and a vertex x ∈ P∪T ,
the preset of x is defined as •x = {y ∈ P∪T |(y, x) ∈ F}, and
the post set of x is defined as x• = {y ∈ P∪T |(x, y) ∈ F}. The
notation can be extended to a set. For example, let X ⊆ P∪T ,
then •X = ∪•x∈Xx and X• = ∪x∈Xx•. A state machine is a
Petri net in which each transition has exactly one input and
one output place. A marking or state of N is a mapping M :
P → Z+, where Z+ is the non-negative integer set. Given a
place p ∈ P and a marking M , M (p) denotes the number of
tokens in p atM , and we use6p∈PM (p)p to denote vectorM .
Let S ⊆ P be a set of places, the sum of tokens in all places of
S at M is denoted by M (S), i.e., M (S) = 6p∈SM (p). A Petri
net N with an initial markingM0 is called a marked Petri net
or net for simplicity, denoted as (N , M0).
A transition t ∈ T is enabled at a marking M , denoted by

M [t >, if ∀p ∈ •t , M (p) > 0. An enabled transition t at
M can be fired, resulting in a new marking M ′, denoted by
M [t > M ′, where M ′(p) = M (p) − 1, ∀p ∈ •t\t•; M ′(p) =
M (p) + 1, ∀p ∈ t•\•t; and otherwise M ′(p) = M (p), ∀p ∈
P − {•t\t•, t•\•t}. A sequence of transitions α = t1t2 . . . tk ,
ti ∈ T , i ∈ Nk = {1, 2, . . . , k}, is feasible from a markingM ,
if there exist Mi[ti > Mi+1, i ∈ Nk , where M1 = M , and Mi
is called a reachable marking from M . Let R(N ,M0) denote
the set of all reachable markings of N fromM0. A transition t
is live if ∀M ∈ R(N ,M0), ∃M ′ ∈ R(N ,M ) such that M ′[t >
holds. A net is live if every transition is live.
A transition t is dead at a markingM ∈ R(N ,M0) iff ∀M ′ ∈

R(N ,M ), M ′[t > does not hold.
The incidence matrix of N is a matrix [N ] : P × T →
{−1, 0, 1} such that [N ](p, t) = −1 if p ∈ •t\t•; [N ](p, t) =
1 if p ∈ t•\•t; and otherwise [N ](p, t) = 0 if p ∈ P −
{
•t\t•, t•\•t}. A P-vector is a column vector I : P → Z
indexed by P, and a T-vector is a column vector J : T → Z
indexed by T , where Z is the integer set. A nonzero P-vector
I is a P-invariant if I 6= 0 and IT [N ] = 0T .
The support of a P-invariant I is the set of places, ||I || =
{p ∈ P|I (p) 6= 0}. A P-invariant I is minimal if there does
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not exist a P-invariant I ′ such that ||I ′|| ⊆ ||I ||. A nonempty
subset of places S ⊆ P is a siphon if •S ⊆ S•, i.e., an input
transition is also an output transition of S. If there does not
exist a siphon contained in a siphon as a proper subset, it is
minimal. A minimal siphon is strict if it does not contain
the support of any P-invariant in N . Strict minimal siphon
is written as SMS. Let 5 denote the set of all SMSs of N
throughout the paper.

Two marked Petri nets (Ni,Mi0) = (Pi,Ti,Fi,Mi0),
i ∈ N2, are compatible if ∀p ∈ P1∩P2,M10(p) = M20(p). The
composition of two compatible marked Petri nets (N1, M10)
and (N2,M20) is a marked Petri net (N1,M10)⊗ (N2,M20) =
(P,T ,F,M0), where P = P1∪P2, T = T1∪T2, F = F1∪F2,
and M0(p) = Mi0(p) if p ∈ Pi, i ∈ N2.

B. S3PR CLASS
S3PRs are developed in [6] for modeling AMSs with flexible
routings and defined in a recursive way.

(1) A Simple Sequential Process with Resources (S2PR) is
a Petri net N = (P ∪ P0 ∪ PR,T ,F), so that:

(1.1) P 6= ∅, P0 = {p0}, PR 6= ∅, P ∩ P0 = ∅, and
(P∪P0)∩PR = ∅. p0, p ∈ P and r ∈ PR are called
a process idle place, an operation or activity place,
and a resource place, respectively;

(1.2) the subset, N , generated by P ∪ P0 and T is a
strongly connected state machine;

(1.3) every circuit of N contains the place p0.
(1.4) ∀p ∈ P, ∀t ∈• p, ∀t ′ ∈ p•, •t ∩ PR = t ′• ∩

PR = {r};
(1.5) The following three statements are verified:

a) ∀r ∈ PR, ••r ∩ P = r•• ∩ P 6= ∅, b) ∀r ∈ PR,
•r ∩ r• = ∅; c) ••(p0) ∩ PR = (p0)•• ∩ PR = ∅.

