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ABSTRACT The morphological modeling methods are efficient in quantifying the change of arterial
blood pressure (ABP) waves. The related works focus on minimizing the modeling error but ignore the
classification related modeling expression in practical applications. In this study, we explored the optimal
modeling method for ABP wave related classifications. Two types of conventional models, Gaussian or Log-
normal kernel function mixtures, were employed to quantitively describe the change of ABP signals, and
the parameters of different models were engaged to train the different classifiers by probabilistic neural
network (PNN) and random forest (RF) for identifying the ABP waves by age, gender, and whether
belonging to extreme bradycardia (EB) or extreme tachycardia (ET). Then, we defined some indexes about
the performance of modeling and classifications as the references to compare the different models. The ABP
signals of Fantasia and 2015 PhysioNet/CinC Challenge databases were exploited as the experimental data
to select the optimal model. The modeling results show that the Lognormal kernel function mixtures have a
lower error in ABP wave modeling. The two-sample Kolmogorov-Smirnov test (ks-test) results indicate that
the parameters of all models are markedly different at a highly significant level (A = 1, p < 0.05) between
different groups. The classification results show that the classifiers based on the four-Gaussian function
model have the best performance with the average Kappa coefficients (KC) of 99.160 £ 0.123%, while the
average KC for the classifiers of two-Lognormal function models is 97.585 =+ 0.172%, which means there
is excessive information redundancy in the classifications by the three and four kernel functions models.
Considering some other indexes such as time consumption and RAM space, the 2 Lognormal function model
has more potential in practical applications.

INDEX TERMS Arterial blood pressure signal, optimal morphological model, Gaussian function, lognormal
function, classification.

I. INTRODUCTION

Arterial blood pressure (ABP) signal is one of the most impor-
tant physiological signals and contains abundant information
about the beat rhythm and hemodynamics of the cardiovas-
cular system. It plays an important role in detecting some
cardiovascular diseases, e.g., arteriosclerosis, heart failure,
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coronary heart disease, and arrhythmia [1]-[3]. It is easy to
record the ABP signal from our arterial network through some
non-invasive methods such as photoelectric, piezoelectric, or
ultrasonic sensors in some wearable or portable devices [4],
so the ABP signal has the great potential in detecting and
monitoring cardiovascular diseases in m-health.

The blood circulates in the cardiovascular network under
the diastolic and contractile forces from the heart. It is
reflected in the junctures of some arteries (thoracic and
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abdominal aorta, abdominal aorta and common iliac arteries),
and is re-reflected in the junctures of distal vascular [5]. Thus,
it is believed that an ABP waveform consists of a pressure
wave and several reflection waves [6], and some studies
show that these waves can be quantitively described by some
kernel functions. Then, some relative works proposed that the
ABP waveforms can be decomposed into several functions,
by which we obtain a morphological model with several
kernel function mixture to quantitively describe the change of
the ABP waveform [7]. So far, the morphological modeling
method has been used in many areas, e.g. cardiovascular
disease classification and analysis [8], psychological stress
analysis [9], motion state analysis [10], maternal health status
assessment [11], signal compression and reconstruction [12]
and motion artifacts detection and correction [6].

The morphological modeling method derives a set of
parameters of the kernel functions from the measured ABP
waveform. Some physiological or pathological informa-
tion has been extracted from these parameters, which are
employed as the features in some ABP-related classifications.
Sorelli et al. [13], [14] extracted the crest time, stiffness index
(SD), reflection index (RI) from the four-Gaussian morpho-
logical model, and trained classifiers for detecting type-1
diabetes and estimating the vascular’s age. Paradkar and
Chowdhury [2] drew out the augmentation index (Al), ST and
RI from the two-Gaussian morphological model and detected
the coronary artery disease (CAD) with the sensitivity of 85%
and specificity of 78%. Liu et al. [3] engaged the three-
Gaussian mixture to analyze the ABP signals of heart failure
patients and found four model parameters, which are potential
in detecting heart failure. Banerjee et al. [9] proposed a two-
step Gaussian modeling method to assess the psychological
stress and found the parameters By, B>, C1, and C;, which
are significantly changed. Li et al. [11] presented a three-
positive-Gaussian model to analyze the three trimesters of
pregnancy. He er al. [15] engaged the Gaussian model to
detect the unobservable dicrotic notch of the pulse signal
and computed the pulse transit time to estimate the arterial
blood pressure. The works of these studies show that the
morphological modeling method has great potential for ABP-
related classifications, while we found that the expression of
the morphological model varies in different studies.

