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ABSTRACT The morphological modeling methods are efficient in quantifying the change of arterial
blood pressure (ABP) waves. The related works focus on minimizing the modeling error but ignore the
classification related modeling expression in practical applications. In this study, we explored the optimal
modeling method for ABP wave related classifications. Two types of conventional models, Gaussian or Log-
normal kernel function mixtures, were employed to quantitively describe the change of ABP signals, and
the parameters of different models were engaged to train the different classifiers by probabilistic neural
network (PNN) and random forest (RF) for identifying the ABP waves by age, gender, and whether
belonging to extreme bradycardia (EB) or extreme tachycardia (ET). Then, we defined some indexes about
the performance of modeling and classifications as the references to compare the different models. The ABP
signals of Fantasia and 2015 PhysioNet/CinC Challenge databases were exploited as the experimental data
to select the optimal model. The modeling results show that the Lognormal kernel function mixtures have a
lower error in ABP wave modeling. The two-sample Kolmogorov-Smirnov test (ks-test) results indicate that
the parameters of all models are markedly different at a highly significant level (h = 1, p < 0.05) between
different groups. The classification results show that the classifiers based on the four-Gaussian function
model have the best performance with the average Kappa coefficients (KC) of 99.160 ± 0.123%, while the
average KC for the classifiers of two-Lognormal function models is 97.585 ± 0.172%, which means there
is excessive information redundancy in the classifications by the three and four kernel functions models.
Considering some other indexes such as time consumption and RAM space, the 2 Lognormal function model
has more potential in practical applications.

INDEX TERMS Arterial blood pressure signal, optimal morphological model, Gaussian function, lognormal
function, classification.

I. INTRODUCTION
Arterial blood pressure (ABP) signal is one of themost impor-
tant physiological signals and contains abundant information
about the beat rhythm and hemodynamics of the cardiovas-
cular system. It plays an important role in detecting some
cardiovascular diseases, e.g., arteriosclerosis, heart failure,
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coronary heart disease, and arrhythmia [1]–[3]. It is easy to
record theABP signal from our arterial network through some
non-invasive methods such as photoelectric, piezoelectric, or
ultrasonic sensors in some wearable or portable devices [4],
so the ABP signal has the great potential in detecting and
monitoring cardiovascular diseases in m-health.

The blood circulates in the cardiovascular network under
the diastolic and contractile forces from the heart. It is
reflected in the junctures of some arteries (thoracic and
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abdominal aorta, abdominal aorta and common iliac arteries),
and is re-reflected in the junctures of distal vascular [5]. Thus,
it is believed that an ABP waveform consists of a pressure
wave and several reflection waves [6], and some studies
show that these waves can be quantitively described by some
kernel functions. Then, some relative works proposed that the
ABP waveforms can be decomposed into several functions,
by which we obtain a morphological model with several
kernel function mixture to quantitively describe the change of
the ABP waveform [7]. So far, the morphological modeling
method has been used in many areas, e.g. cardiovascular
disease classification and analysis [8], psychological stress
analysis [9], motion state analysis [10], maternal health status
assessment [11], signal compression and reconstruction [12]
and motion artifacts detection and correction [6].

The morphological modeling method derives a set of
parameters of the kernel functions from the measured ABP
waveform. Some physiological or pathological informa-
tion has been extracted from these parameters, which are
employed as the features in someABP-related classifications.
Sorelli et al. [13], [14] extracted the crest time, stiffness index
(SI), reflection index (RI) from the four-Gaussian morpho-
logical model, and trained classifiers for detecting type-1
diabetes and estimating the vascular’s age. Paradkar and
Chowdhury [2] drew out the augmentation index (AI), SI and
RI from the two-Gaussian morphological model and detected
the coronary artery disease (CAD) with the sensitivity of 85%
and specificity of 78%. Liu et al. [3] engaged the three-
Gaussian mixture to analyze the ABP signals of heart failure
patients and found fourmodel parameters, which are potential
in detecting heart failure. Banerjee et al. [9] proposed a two-
step Gaussian modeling method to assess the psychological
stress and found the parameters B1, B2, C1, and C2, which
are significantly changed. Li et al. [11] presented a three-
positive-Gaussian model to analyze the three trimesters of
pregnancy. He et al. [15] engaged the Gaussian model to
detect the unobservable dicrotic notch of the pulse signal
and computed the pulse transit time to estimate the arterial
blood pressure. The works of these studies show that the
morphological modeling method has great potential for ABP-
related classifications, while we found that the expression of
the morphological model varies in different studies.

Recently, the optimal expression of the morphological
model has drawn much attention, and the related works focus
on reducing the error between kernel function mixture and
measured ABP waveform by selecting the optimal number
or/and type of kernel function. The Gaussian, Lognormal,
Rayleigh, Gamma [16], Double-exponential [17] and
Cosine [18] functions have been employed as the kernel
functions of the morphological models and their number have
been tried from two to seven [12]. Sološenko et al. [19]
concluded that themodel consists of one-Lognormal and two-
Gaussian functions mixture that has the minimum error for
the data of atrial fibrillation after comparing the four models
with different kernel function mixtures. Wang et al. [20]
suggested that four- or five-Gaussian models have maximum

accuracy. Tigges et al. [16], [21] proposed that we can obtain
a model with an arbitrarily small error simply by increasing
the number of the kernel function, while it will lead to overfit-
ting of data and consequently to the physiologically uninter-
pretable solution. Recently, Liu et al. [17], [22] demonstrated
that morphological models with three-Gaussian and three-
Lognormal functions are better than that of Raleigh and
double-exponential functions for healthy subjects. Obviously,
there is a controversy on the ideal number and type of the
kernel function. Different optimal morphological models
have been concluded since the ABP waveform changed with
different kinds of subjects.