(2) A System of S2PR, called S3PR for short, is defined
recursively as follows.

(2.1) An S2PR is an S3PR.
(2.2) Let Ni = (Pi ∪ P0i ∪ PRi,Ti,Fi), i ∈ N2, be two

S3PRs, such that (P1∪P01)∩(P2∪P02) = ∅,PR1∩
PR2 6= ∅, T1 ∩ T2 = ∅. The net N = N1 ⊗ N2 =

(P ∪ P0 ∪ PR,T ,F) resulting of the composition
of N1 and N2 via PR1 ∩ PR2 is also an S3PR.

Let N be an S3PR. Its acceptable initial marking M0 must
satisfy that 1) M0(p0) ≥ 1 for p0 ∈ P0 is a finite number;
2) M0(p) = 0, ∀p ∈ P; 3) M0(r) ≥ 1, ∀r ∈ PR, where M0(r)
is the capacity of the resource r .
Let N = (P ∪ P0 ∪ PR,T ,F) be an S3PR and a transition

t ∈ T , let (o)t and t (o) denote the input and output operation or
process idle places of t , respectively, and (r)t and t (r) denote
the input and the output resource place of t , respectively. For
a given marking M ∈ R(N ,M0), t is process-enabled at M if
M ((o)t) > 0, and t is resource-enabled at M if M ((r)t) > 0.
Only transitions that are process- and resource-enabled at the
same time can be fired.

Let N = (P ∪ P0 ∪ PR,T ,F) be an S3PR, ∀r ∈ PR,
H (r) = {p ∈ P|(r)•p = r}; ∀R ⊆ PR, H (R) = ∪r∈RH (r).

Let S be an SMS of N, C[S] = H (S ∩ PR)\S is called as the
complementary set of S.
Let N = (P ∪ P0 ∪ PR,T ,F) be an S3PR, and a string of

nodes α = x1x2x3 . . . xq is called a path of N iff xi+1 ∈ x•i
for i ∈ Nq−1, where q − 1 is the length of α. An elementary
path is a path whose nodes are all different (except, perhaps,
x1 and xq). ∀ x and y be two nodes in P ∪ T . If there exists a
simple path in N from x to ywith length greater than 1, which
does not contain any place inP0∪PR, we say that x is previous
to y in N. This fact is denoted as x < y. The fact that x is not
previous to y in N is denoted as x 6<y. Let W ⊆ (P ∪ T ) be a
set of nodes of N. Then we say that x is previous to W in N,
denoted as x < W , if and only if ∀y ∈ W , x < y. The fact that
x is not previous to W in N, denoted as x 6< W , if and only if
∀y ∈ W , x 6< y.

C. CONTROLLABLE SIPHON BASIS
Let 4 ⊆

∏
be a subset of SMSs in a marked S3PR (N , M0).

For each S ∈
∏
\4, if there exists πS ⊆ 4 such that C[S] ⊆

C[πS ] and M0(S) > |πS |, where C[πS ] = ∪S ′∈πsC[S ′] and
|πS | denote the number of SMSs in πS , then 4 is called a
controllable siphon basis of (N , M0), and πS as the relevant
siphon set of S.
Definition 1 [12]: Let (N ,M0) = (P∪ P0 ∪ PR,T ,F,M0)

be a marked S3PR, and 4 ⊆
∏
. The net (C4,M40) =

(P4,T4,F4,M40) is called as the Petri net controller of (N ,
M0) with respect to 4 if and only if

1) P4 = {pS , S ∈ 4|pS is a control place corresponding
to S} is a set of control places;

2) F4 = F41 ∪ F42 ∪ F43 such that
F41 = ∪S∈4{(pS , t)|t ∈ P•0, t < C[S]},
F42 = {(t, pS )|t ∈ C[S]•, t 6< C[S]},
F43 = {(t, pS )|t 6< C[S], and ∃t1 ∈ ((o)t)•,
3 t1 < C[S]};

3) T4 = ∪S∈4(p•S ∪
• pS );

4) M40 is defined as follows: 4.1)M40(p) = M0(p), ∀p ∈
P ∪ P0 ∪ PR; 4.2)M40(pS ) = M0(S)− ξS , where ξS ∈
[1, M0(S) − 1] is an integer called as a control depth
variable.