Recently, the optimal expression of the morphological
model has drawn much attention, and the related works focus
on reducing the error between kernel function mixture and
measured ABP waveform by selecting the optimal number
or/and type of kernel function. The Gaussian, Lognormal,
Rayleigh, Gamma [16], Double-exponential [17] and
Cosine [18] functions have been employed as the kernel
functions of the morphological models and their number have
been tried from two to seven [12]. SoloSenko et al. [19]
concluded that the model consists of one-Lognormal and two-
Gaussian functions mixture that has the minimum error for
the data of atrial fibrillation after comparing the four models
with different kernel function mixtures. Wang et al. [20]
suggested that four- or five-Gaussian models have maximum
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accuracy. Tigges et al. [16], [21] proposed that we can obtain
a model with an arbitrarily small error simply by increasing
the number of the kernel function, while it will lead to overfit-
ting of data and consequently to the physiologically uninter-
pretable solution. Recently, Liu et al. [17], [22] demonstrated
that morphological models with three-Gaussian and three-
Lognormal functions are better than that of Raleigh and
double-exponential functions for healthy subjects. Obviously,
there is a controversy on the ideal number and type of the
kernel function. Different optimal morphological models
have been concluded since the ABP waveform changed with
different kinds of subjects.

To sum up, the related works focus on minimizing the
modeling error. However, in the classification-related appli-
cations, we are more concerned with the time consumption
of the program, the amount of RAM space occupied by the
variables, and the results of classification, while the modeling
error is not the primary consideration. In fact, the more kernel
functions in modeling, the more model parameters need to be
computed, the more time consumption in classification and
modeling, and the more RAM space for storing parameters.
But the increase of model parameters may cause information
redundancy, and we do not know whether it has a marked
improvement in the performance of classifiers. Therefore, the
purpose of this study is to find the optimal morphological
model for ABP signal related classifications by comparing
two conventional kernel function mixtures. First, the noises
and interference are eliminated, and abnormal segments are
wiped out from the ABP signal. The ABP signals are seg-
mented into a series of pulse waves. Then, the ABP mor-
phological modeling methods with two conventional kernel
function mixtures and the optimal model selecting indexes
are introduced in detail. The renowned international database
of the Fantasia and the PhysioNet/Computing in Cardiology
Challenge 2015 are employed to validate and compare the
different models. Moreover, the probabilistic neural network
(PNN) and random forest (RF) are engaged to classify the
data by age, gender, extreme bradycardia (EB), and extreme
tachycardia (ET) based on different models, and we com-
pare the time consumption and performance of the different
classification and obtain the optimal model for ABP related
classification.

The remainder of this paper is organized as follows: The
database and the morphological modeling method used in this
study are detailed in section II. The results are presented in
section III. Moreover, a thorough analysis of the results is
presented in section IV. Finally, the conclusion is given in
section V.

Il. MATERIALS AND METHODS

A. EXPERIMENTAL DATA

The experimental data used in our work is from the inter-
national physiological database PHYSIONET. A group of
data recorded from the young and old subjects is engaged
in the classification by age and gender, and they are also
exploited as the healthy subjects in the detection of patients
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with EB and ET. Another group of data recorded from the
patients with some life-threaten arrhythmias is employed in
the classification by disease.