To sum up, the related works focus on minimizing the
modeling error. However, in the classification-related appli-
cations, we are more concerned with the time consumption
of the program, the amount of RAM space occupied by the
variables, and the results of classification, while the modeling
error is not the primary consideration. In fact, the more kernel
functions in modeling, the more model parameters need to be
computed, the more time consumption in classification and
modeling, and the more RAM space for storing parameters.
But the increase of model parameters may cause information
redundancy, and we do not know whether it has a marked
improvement in the performance of classifiers. Therefore, the
purpose of this study is to find the optimal morphological
model for ABP signal related classifications by comparing
two conventional kernel function mixtures. First, the noises
and interference are eliminated, and abnormal segments are
wiped out from the ABP signal. The ABP signals are seg-
mented into a series of pulse waves. Then, the ABP mor-
phological modeling methods with two conventional kernel
function mixtures and the optimal model selecting indexes
are introduced in detail. The renowned international database
of the Fantasia and the PhysioNet/Computing in Cardiology
Challenge 2015 are employed to validate and compare the
different models. Moreover, the probabilistic neural network
(PNN) and random forest (RF) are engaged to classify the
data by age, gender, extreme bradycardia (EB), and extreme
tachycardia (ET) based on different models, and we com-
pare the time consumption and performance of the different
classification and obtain the optimal model for ABP related
classification.

The remainder of this paper is organized as follows: The
database and themorphological modelingmethod used in this
study are detailed in section II. The results are presented in
section III. Moreover, a thorough analysis of the results is
presented in section IV. Finally, the conclusion is given in
section V.

II. MATERIALS AND METHODS
A. EXPERIMENTAL DATA
The experimental data used in our work is from the inter-
national physiological database PHYSIONET. A group of
data recorded from the young and old subjects is engaged
in the classification by age and gender, and they are also
exploited as the healthy subjects in the detection of patients
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with EB and ET. Another group of data recorded from the
patients with some life-threaten arrhythmias is employed in
the classification by disease.

The data of healthy subjects is from the sub-database Fan-
tasia (URL: https://www.physionet.org/physiobank/database/
fantasia/) [23], which were donated by Harvard Medi-
cal School, Boston University, Beth Israel Hospital and
Massachusetts Institute of Technology. Forty rigorously
screened healthy subjects, of which 20 young and 20 old
subjects with sinus rhythm were employed in the experiment.
The number of male and female are the same. During data
recording, all subjects were supine in the bed and watching
the movie named Fantasia (Disney 1940) to keep waking.
The electrocardiogram (ECG), APB and respiratory signals
were acquired synchronously with the sampling frequency
of 250 Hz (only the record f2y02m with 333 Hz), and the
duration of each data is 120 minutes. However, only half of
the subjects’ ABP signals were recorded, their information is
shown in Table 1.

TABLE 1. The information about the subjects in the Fantasia database.

The records of the patients with EB and ET are from the
sub-database 2015 PhysioNet/CinC Challenge (URL: https://
www.physionet.org/content/challenge-015/1.0.0/) [24], and
they were recorded in the Intensive Care Unit (ICU) of four
hospitals in the USA and Europe. The aim of this challenge
is to improve the true alarms rate in the ICU for some life-
threatening arrhythmias, e.g., EB and ET. Patients with EB
whose heart rate are lower than 40 beats per minute (bpm)
for 5 consecutive beats, and that of patients with ET are over
140 bpm for 17 consecutive beats, so it’s easy to detect EB
and ET by their definitions. However, the signal channels
in monitoring devices are suffered from the movement arti-
fact of body, the sensor movement or disconnects and other
events, which generate many abnormal segments inner the
signals that are used for monitoring whether the arrhythmias
outburst. Thus, the ICU monitors will give the false alarm
if they rely on the definitions of EB and ET, and sometimes
the false alarm rate is even as high as 86% [25]. To supply a
‘‘gold standard’’ for arrhythmias detecting, a team of experts’
annotators reviewed each record with alarm and labeled it
either ‘true alarm’ or ‘false alarm’. The evaluation criterion
is that if two-thirds majority agreed with the annotation, and
the corresponding record could be adopted by the challenge.
The ECG, APB, photoplethysmogram (PPG) and respiratory

signals were acquired synchronously and have been resam-
pled to 12-bit, 250 Hz. In this study, only the ‘true alarm’
records were engaged in the experiments, so there are forty-
five records of the EB subjects and one hundred and thirty-
one records of ET subjects. While only seventeen records of
EB subjects and thirty-seven records of ET subjects contain
the ABP signals, and thirteen of the ET records are heavily
corrupted by abnormal segments, so only forty-one records
are used finally. The records name of EB subjects are b268s,
b455l, b456s, b494s, b495l, b515l, b516s, b517l, b560s,
b561l, b562s, b578s, b659l, b664s, b708s, b722s, and b757l,
and that of ET subjects are t173l, t208s, t214s, t276s, t277l,
t333l, t335l, t406s, t412s, t413l, t417l, t418s, t425l, t594s,
t677l, t680s, t690s, t702s, t707l, t719l, t731l, t739l, t760s,
and t777l. The record name ended by the letter ‘s’ means
the signal with a length of 5 minutes, and that ended by the
letter ‘l’ means the signal with a length of 5.5 minutes.