According to Definition 1, the controlled Petri net with
respect to 4 is defined as follows.

(NC ,MC0) = (N ,M0)⊗ (C4,M40)

= (P ∪ P0 ∪ PR ∪ P4,T ,F ∪ F4,MC0)

where MC0(p) = M0(p), ∀p ∈ P ∪ P0 ∪ PR; MC0(p) =
M40(p), ∀p ∈ P4.
Lemma 1 [12]: Let {S1, S2, . . . , Sn} be a subset of SMSs of

a marked S3PR (N , M0). Add to each Si a control place and
related arcs with the control depth variable ξi and denote by
(NC ,MC0) the controlled Petri net. For each SMS S different
from all Si, S is not empty at any reachable marking of (NC ,
MC0) if C[S] ⊆ (∪ni=1C[Si]) and 6

n
i=1ξi ≥ 6n

i=1M0(Si) −
M0(S)+ 1.
Theorem 1 [12]: Let4 ⊆

∏
be a controllable siphon basis

of a marked S3PR (N , M0). Add to each Si ∈ 4 a control
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place and related arcs with the control depth variable ξi. Then
the obtained controlled Petri net (NC , MC0) is live.

III. R-TYPE SMS AND STRONG CONTROLLABLE
SIPHON BASIS
A. PETRI NETS MODELING FAILURE
OF UNRELIABLE RESOURCES
Definition 2:Let Â be an AMS with multiple unreliable

resourcesRu, and an S3PR (N ,M0) = (P∪P0∪PR,T ,F,M0)
modeling Â without any unreliable ones. The failure-repair
net is as follows:

(N [Ru],M [Ru])=∪ru∈Ru ∪pi∈H (ru) ({pi, qi}, {αi, βi},Fi,Mpi)

where pi ∈ P ∩ H (ru), qi is a repair place corresponding
to pi, αi and βi are transitions modeling the resource fail-
ure and repair, called as failure transition and repair tran-
sition, respectively. Fi = {(pi, αi), (αi, qi), (qi, βi), (βi, pi)},
M [Ru](pi) = M [Ru](qi) = 0.

We compose (N ,M0) and (N [Ru],M [Ru]) via shared places
in P∩H (Ru) and obtain the model, S3PRu, for an S3PR with
unreliable resources as follows:

(Nu,Mu0) = (N ,M0)⊗ (N [Ru],M [Ru])

= (P ∪ P0 ∪ PR ∪ Pu,T ∪ Tu,F ∪ Fu,Mu0)

where Pu = {qi|ru ∈ Ru, pi ∈ P ∩ H (ru) and qi is the repair
place corresponding to pi},
Tu = {αi, βi|αi and βi are failure transition and repair

transition}, Fu = ∪ru∈Ru ∪pi∈H (ru) Fi, Mu0(p) = M0(p),
p ∈ P0 ∪ PR; otherwise, Mu0(p) = 0.

FIGURE 1. An S3PR (N , M0).

Example 1: Let us consider an AMS cell that can process
two types of parts J1 and J2 by four resource types r1-r4 with
capacities 3, 1, 2 and 1. The unreliable resources are r1 and r3.
The models without unreliable resources, (N , M0), and with
unreliable resources, (Nu, Mu0), are shown in Fig. 1 and
Fig. 2, respectively. In Fig. 2 the dashed parts model the
failure and repair activities of r1 and r3. There are three
SMSs S1 = {r1, r2, r4, p3, p5, p8}, S2 = {r2, r3, p5, p6}
and S3 = {r1, r2, r3, r4, p5, p8} in (N , M0). 4 =

{S1, S2} is a controllable siphon basis of (N , M0) because

FIGURE 2. An S3PRu (Nu, Mu0).

C[S3] = C[S1] ∪ C[S2] = {p2, p3, p4, p6, p7} and
M0(S3) > 2. Its corresponding controlled net (NC , MC0)
(shown in Fig. 3) by Definition 1 is live by Theorem 1. The
stateMc = (p1, p2, p3, p4, p5, p6, p7, p8, p9, r1, r2, r3, r4, c1,
c2) = (7, 1, 0, 1, 0, 1, 1, 2, 5, 0, 0, 1, 0, 1, 0) is live at
(NC , MC0), that is, its corresponding operation process can
end smoothly. However, Mc turns to be a blocking state if
two units of r1 fail in p8 and one of r3 in p4 at Mc. This state
(denoted by M ) can be described in Fig. 4.