B. THE MORPHOLOGICAL MODELING METHOD OF
ABP WAVE
The core of the morphological modeling method is to synthe-
size the ABP wave with a mixture of several kernel functions.
For an ABP wave {y(n)}, whose morphological model is
denoted as {ŷ(n)}, and then we have,

ŷ(n) = f (n, θ )+ B(n,ψ) n ∈ [1,PPI ] (1)

where, ŷ(n) is the evaluation of the n-th sample in ABP
wave. n is the index of a sample and it is a positive integer.
PPI means the pulse to pulse interval, and here it is also
the length or the cycle of the ABP wave. f(·) represents the
morphological wave synthesized by several kernel functions.
B(·) is the baseline, and θ and ψ are the parameters vectors
of this model.

In (1), we should derive the detailed expression of
f(·) and B(·). Because the trend of an ABP wave only has a
slight change, the baseline can be approximated as a linear
local trend [1]:

B(n,ψ) = kn+ b (2)

where, k and b are the slope and the vertical intercept of
baseline, respectively. Then, ψ = [k , b].
For the expression of f(·), the key is to determinate the

type and the number of kernel functions. So far, the mixtures
of Gaussian or Lognormal functions are verified to be the
most effective in modeling ABP wave, and their number
varies from two to four for different subjects [17]. Thus,
in this study, we investigate the optimal ABP model expres-
sion in classification among the models mixed by two- to
four- Gaussian/Lognormal functions. For Gaussian function,
the expression of f(·) is:

f (n, θ ) =
h∑
l=1

gl (n, al, bl, cl)

=

h∑
l=1

al exp[−
(n/fs − bl)2

2 (cl)2
] n ∈ [1,PPI ] (3)
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where, h is the number of kernel functions, h = 2, 3 and 4.
gl(·) is the l-th Gaussian function in the model. fs is the
sampling frequency of the measured ABP signal. al , bl, and
cl are the amplitude, the position and the width of the l-th
Gaussian function, respectively.

For the Lognormal function, the expression of f(·) is:

f (n, θ) =
h∑
l=1

LNl(n, αl, βl, γl)

=

h∑
l=1

αl
√
2π × γl × n/fs

exp[−
(ln( n

fs×βl
))2

2(γl)2
] (4)

where, LNl(·) is the l-th Lognormal function in model, αl , βl,
and γl are its parameters, respectively.
Therefore, the ABP wave can be quantified by the model-

ing parameters:

[PPI k b {al bl cl }hl=1] or [PPI k b {αl βl γl}hl=1]

(5)

where, {·}hl=1 means the parameters of different models, e.g.,
{al bl cl}2l=1 is the parameters of f(·) which consists of two
Gaussian functions. Thus,{

al bl cl
}2
l=1 = [ a1 b2 c2 a2 b2 c2 ] (6)

Then, we can obtain a vector of all ABP waves:

[PPI K B {Al Bl C l}
h
l=1]

or

[PPI K B {αl β l γ l}
h
l=1] (7)

Fig. 1 depicts the process to select the optimal ABP model
for classification. The process includes: 1) ABP signal pre-
processing, 2) feature vector extracting, 3) model-related
classification, and 4) the optimal model selecting. There are
some noise, interference and abnormal segments in raw ABP
signal, and the ABP signal should be split into a series of
waves by the cardiac cycle. Hence, we should attenuate the
noise and interference, eliminate the abnormal segments,
and detect the start points of the ABP waves during ABP
signal pre-processing. Then, the processed ABP waves are
employed to compute the parameter of the different models
as the feature vectors for different classifications. Moreover,
the features between different classification are selected, and
the RF and PNN are utilized to train the classifiers to dis-
tinguish the ABP waves by gender, age, health, EB and ET.
Finally, some indexes are defined as the standard to assess the
performance of ABP modeling and classification, by which
we chose the optimal ABP morphological modeling method.

1) ABP SIGNAL PRE-PROCESSING
Three missions are assigned in the ABP signal pre-
processing: noise and interference attenuating, abnormal seg-
ments detecting and ABP wave start points positioning.

The raw ABP signal is corrupted by some noise and
interference, i.e., the baseline wanders, the power line

interference and electromyogram (EMG). Here, a fast-
mathematical-morphology filtering approach, we proposed
in the previous study, is employed to attenuate these noise
and interference [26], and the core of this method is to
cut or fill the glitches attached at the ABP waveform by some
mathematical operators between a signal and a symmetric
structuring element (SSE). We can attenuate the different
noise or interference from ABP signal by adjusting the length
of SSE. For the power line interference and the EMG, an
alternate-hybrid filter is designed, and the length of SSE
is 10 samples. In addition, the length of SSE increases to
200 samples for designing another alternate-hybrid filter
to estimate the baseline wanders of the ABP signal. Then,
the processed signal is obtained by subtracting the baseline
wanders from the result of the former filter.

Although we have obtained a cleaner signal after filtering,
some abnormal segments caused by movement artifact, senor
sliding or disconnects still exist in the ABP signal, they lose
almost all the features of the ABP waveform and have a
great influence on the accuracy of wave modeling. Thus, it is
essential to detect and remove these abnormal segments from
ABP signal. Here, an ASCD method is engaged to detect the
abnormal segments [27].

In order to split the ABP signal into ABPwaves, we should
find the start points of these waves. We find the start point is
the minimum between two systolic waves (inner a period).
Thus, we first compute the interval between two adjacent
systolic waves with a sliding window iterativemethod in [28],
then the start point is the minimum of the interval. Here,
the ABP wave is denoted as {x(n)}, then we can obtain the
PPI by the first-order difference of start points.

2) FEATURE VECTOR EXTRACTING
Fig. 1 illustrates the process to extract the feature vector from
measured ABP waves. First, in order to reduce the influ-
ence generated by the difference of ABP waves’ amplitude,
the ABP waves are normalized by:

y(n) =

x(n)− 1
PPI

PPI∑
n=1

x(n)√
1
PPI

PPI∑
n=1

(
x(n)− 1

PPI

PPI∑
n=1

x(n)
)2

(8)

where, y(n) is the result of the n-th sample in an ABP wave.
In (7), the features in the vector can be divided into

three parts: 1) PPI is the intervals of adjacent ABP
waves, it is the results of the first order of the start
points. 2) K and B are derived from the linear trend.
3) {Al Bl C l }

h
l=1 or {αl β l γ l }

h
l=1 are estimated from the

measured ABP waves by modeling method. Here, according
to the expression of the linear trend as (2), we can compute k
and b by:

k =
y(PPI )− y(1)
PPI − 1

(9)

b = y(1)− k (10)
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FIGURE 1. Process of optimal model selecting.

where, y(PPI) and y(1) are the end and the start of an ABP
wave, respectively.

For the models in (3) and (4), the ABP waves should obey
the Dirichlet and Neuman boundary conditions by [1], [29],
and the curve obtained by subtracting the linear trend from
the ABP wave can approximately meet these two conditions.
Then:

z(n) = y(n)− kn− b (11)

where, z(n) is the result we obtained and can be employed to
estimate the parameters of the models in (3) and (4).

For the model parameters estimation, a nonlinear curve
fitting method is engaged. The fitting error is defined as:

E(θ ) =
1
PPI

PPI∑
n=1

(z(n)− f (n, θ ))2 (12)

Then, we solve (12) by:

min
θ

E(θ )

subject to F{f (n, θ ), θ} lb ≤ θ ≤ ub (13)

where, F{f(n, θ ), θ} is the constraint condition.
lb ≤ θ ≤ ub is the boundary condition, lb and ub are the
lower and upper bounds of parameters. Here, the nonlinear
least-squares method is engaged to solve (13). Some details
we used are in Table 2.

TABLE 2. Parameters setting of curve fitting.

3) MODEL-RELATED CLASSIFICATION
The PNN and RF are utilized to design the classifiers,
which are trained and tested by the extracted feature vector.
The neural network toolbox and the ‘randomforest-matlab’
toolbox (available at https://code.google.com/archive/p/
randomforest-matlab/) are engaged to achieve the PNN and
the RF classifiers in MATLAB, respectively.

PNN is a kind of radial basis network suitable for classi-
fication [30]. Here, the function ‘newpnn(P, T, spread)’ in
the toolbox is utilized to create a two-layer network. P is the
input vectors. T is the target class vectors. spread is the spread
speed of the radial basis functions (RBF). The first layer con-
sists of RBF neurons and their weighted inputs are computed
with Euclidean distance weight function. The second layer
has competitive transfer function neurons and their weighted
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inputs are calculated with Dot product weight function. The
spread speed we used is 0.02.

RF adds an additional layer of randomness to Bagging on
the basis of the decision tree method, and it utilizes the Gini
index to compute the weight. The function ‘classRF_train(P,
T, ntree, mtry, extra_options)’ in the toolbox [31] is engaged
to train RF classifiers. P and T are the input vector and the
target class vector, respectively. ntree is the number of trees
grown and here it is set to 30. extra_options are some other
options to control RF and their initial values we used are the
default.mtry is the number of predictors sampled for splitting
at each node and can be calculated by the number of features:

mtry =
⌊√

h× 3+ 3
⌋

(14)

where, b·c means the rounding down operation. The result of
h× 3+ 3 is the number of futures.
In this study, we classified the ABP waves by gender, age,

health, EB and ET based on the feature vectors. In Fantasia
database, there are 79310 ABP waves from healthy subjects
in total, in which that of 41170 belong to young subjects,
38140 belong to old subjects, 42955 belong to females and
36355 belong to males. In 2015 PhysioNet/CinC Challenge
database, we extracted 4595 ABP waves from EB subjects
and 12836 ABP waves from ET subjects. Thus, there are
96741 ABP waves in total. They were divided into a training
set, a validation set, and a testing set, and their corresponding
numbers for different classifications are shown in Table 3.
Here, the cross-validation is engaged to improve the perfor-
mance of classifiers.

TABLE 3. The sub-datasets of different classifications.

4) THE OPTIMAL MODEL SELECTING
The aim of this study is to find the optimal morphologi-
cal modeling mixture for ABP-related classification, so it
is important to employ some indexes as the standards to
assess the performance of the ABP modeling method and
the classifiers. Here, the modeling accuracy and modeling
time-consumption are calculated to analyze the results of
modeling. The classification performance and time-
consumption are used to evaluate the results of different
classifiers. The time-consumption of the modeling and classi-
fication is counted by the functions (tic and toc) inMATLAB.