FIGURE 3. A reachable marking MC .

FIGURE 4. A deadlock marking M.
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It is easy to observe that S1 is empty atM before the three
unreliable resources are repaired. The reason is that there
exists a new resource circular waiting of shared resources
r1, r2 and r4. Therefore, the whole manufacturing process is
stagnating.

Based on the above analysis, the control policy by Defi-
nition 1 is disabled for AMSs with unreliable resources, and
it is essential to design a novel control policy to prevent all
SMSs from being empty when some unreliable resources fail
in the system.

Our desired control objective is to guarantee that any kind
of parts can be processed continuously through any one of
their processing routes, even if some unreliable resource units
fail. This can be defined as follows.
Definition 3: Let (Nu,Mu0) be an S3PRu with an unreliable

resource set Ru, and Cu be a controller for (Nu, Mu0). Cu is
said to be a robust controller for (Nu, Mu0) if the controlled
system (Nu,Mu0)⊗ Cu satisfies
1) The controlled system is live if no unreliable resource

fails;
2) Any kind of parts can be processed smoothly through

any of its process routes when k units of each unreliable
resource ru ∈ Ru fail, where k ≤ Mu0(ru)− 1.

3) Each failed resource can return to the system after its
repair without affecting the continuous operation of any
part type.

Note: In our work we assume that at least one unit of
each unreliable resource type can work normally at any time.
Without loss of generality, we further assume that unreli-
able resources only fail in the processing time because an
unreliable unit can be moved to repair directly if it fails when
it is idle.

B. R-TYPE SMS
As shown in Example 1, S1 = {r1, r2, r4, p3, p5, p8} is not
empty at Mc but empty at M . The reason is that q3 occupies
two units of r1, i.e.,M (q3) = 2, which implies that q3 should
belong to the complementary set of S1. However, •q3i s an
uncontrollable transition. Therefore, we set (o)•q3, p8, into
the complementary set of S1 and develop a new type SMS
in (Nu, Mu0). These SMSs are not changed and only their
complementary sets are different because their resource sets
contain unreliable resources.
Definition 4: Let S be an SMS of (N ,M0), we call S as an

R-type SMS of (Nu, Mu0), denoted by Su, if S contains unre-
liable resources. Further, let RSu denote the set of unreliable
resources of Su. C[Su] = C[S]∪ (S ∩H (RSu)) is called as the
complementary set of Su.
Due to Definition 4, there is little difference between

an SMS S of N and its corresponding R-type SMS
Su of Nu except for their complementary sets. That is,
S = Su, but C[S] 6= C[Su] if S ∩ H (RSu) 6= ∅.
For example, in Fig. 2 we have Su1 = S1 =

{r1, r2, r4, p3, p5, p8}, Su2 = S2 = {r2, r3, p5, p6} and
Su3 = S3 = {r1, r2, r3, r4, p5, p8}. However, C[Su1] =
{p2, p6, p7, p8} = C[S1] ∪ {p8}, C[Su3] = {p2, p3, p4, p6,

p7, p8} = C[S3] ∪ {p8} and C[Su2] = {p3, p4} = C[S2]
because {r1, r3} ∩ S2 = ∅.
Suppose Su is an R-type SMS and S is its corresponding

SMS, and C[S] 6= C[Su]. ∀p ∈ C[Su]\C[S], q ∈ Pu
is the corresponding repair place of p by Definition 2. Let
Q = {q ∈ Pu|(p, q) ∈ (N [Ru],M [Ru]), p ∈ C[Su]\C[S]}.
∀M ∈ R(Nu,Mu0),M (S)+M (C[S])+M (Q) = Mu0(S). If Su
is not R-type SMS, C[S] = C[Su] and Q = ∅, we still have
M (S)+M (C[S])+M (Q) = Mu0(S).
Remark: The equalityM (S)+M (C[S])+M (Q) = Mu0(S)

always holds no matter whether S is an R-type SMS. Without
loss of generality, in the follow-up discussion we still denote
each SMS as S no matter whether S contains unreliable
resources in (Nu, Mu0). Let 5u denote the set of all SMSs
of Nu throughout the paper.
Lemma 2: Let (Nu, Mu0) be an S3PRu and t ∈ T a dead

transition at M ∈ R(Nu, Mu0). Then there exists an SMS S
such that M (S) = 0.

Proof: If there is no unreliable resource failing at M ,
then there exists an SMS S such that M (S) = 0 [6].
On the other hand, •t∩PR 6= ∅ holds because t is dead atM .