The root mean square error (RMSE) is utilized to compute
the modeling accuracy:

RMSE =

√√√√ 1
PPI

PPI∑
n=1

(
y(n)− ŷ(n)

)2 (15)

Then, the specificity (Sp), sensitivity (Se), accuracy (Ac)
and kappa coefficient (KC) are exploited to assess the perfor-
mance of classifiers. Among them, the definitions of Sp, Se,
and Ac are [32]:

Sp =
TN

FP+ TN
× 100% (16)

Se =
TP

TP+ FN
× 100% (17)

Ac =
TP+ TN

TP+ FP+ FN + TN
× 100% (18)

where, TP, FP, FN, and TN are the true positive, false posi-
tive, false negative, true negative of the classification results,
respectively. Actually, TP is the number of ABPwaves belong
to AA and are classified as AA. FP is the number of ABP
waves belong to BB and are classified as AA. FN is the
number of ABP waves belong to AA and are classified as
BB. TN is the number of ABP waves belong to BB and are
detected as BB. Here, AA and BB replace the categories that
the ABP waves should belong to. AA is young while BB
is old in the classification by age. AA is male while BB is
female in the classification by gender. AA is a patient while
BB is healthy in the classification of healthy subjects and
patients. AA is the patients with EB and BB is that of ET
in the classification of patients.

In addition, the KC is engaged to measure the average
performance of classifiers, and its definition is [33]:

KC =
p0 − pe
1− pe

(19)

p0 =

∑r
t=1 qtt
m

(20)

pe =

∑r
t=1 (qt+ × q+t)

m2 (21)

where, p0 and pe are the parameters derived from the confu-
sion matrix of classification results. p0 is the ratio of the true
classification, and pe is the ratio of false classification. r is the
number of the rows in the confusion matrix. qtt replaces the
diagonal element in the confusion matrix. qt+ is the sum of
the elements on the line t , and q+t is the sum of the elements
on the column t . KC is in the range of [−1, 1]. The closer the
KC value of the classification result is to 1, and the better the
classification result is acquired. Moreover, we assess the clas-
sification result of each category by KCt , which is defined as:

KCt =
ptt − pt+p+t
p+t − pt+p+t

(22)

ptt =
qtt
m

(23)

pt+ =
qt+
m

(24)

p+t =
q+t
m

(25)
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TABLE 4. (a) The modeling results with 2 Gaussian functions. (b) The modeling results with 3 Gaussian functions. (c) The modeling results with
4 Gaussian functions.

The experiments were implemented via MATLAB 2016a,
which is installed at a laptop with an Intel(R) Core (TM)
i7-6700HQ CPU at 2.6 GHz clock speed, 16 GB installed
memory, and 64-bit windows-7 operating system.

III. RESULTS
A. RESULTS OF ABP MORPHOLOGICAL MODELING
The proposed method is engaged to compute the ABP
morphological models of the experimental data in different
groups, and the results are shown in Table 4(a) to Table 5(c).
We only present the values of K, B, and PPI in Table 4(a),
because they are no changes among the models with different
kernel function mixtures. The variable DL means the sum of

ABP waves’ lengths of one group, and the time is the time
consumed by modeling all ABP waves of one group.

Table 4(a) to Table 4(c) are the modeling results of two-,
three- and four-Gaussian functions, respectively.We can infer
from the tables that the accuracies of models increase as the
number of kernel functions grows from two to four. The range
of RMSE are 0.138 ± 0.056 to 0.214 ± 0.037, 0.057 ±
0.042 to 0.121 ± 0.033, and 0.037 ± 0.038 to 0.068 ±
0.018 for different groups, and they diminish as the growth of
kernel functions’ number. The mean RMSEs of the different
mixtures are 0.192 ± 0.060, 0.101 ± 0.040, and 0.0528 ±
0.025, and it decreases markedly as the more functions used
in models. Fig. 2 is the modeling results of an ABP wave we
chose randomly. The (a) to (c) indicate that the difference
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TABLE 5. (a) The modeling results with 2 Lognormal functions. (b) The modeling results with 3 Lognormal Functions. (c) The modeling results with
4 Lognormal Functions.

between a raw ABP wave and its model decreases with the
increase of kernel functions. We can conclude the same result
from (a1) to (c1), which are the corresponding residual error
of the figures above them, respectively.

The accuracies of the models with two- to four-Lognormal
functions also increase with the growth of the kernel func-
tions’ number. The mean RMSEs are 0.116± 0.042, 0.077±
0.033, and 0.051 ± 0.030, respectively. We can obtain the
same results from (e) to (f) and (e1) to (f1) in Fig. 2. The
conclusion is the same as that of the modeling results of the
Gaussian function.

However, we found that the Lognormal function is more
suitable for ABP wave modeling than the Gaussian function.
The mean RMSEs of Gaussian-function-based models are
0.192± 0.060, 0.101± 0.040, and 0.0528± 0.025, while that
of Lognormal-function-based models are just 0.116± 0.042,
0.077 ± 0.033, and 0.051 ± 0.030 under the same number
of kernel function. The RMSEs of all groups in Table 4(a)

are larger than that in Table 5(a). The same conclusion we
would obtain by comparing Table 4(b) with Table 5(b), and
Table 4(c) with 5(c) except some singularities we bolded them
up in tables. In Fig. 2, the ABP waveform has a long tail
after the high systolic wave, and we found that the Lognormal
function also has long tail after its peak, while the Gaussian
function is bilaterally symmetric. Thus, we can easily infer
that why the Lognormal-function-based models are more
precise than the models constructed by Gaussian functions.

Table 4(a) illustrates that the length of all ABP waves form
the healthy, EB and ET subjects is 89417.89 seconds (s).
The modeling time of two-, three- and four-Gaussian-based
models are 4216.859 s, 5620.965 s, and 6322.197 s and
that of Lognormal-function-based models are 3805.274 s,
5284.429 s, and 6810.224 s. For themodels with the same ker-
nel function, the computational load increases as the growth
of the kernel functions’ number. The reason is that the number
of model parameters increases as the more kernel function
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FIGURE 2. An example of ABP wave modeling using different kernel functions mixtures. (a) two Gaussian functions, (b) three Gaussian functions,
(c) four Gaussian functions, (d) two Lognormal functions, (e) three Lognormal functions, and (f) four Lognormal functions. (a1) to (f1) are the residual
errors corresponding to (a) to (f), respectively.

employed by (3) and (4), and there are 9, 12 and 15 parameters
for the models with 2, 3 and 4 kernel functions. The time
consumed by the models with 2 and 3 Gaussian functions are
less than the models with 2 and 3 Lognormal functions, while
the model with 4 Lognormal functions costs more time than
the model with 4 Gaussian functions.

B. THE CLASSIFICATION RESULTS OF DIFFERENT MODELS
In this study, since some model parameters do not obey the
normal distributions, the two-sample Kolmogorov-Smirnov
test (ks-test) is utilized to examine the different levels of
the same parameter in different models, and the results are
depicted in Table 6(a) to Table 7(c). Then, we select the
parameters with markedly change to train the classifiers. The
null hypothesis is defined as the parameters of two differ-
ent group obey the same statistical probability distribution,
and h is denoted to express the hypothesis result under the

probability p. h is 1 when the statistic test rejects the null
hypothesis less than the 5 % significance level, and 0 other-
wise.Most studies refer to statistically significant as p < 0.05
and statistically highly significant as p < 0.001. Because
the parameters K, B, and PPI are unchanged among different
models, we just listed the results in Table 6(a). The ks-test
results show that all themodel parameters between two differ-
ent groups are markedly different at a highly significant level
(h = 1, p < 0.001), and most of them are in an extremely
significant level (h = 1, p = 0). Therefore, all the model
parameters are employed as the feature vector to train the
classifier in this study.

Then, the feature vectors of different groups are exploited
to train the classifiers with PNN and RF, the ABP waves are
classified by age, gender, health, EB and ET. Each classifier is
trained 100 times to eliminate the influence from the different
input samples by randomly changing the samples in training,
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TABLE 6. (a) The results of ks-test for the 2-Gaussians models’
parameters of different subjects. ‘h’ and ‘p’ are the hypothesis and
probability of ks-test. (b) The results of ks-test for the 3-Gaussians
models’ parameters. (c) The results of ks-test for the 4-Gaussians models’
parameters.

validation, and testing sets, and the results are shown in
Table 8(a) to Table 8(f).

Table 8(a) shows the classifying results of the young and
old subjects, the ‘2G’, ‘3G’, ‘4G’, ‘2L’, ‘3L’ and ‘4L’ are
the abbreviations of the ABP models with two Gaussian
functions mixtures, three Gaussian functions mixtures, four
Gaussian functions mixtures, two Lognormal functions mix-
tures, three Lognormal functions mixtures, and four Lognor-
mal functions mixtures, respectively. The results are shown
as the ‘mean ± standard deviation’ of 100 train results.
For the classifying approaches, the results of RF-based

classifiers are better than that of PNN-based classifiers.
The KC of RF-based classifiers for 2G to 4L models are
98.335 ± 0.119%, 99.425 ± 0.090%, 99.761 ± 0.054%,
98.534 ± 0.093%, 99.602 ± 0.066%, and 99.618 ± 0.067%,

TABLE 7. (a) The results of ks-test for the 2-lognormal models’
parameters. (b) The results of ks-test for the 3-Lognormal models’
parameters. (c) The results of ks-test for the 4-Lognormal models’
parameters.

respectively, while that of PNN-based classifiers are just
96.975 ± 0.204%, 98.453 ± 0.140%, 99.197 ± 0.088%,
97.882 ± 0.132%, 99.424 ± 0.073% and 99.285 ± 0.080%.
Meanwhile, the time RF-based classifiers taken is less than
that of PNN-based classifiers taken. That is, the RF-based
classifiers take less training time and achieve higher accuracy.

For the classifying results of the models with different
kernel functions mixtures, the KC and the Time in Table 8(a)
increase as the increase of kernel functions. For instance,
the KC increases from 98.335 ± 0.119% and 99.425 ±
0.090% to 99.761 ± 0.054% for the 2G, 3G, and 4G models,
respectively. The KC increases from 98.534 ± 0.093% and
99.602 ± 0.066% to 99.618 ± 0.067% for the 2L, 3L and
4L models, respectively. For models with the same order but
different kernel functions, the KC of 2G- and 3G-models are
less than that of 2L- and 3L-models, respectively. But the KC
of the 4G-model is higher than that of the 4L-model, and it is
the highest value among the classification results, as is bold
in Table 8(a).
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TABLE 8. (a) The results of classification for the young and old subjects with different models. ‘2G’, ‘3G’, ‘4G’, ‘2L’, ‘3L’ and ‘4L’ mean the models with two
gaussian functions mixtures, three gaussian functions mixtures, four gaussian functions mixtures, two Lognormal functions mixtures, three Lognormal
functions mixtures, and four Lognormal functions mixtures, respectively. (b) The results of classification for the male and female subjects with different
models. (c) The results of classification for the healthy and EB subjects with different models. (d) The results of classification for the Healthy and ET
subjects with different models.
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TABLE 8. (Continued.) (e) The results of classification for the EB and ET subjects with different models. (f) The results of classification for the Healthy,
EB and ET subjects with different models.

Therefore, if we only consider the classification accuracy,
the 4G-model is the best choice. However, time-consumption
is also a very important factor in practical applications. Thus,
the 2L-model may be a good choice because it has the KC
of 98.534 ± 0.093% and the least modeling time.