IfM ((r)t) 6= 0, there existsM ′ ∈ R(Nu,M ) such thatM ′[t >,
which contradicts that t is dead at M . Thus M ((r)t) = 0. Let
(r)t = r1 and =1 = {t ∈ T |(o)t ∈ H (r1), M ((o)t) 6= 0}.
∀t1 ∈ =1, (r)t1 6= ∅ and M ((r)t1) = 0. Otherwise, we have
a reachable marking M ′′ ∈ R(Nu,M ) such that M ′′(r1) 6= 0,
which contradicts that t is dead at M . Let (r)t1 = r2. It is
natural that •r1 = r•2 . Repeating the aforementioned proce-
dure, we can get some resources r1, r2, . . . , rk such that they
develop a resource circular wait. Let R1 = {r1, r2, . . . rk}.
∀r ∈ R1, if ∀p ∈ H (r), M (p) 6= 0, then M ((r)(p•)) = 0
because t is dead at M . Set r ′ =(r) (p•) and add r ′ into R1 if
r ′ /∈ R1. Let =′ = {t ∈ T |(o)t ∈ H (r ′),M ((o)t) 6= 0}. Do the
same procedure for =′, we obtain R2 = {r1, r2, . . . rl} such
that for each r ∈ R2, ∃p ∈ H (r), M (p) = 0. The fact thatt
is dead at M ensures R2 6= ∅. Let S ′ = R2 ∪ {p ∈ H (R2),
M (p) = 0}, we have M (S ′) = 0 because M (R2) = 0 due to
the chosen procedure of R2.
We will prove S ′ is a siphon as follows. Thus, ∀p ∈ S ′,
∃r ∈ R2, 3 p ∈ H (r) such that •p ∈ r•. On the other hand,
∀r ∈ S ′, ∀t ∈ •r , there exists r ′ ∈ S ′ such that •r ∩ r ′• 6= ∅
due to the chosen procedure of R2. As a result, S ′ is a siphon.
According to the definition of SMS, we can derive an SMS S
from S ′ such that S ∩ PR = R2 and M (S) = 0. Furthermore,
if there exists at least one unreliable resource in R2, then S is
an R-type SMS, denoted by Su, and M (Su) = 0.

C. STRONG CONTROLLABLE SIPHON BASIS
To avoid adding control place to each SMS in (Nu, Mu0) and
reduce the structural size of controllers, we will introduce the
following concept.
Definition 5: Let 4u ⊆

∏
u be a subset of SMSs in

(Nu, Mu0). For each S ∈
∏

u \4u, if there exists πS ⊆ 4u
such that C[S] ⊆ C[πS ] andMu0(S) > |πS |, where C[πS ] =
∪S ′inπsC[S ′] and |πS | denote the number of SMSs in πS , then
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4u is called a strong controllable siphon basis of (Nu,Mu0),
and πS as the relevant siphon set of S.

It is easy to verify that a strong controllable siphon is
similar to a controllable siphon basis, and the difference
lies in the complementary sets between SMSs and R-type
SMSs. For example, there are three R-type SMSs Su1, Su2
and Su3, in (Nu, Mu0) of Example 1. 4u = {Su1, Su2} is a
strong controllable siphon basis because C[Su3] = C[Su1] ∪
C[Su2]andM0(Su3) > |4u|.

Let 4 ⊆ 5 in (N , M0). ∀S ∈ 4, if S is R-type SMS,
denote as Su. Set 4u := (4\{S}) ∪ {Su}, and we can draw a
conclusion as follows.
Lemma 3: ∀S ∈ 5u\4u, the relevant siphon set of S in 4u

is the same as that of S in 4.
Proof: Assume that πS ⊆ 4 is the relevant siphon set

of S in 4. If S is not an R-type SMS, then C[S] = C[Su].
The following inequalities C[S] ⊆ C[πS ] andMu0(S) > |πS |
hold even if there exists an R-type SMS in πS . As a result,
πS is still the relevant siphon set of S in 4u. On the other
hand, if S is an R-type SMS (denoted by Su), C[S] 6= C[Su],
∀p ∈ C[Su]\C[S], p ∈ S and further, ∃r ∈ S ∩ Pu such that
p ∈ H (r) because S is an SMS. Due to the strictness of S,
H (r)∩C[S] 6= ∅. ∀p′ ∈ H (r)∩C[S], ∃S ′ ∈ πS such that p′ ∈
C[S ′] because πS is the relevant siphon basis of S in 4. Then
r ∈ S ′ because (N , M0) is an S3PR that each operation
only can be processed by one type resource. Since r is an
unreliable resource, S ′ is an R-type SMS (denoted by S ′u) and
p ∈ C[S ′u]. As a result, C[Su] ⊆ C[πS ]. Since the initial
markings of unreliable resources are constant, Mu0(Su) >
|πS | and the conclusion is proved.

IV. STRONG CONTROLLABLE SIPHON BASIS-BASED
ROBUST CONTROL POLICY
A. A PETRI NET CONTROLLER BASED ON STRONG
CONTROLLABLE SIPHON BASIS
Based on the concept of strong controllable siphon basis,
we will present the design of Petri net controllers as follows.
Definition 6:Let (Nu,Mu0) = (P∪P0∪PR∪Pu,T∪Tu,F∪

Fu,Mu0) be a marked S3PRu, and4u be a strong controllable
siphon basis of (Nu,Mu0). A Petri net controller based on4u,
(C4u, M4u), of (Nu, Mu0) is defined as follows.
1) P4u = {cS , S ∈ 4u|cS is a control place corresponding

to S} is a set of control places;
2) F4u = ∪5i=1F4ui such that

F4u1 = ∪S∈4u{(cS , t)|t ∈
•X ∧ t < C[S]}, where

X = ∪S∈4uC[S];
F4u2 = ∪S∈4u{(cS , β)|β

•
∩ C[S] = ∅ ∧ β• < C[S] ∧

β• 6< X}, where β ∈ Tu;
F4u3 = ∪S∈4u{(t, cS )|t ∈ C[S]

•, t 6< C[S]};
F4u4 = ∪S∈4u{(α, cS )|

•α∩C[S] = ∅∧• α < C[S]∧•

α 6< X}, where α ∈ Tu;
F4u5 = ∪S∈4u{(t, cS )|t 6< C[S], ∃t1 ∈ ((o)t)•,3 t1 <
C[S]};

3) T4u = F•4u ∪
• F4u;

4) M4u(cS ) = Mu0(S) − ξS , where ξS ∈ [1, Mu0(S) − 1]
is an integer called as a control depth variable.

Denote the controlled Petri net (NCu,MCu0) = (Nu,Mu0)⊗
(C4u,M4u) = (P∪P0∪PR∪Pu∪P4u, T ∪Tu, F ∪Fu∪F4u,
MCu0), where MCu0(p) = Mu0(p), ∀p ∈ P ∪ P0 ∪ PR ∪ Pu;
MCu0(p) = M4u(p), ∀p ∈ P4u.
Remark: Of course, if S ∈ 4u is not an R-type SMS,

the adding method of control place to S is similar to that in
Definition 1. If S is an R-type SMS, denoted by Su, the aim of
controlling Su is to guarantee that C[S]∪Q cannot occupy all
resources in Su. Since •Q is a set of uncontrollable transitions,
we only can pull the control arc to the controllable transitions
in •(Su ∩ H (Ru)). That is, we replace C[S] ∪ Q by C[Su] =
C[S] ∪ (Su ∩ H (Ru)).
Lemma 4: Let (Nu, Mu0) be an S3PRu, 4u be its strong

controllable siphon basis and (NCu,MCu0) the controlled Petri
net based on4u. Then ∀S ∈ 4u, S is marked at any reachable
marking of (NCu, MCu0).

Proof: By Definition 4, ∀M ∈ R(NCu, MCu0), M (S) +
M (C[S])+M (Q) = Mu0(S). However, M (C[S])+M (Q) ≤
Mu0(S)− ξSu due to Definition 6. Thus,M (S) ≥ ξSu ≥ 1 and
S is marked at any reachable marking of (NCu, MCu0).
Lemma 5: Let S ∈ 5u\4u be an SMS of (Nu, Mu0)

and πS = {S1, S2, . . . , Sk} be the relevant siphon set of S.
A control place is added to Si by Definition 6 and ξi(i ∈ Nk ) is
the control depth variable. Then S is marked at any reachable
marking of (NCu, MCu0) if the following inequality holds.

6k
i=1ξi > 6k

i=1Mu0(Si)−Mu0(S)

Proof: ∀ M ∈ R(NCu, MCu0), M (C[Si]) + M (Qi) ≤
Mu0(Si)− ξi due to Definition 6. C[S] ⊆ ∪ki=1C[Si] because
πS is the relevant siphon set of S.