Table 8(b), Table 8(c), Table 8(d), Table 8(e), and Table 8(f)
display the classification results of males vs females, healthy
subjects vs patients with EB, healthy subjects vs patients with
ET, patients with EB vs patients with ET, and healthy subjects
vs patients with EB vs patients with ET. The performance
of most PNN-based classifiers is worse than that of RF-
based classifiers, and only three of the results are opposite,
i.e., the classification of 2L- and 3L-models in Table 8(c),
and the classification of 4L-model in Table 8(d). There is
no much difference in the KC between two classification
methods for the 4L-model, and their average difference of
KC is just 0.075%. The time PPN-based classifiers taken is
still more than that of RF-based classifiers.

Meanwhile, the accuracies and time consumption of the
most classifiers also increase as more kernel functions used,
and only the 3L-model in Table 8(c), 4L-model in Table 8(d),
and 3G-model in Table 8(e) are unusual. But it does not
matter, and the KC of them is still over 96%, which does
not have a bad influence on our optimal modeling method
selecting. The highest KC from Table 8(b) to Table 8(f) are
99.594 ± 0.074%, 98.379 ± 0.339%, 99.407 ± 0.109%,
98.857 ± 0.346%, and 99.045 ± 0.123%, which correspond

to the 4G-, 4L-, 4G-, 4G-, and 4G-models in each classi-
fication, respectively. The 4L-model is in the classification
between healthy subjects and patients with EB. While when
the modeling time is taken consider for each kind of classi-
fication, the most promising models in practical application
from Table 8(b) to Table 8(f) are 2L-, 2L-, 2L-, 2G-, and
2L-models, whose KC are 95.210 ± 0.234%, 97.102 ±
0.421%, 98.523 ± 0.205%, 98.684 ± 0.360%, and 97.993 ±
0.172%, respectively. The 2G-model is in the classification
between patients with EB and ET.

Table 9 presents the statistical results of the classification
for different models. The ‘mKC’, ‘mCTime’ and ‘mRMSE’

TABLE 9. The statistical results of classification and ABP modeling.
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are the mean of KC, the mean time consumption of the
different classification, and the mean of RMSE, respectively.
The ‘MTime’ is the sum of the ABP wave modeling time of
healthy subjects and patients with EB and ET. We can obtain
some conclusions as follows:

(1) The modeling accuracy increases with the increase
of kernel function, and the Lognormal-function-based
models have less mRMSE than the Gaussian-function-
based models under the same number of kernel
functions.

(2) The RF-based classifiers have better performance than
the PNN-based classifiers. The mKC of PNN-based clas-
sifiers is less than that of the RF-based classifiers, while
they take more time in training and testing classifiers.

(3) The classifying accuracy increases with the increase of
kernel function, while the time consumption in modeling,
classifiers’ training, and testing also increases. Especially
for the 4G-model and 4L-model, the modeling time is
even over 6000 s.

(4) Classifying accuracy is not directly proportional to the
modeling accuracy. Though we can see that the mKC
increases with the increase of the same kernel functions,
and the mRMSE decreases. However, we found that this
conclusion is wrong when we compare the mRMSE and
mKC of the models between two different kernel func-
tions. For example, the mKC of RF-based classifiers
for 3G- and 4G-models are higher than that 3L- and
4L-model, i.e., 98.923 ± 0.471% vs 98.512 ± 0.988%
and 99.160 ± 0.537% vs 98.945 ± 0.515%, while their
mRMSE are higher than 3L- and 4L-model, i.e., 0.101 ±
0.040 vs 0.077 ± 0.033 and 0.053 ± 0.025 vs 0.051 ±
0.030.

(5) The 2L-model seems to be cost-effective in the ABP-
related classification, though the 4G-model based clas-
sification has the best performance. The mKC of
4G-model is 99.160± 0.537%, while that of 2L-model is
97.585 ± 1.203%. The average accuracy only increases
by 1.575%, but we have to pay nearly twice as much as
time in modeling, training and testing the classifiers and
store 6 extra variables. The results indicate the informa-
tion we extracted from the models with three and four
kernel function is redundant. Therefore, the 2L-model
has greater potential in practical applications.

IV. DISCUSSION
In this work, we explored the optimal morphological model
for ABP-related classification by the principle as shown
in Fig. 1. For two popular ABP wave models with the kernel
functions mixtures of Gaussian or Lognormal, as shown
in (3) and (4), we compare the modeling and classifica-
tion performance of the models with different kernel func-
tions mixture and different order. For the results of ABP
wave modeling, we found the accuracy grows with the
increase of kernel functions, whereas more time is con-
sumed. The models of Lognormal function have higher

precision than the models of Gaussian function under the
same model order, and the lognormal function is more suit-
able for ABP wave modeling. This conclusion is consistent
with [21] and [22].

The two-sample ks-test results show that the parameters of
all models are markedly different at a highly significant level
(h = 1, p < 0.001, as shown in Table 6(a) to Table 7(b)).
Thus, all the parameters are employed as the feature vectors
to train the classifiers using PNN and RF. The results of
different classification are illustrated in Table 8(a) to 8(f), and
the average results are shown in Table 9. We concluded that
the classifying accuracy is not proportional to the modeling
accuracy, and the 4G-models has the highest classification
accuracy. However, the accuracy is most important but not
the only index we considered, and the time-consumption and
the number of variables are the other indexes that should
be addressed. Then, the 2L-model is acceptable in practi-
cal applications. Table 9 presents that the accuracy of the
4G-model related classification is only 1.575% high than that
of 2L-model, while the modeling time increase by 2516.923 s
since 6 model parameters is added with the increase of
model order. The mKC of 2L-model related classifications
is still 97.585 ± 1.203%. Therefore, the increase of the
model order will inevitably lead to information redundancy in
classification.