Then M (C[S]) + M (Q) ≤
∑k

i=1 (M (C[Si])+M (Qi)).
Thus,M (C[S])+M (Q) ≤ 6k

i=1(Mu0(Si)−ξi) andM (C[S])+
M (Q) ≤ Mu0(S) − 1 because 6k

i=1ξi > 6k
i=1Mu0(Si) −

Mu0(S). Therefore, M (S) ≥ 1 and S is always marked at any
reachable marking of (NCu, MCu0).

It is natural that the smaller ξS , the more reachable
markings of (NCu, MCu0) can reach and the better its per-
formance. Combined with the above constraints, the solu-
tion of ξS is determined by the following integer linear
programming (ILP):

Min 6S∈4uξS

s.t. 1 ≤ ξS ≤ Mu0(S)− 1 (1)

6S∈πs′ ξS ≥ 6S∈πs′Mu0(S)−Mu0(S ′)+ 1 (2)

∀S ′ ∈ 5u\4u and πS ′ is the relevant siphon set of S ′.
Lemma 6: ILP can be solvable.
Proof: Let ξS = Mu0(S)− 1. It is natural that (1) holds.

For S ′ ∈ 5u\4u, we can choose πS′ ⊆ 4u to be the relevant
siphon set for S ′ and Mu0(S ′) > |πS ′ | because 4u is a strong
controllable siphon basis of Nu. Thus, we have the following
equality:

6S∈πS′ ξS = 6S∈πS′Mu0(S)− |πS ′ |.

Thus (2) holds because of Mu0(S ′) > |πS ′ |. As a result,
{Mu0(S) − 1} is a solution of the ILP, and the ILP can be
solvable.
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Theorem 2: Let4u be a strong controllable siphon basis of
(Nu,Mu0). (C4u,M4u) is the Petri net controller based on4u,
and its control depth variables are obtained by solving the ILP.
Then (C4u, M4u) is a robust controller to (Nu, Mu0).

Proof: Let (NCu,MCu0) = (Nu,Mu0) ⊗ (C4u,M4u).
There are three cases to be discussed as follows.

(1) There is no unreliable resource failed in the process
operation of (Nu, Mu0).
∀S ∈ 5u and M ∈ R(NCu, MCu0), M (S) 6= 0 according to

Lemma 4 and Lemma 5. Since (Nu,Mu0) is still an RCN-net,
it proves that the liveness of (NCu, MCu0) holds by repeating
the proof procedure of Theorem 3 in [12].

(2) Some unreliable resources failure happens, and in the
worst case, the maximum failure number of each unreliable
resource ru is Mu0(ru)− 1.
Assume, on the contrary, that (NCu,MCu0) is not live. Then

there exists at least one transition t and M ∈ R(NCu, MCu0)
such that t is dead at M . Due to Definiton 2 and Defintion 6,
t /∈ Tu. The reason is as follows. ∀t ∈ Tu, •t ∩ PR = ∅.
If •t ∩ P4u = ∅, and t is not dead at any reachable marking
of (NCu, MCu0). If •t ∩ P4u 6= ∅, there is no circuilar wait
because t• ∩ P4u = ∅. So we only consider t ∈ T .
If •t ∩ P4u = ∅ for t ∈ T , then (r)t ∩ PR 6= ∅. Due to

Lemma 2, there exists an SMS S such thatM (S) = 0 because
t is dead atM . If S ∈ 4u,M (S) 6= 0 by Lemma 4; if S /∈ 4u,
M (S) 6= 0 by Lemma 5, a contradiction.
If •t ∩ P4u 6= ∅ for t ∈ T , there exists cu ∈ P4u such that

(c)t = cu and M (cu) = 0. According to Definition 6, there
exists an SMS S such that t < C[S]. If S ∈ 4u, M (S) 6=
0 by Lemma 4; if S /∈ 4u, M (S) 6= 0 by Lemma 5. Thus
there exists a sequence of transitions t1, t2, . . . , tk such that
M [t1t2 . . . tk > M ′ andM ′(cu) 6= 0. Thus, t is not dead atM ,
a contradiction.
From the above, (NCu, MCu0) is live.
(3) The failed resources are repaired and return to the

system. Now this condition is similar to (1) and (NCu, MCu0)
is live.
As a result, (C4u, M4u) is a robust controller to (Nu, Mu0)

by Definition 3.

B. ROBUST DEADLOCK CONTROL POLICY FOR
AN AMS WITH UNRELIABLE RESOURCES
In the above subsection, we know how to design a robust
deadlock controller by Definition 6. A new robust deadlock
control policy is synthesized based on strong controllable
siphon basis for AMSs with unreliable resources as follows.

Procedure RDCP (Designing a robust deadlock control
policy)

Given a marked S3PR (N , M0) with a set of unreli-
able resources Ru = {r1, r2, . . . , rl} and the set of SMSs
5 of N .
Step 1: Using Algorithm 1 and Algorithm 2 in [12],

compute a controllable siphon basis 4 of N .
Step 2: ∀S ∈ 5, if S ∩ Ru 6= ∅, denote S as Su. Set 5u :=

(5\{S}}) ∪ {Su} and 4u := (4\{S}}) ∪ {Su} if S ∈ 4.

Step 3: Add a control place cs and related arcs to each
S ∈ 4u and design a Petri net controller (C4u, M4u) by
Definition 6. Its control depth variable ξS is determined by
solving the ILP in Step 5.
Step 4: ∀S ′ ∈ 5u\4u, let πS ′ be its relevant siphon set

output by Algorithm 2 in [12], the following inequality is

6S∈πs′ ξS ≥ 6S∈πs′Mu0(S)−Mu0(S ′)+ 1

Step 5: Construct the ILP of Lemma 6 and solve a set of
values of ξS .
Step 6: Output (C4u, M4u).
Theorem 3: (C4u, M4u) is a robust Petri net controller by

Procedure RDCP.
Proof: First,4u output by Step 2 is a strong controllable

siphon basis of 5u and πS output by Step 4 is the relevant
siphon set of S in 4u due to Lemma 3. According to Theo-
rem 2, (C4u, M4u) output by Step 6 is robust.

C. AN ILLUSTRATION
Example 2: For (Nu, Mu0) shown in Fig. 2, {Su1, Su2} is

a strong controllable siphon basis, and we add two control
places c1 and c2 to (Nu, Mu0) by Definition 6. Let X =
C[Su1]∪C[Su2] = {p2, p3, p4, p6, p7, p8}.We draw a directed
arc from c1 to t1 and t6 because each of them belongs to •X
and is previous to C[Su1] = {p2, p6, p7, p8}, and a directed
arc from t2 and t9 to c1 because they belong toC[Su1]• and are
not previous to C[Su1]. For Su2, we have C[Su2] = {p3, p4}
and •α1(β1•) /∈ C[Su2]∧•α1(β1•) < C[Su2]∧•α1(β1•) 6< X .
Therefore, a directed arc from c2 to t1 and β1 and another arc
from α1 and t4 to c2 are drawn. Furthermore, ξSu1 + ξSu2 ≥
2 due to the ILP, and we have ξSu1 = ξSu2 = 1. Thus,
the controlled Petri net (NCu,MCu0) is illustrated in Fig. 5 by
Definition 6. It is easy to compute that there are 670 reachable
markings in (NCu, MCu0).

FIGURE 5. A robust controlled net (NCu, MCu0) for S3PRu in Fig. 2.

V. CONCLUSION
This work deals with the deadlock control problem in AMSs
with multi-unit and multi-type unreliable resources and syn-
thesizes their deadlock prevention controllers with small
structure. Our control objective is to guarantee that all types
of parts can process smoothly their tasks through any of
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their routes even if some multiple unreliable resources fail
simultaneously.

We use a class of Petri nets called S3PRu to model AMSs
with multiple unreliable resources. To assess the whole per-
formance of unreliable resources, we develop the concept
of R-type SMS. An SMS is an R-type SMS if its resource
set contains unreliable resources. Then a strong controllable
siphon basis is defined. A controllable siphon basis is strong
if it includes at least one R-type SMS. By adding a control
place with a proper depth control variable and suitable related
arcs to each (R-type) SMS in the strong controllable siphon
basis, we develop a robust controller with small size for
AMSs under consideration. The size of the established con-
troller grows polynomially with Petri net models. Compared
with [36]–[41], the studied AMSs contain multiple types of
unreliable resources while others contain only one unreliable
resource type.

The future research includes improving permissiveness of
the proposed method and extending the method to more
general models. These are parts of our research agenda.

APPENDIX
The notations that are frequently used in our work are listed
as follows.

NOMENCLATURE
Symbols Meanings
P a set of operation places
PR a set of resource places
T a set of transitions
(N , M0) an S3PR with the initial marking
5 the set of SMSs in (N , M0)
4 a controllable siphon basis
(NC , MC0) a controlled Petri net
(Nu, Mu0) an S3PRu, a marked S3PR with

unreliable resources
Ru a set of unreliable resources
5u the set of SMSs in (Nu, Mu0)
4u a strong controllable siphon basis
(C4u, M4u) a robust Petri net controller
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