Therefore, we explored the relationship between the
features’ number and the classifiers’ performance. For
2L-model, there are 45 combinations of the features, as shown
in Table 10, where ‘◦’ means the feature in this row is
selected as an element of a feature vector. The combination
is numbered as Nu, Nu is the integer ranging from 1 to 45 for
the 2L-model. Combination 1means a feature vector contains
one parameter A1, . . . , combination 9 means a feature vector
contains all the parameters, . . . , and combination 45 means a
feature vector contains PPI. Similarly, there are 120 combi-
nations constructed by model parameters of 4G-model. The
numbering process is similar to Table 10 and we were not
about to repeat.

Table 10(a) shows the 2L-models related classification
results of Ht vs EB vs ET. There are 45 results corresponding
to different parameter combinations, and 11 combinations of
them whose KC is over 97% (combinations 5 to 9, 14 to 17,
24, and 30). The combination 9 has the best performance with
the KC of 98.016 ± 0.223% and contains all features. The
combinations 5 and 14 contain the fewest features, and their
KC are 97.382± 0.201% and 97.582± 0.237%, respectively.
The combination 14 only consists of B1, C1, A2, B2, and C2.
The mean of KC increases by only 0.207% from combi-
nation 6 to 9, which indicates the information redundancy
exists. Combination 6 consists of A1, B1, C1, A2, B2, and C2.
When the K is added into combination 6, we obtain the
combination 7 with the KC of 97.844 ± 0.220%, and the
mean of KC increases by only 0.035%. However, the mean
of KC for combination 8 decreases after adding B into
combination 7, which means the B has a negative impact
on the classification. After adding PPI into combination 8,
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TABLE 10. Different combinations of features. ‘×’ means null, ‘◦’ means the features in this row is selected. (a) The results of 2L-models related
classification for Ht vs EB vs ET under different feature vectors. (b) The results of 4G-model related classification for Ht vs EB vs ET under different
feature vectors.

we get the combination 9 whose KC increases by 0.22%.
Thus, the optimal feature combination should containA1, B1,
C1, A2, B2, C2, and PPI.
Table 10(b) is the 4G-model related classification results of

Ht vs EB vs ET. Half of the combinations’ KC are over 97%
(combinations 5 to 15, 21 to 29, 34 to 42, 47 to 54, 59 to 65,
70 to 75, 80 to 84, 89 to 92, and 99), which are bold in table.
The combinations 5, 34, 47, 59, 70, 80, and 89 contain only
5 features. The combination 80 consists ofA3,B3,C3,A4, and
B4 with the highest KC of 97.759 ± 0.186%. Then, the KC
of the combinations increases with the increase of features.

For example, the mean KC increases by only 0.454% from
combination 8 to 15, while the number of features increases
by 7. This means that we spend more time identifying the
parameters, but the accuracy of the classification is not
significantly increased. The same cases occur in the com-
binations 22 to 29, the combinations 35 to 42, the combina-
tions 48 to 54, the combinations 60 to 65, the combinations
71 to 75, and the combinations 81 to 84. There is exces-
sive information redundancy in the classification based on
4G-model. Therefore, the 2L-model has greater potential in
practical applications.
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We can infer from the experimental results that the two
types of modeling mixtures can accurately describe the
change of ABP waves. The features extracted from the mod-
els are effective in ABP signal related classifications, and
the lowest mKC is over 95%, as shown in Table 9. Here,
the experimental data are from the databases Fantasia and
2015 PhysioNet/CinC Challenge, and the ABP signals are
recorded from 74 subjects (20 healthy subjects, 17 subjects
with EB, and 37 subjects with ET). One of the critical reasons
for the high performance of the classifiers is a limited dataset,
which leads to overfitting. In the future, we would collect
more clinical data to build a ‘big dataset’ for classifiers
training with deep learning. The ABPwave modeling method
can be engaged as a feature extractor in deep neural net-
works. Moreover, there are three other arrhythmias, ventricu-
lar tachycardia, ventricular flutter, and ventricular fibrillation
in the database. We would improve the 2L-model related
classification method to detect the three arrhythmias in the
future.

V. CONCLUSION
In this work, we explored the optimal morphological model
for ABP signal related classification. Two kinds of most
popular modeling methods with Gaussian or Lognormal
kernel function mixtures are engaged to fit the measured
ABP waves of different subjects who are from the Fantasia
and 2015 PhysioNet/CinC Challenge databases. The 2G-,
3G-, 4G-, 2L-, 3L- and 4L-models of the young, old, male,
female, and healthy subjects and the patients with EB and
ET are obtained, and the modeling time consumption and
accuracy are compared. The results show that themodels with
Lognormal functionmixtures aremore suitable for ABPwave
modeling than the models with Gaussian function mixtures.
Then, the parameters of different models are exploited to train
the classifiers by PNN and RF, by which we classify the ABP
waves according to the age and gender of healthy subjects
and whether the subjects are healthy or the patients with
EB or ET. We compare the performance of classifications
and the results of ABP modeling. The results indicate that
the classification performance is not directly proportional to
themodeling accuracy, and the 4G-model based classification
has the best performance, while the 2L-model has greater
potential in practical applications. In the future, we will apply
the ABP modeling method to more data and explore its
practical applications in m-health.
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