The data of healthy subjects is from the sub-database Fan-
tasia (URL: https://www.physionet.org/physiobank/database/
fantasia/) [23], which were donated by Harvard Medi-
cal School, Boston University, Beth Israel Hospital and
Massachusetts Institute of Technology. Forty rigorously
screened healthy subjects, of which 20 young and 20 old
subjects with sinus thythm were employed in the experiment.
The number of male and female are the same. During data
recording, all subjects were supine in the bed and watching
the movie named Fantasia (Disney 1940) to keep waking.
The electrocardiogram (ECG), APB and respiratory signals
were acquired synchronously with the sampling frequency
of 250 Hz (only the record f2y02m with 333 Hz), and the
duration of each data is 120 minutes. However, only half of
the subjects’ ABP signals were recorded, their information is
shown in Table 1.

TABLE 1. The information about the subjects in the Fantasia database.

Name of Document Age Sex Name of Document Age  Sex

f2001m 73  Female f2y0lm 23  Female
f2002m 75 Female f2y02m 23 Male
f2003m 85 Female f2y03m 28 Female
f2004m 70 Female f2y04m 27 Female
f2005m 83  Male f2y05m 25 Female
f2006m 70  Male f2y06m 26  Male
f2007m 77  Male f2y07m 31  Male
f2008m 71  Male f2y08m 21  Male
f2009m 77  Male f2y09m 21 Female
f2010m 73  Female f2y10m 21 Male

The records of the patients with EB and ET are from the
sub-database 2015 PhysioNet/CinC Challenge (URL: https://
www.physionet.org/content/challenge-015/1.0.0/) [24], and
they were recorded in the Intensive Care Unit (ICU) of four
hospitals in the USA and Europe. The aim of this challenge
is to improve the true alarms rate in the ICU for some life-
threatening arrhythmias, e.g., EB and ET. Patients with EB
whose heart rate are lower than 40 beats per minute (bpm)
for 5 consecutive beats, and that of patients with ET are over
140 bpm for 17 consecutive beats, so it’s easy to detect EB
and ET by their definitions. However, the signal channels
in monitoring devices are suffered from the movement arti-
fact of body, the sensor movement or disconnects and other
events, which generate many abnormal segments inner the
signals that are used for monitoring whether the arrhythmias
outburst. Thus, the ICU monitors will give the false alarm
if they rely on the definitions of EB and ET, and sometimes
the false alarm rate is even as high as 86% [25]. To supply a
“gold standard” for arrhythmias detecting, a team of experts’
annotators reviewed each record with alarm and labeled it
either ‘true alarm’ or ‘false alarm’. The evaluation criterion
is that if two-thirds majority agreed with the annotation, and
the corresponding record could be adopted by the challenge.
The ECG, APB, photoplethysmogram (PPG) and respiratory
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signals were acquired synchronously and have been resam-
pled to 12-bit, 250 Hz. In this study, only the ‘true alarm’
records were engaged in the experiments, so there are forty-
five records of the EB subjects and one hundred and thirty-
one records of ET subjects. While only seventeen records of
EB subjects and thirty-seven records of ET subjects contain
the ABP signals, and thirteen of the ET records are heavily
corrupted by abnormal segments, so only forty-one records
are used finally. The records name of EB subjects are b268s,
b4551, b456s, b494s, b4951, b5151, b516s, b5171, bS60s,
b5611, b562s, b578s, b6591, b664s, b708s, b722s, and b7571,
and that of ET subjects are t1731, t208s, t214s, t276s, 2771,
t3331, t3351, t406s, t412s, t4131, t4171, t418s, t4251, t594s,
t6771, t680s, t690s, t702s, t7071, t7191, t7311, t7391, t760s,
and t7771. The record name ended by the letter ‘s’ means
the signal with a length of 5 minutes, and that ended by the
letter ‘I’ means the signal with a length of 5.5 minutes.

B. THE MORPHOLOGICAL MODELING METHOD OF

ABP WAVE

The core of the morphological modeling method is to synthe-
size the ABP wave with a mixture of several kernel functions.
For an ABP wave {y(n)}, whose morphological model is
denoted as {y(n)}, and then we have,

ym) =f(n,0)+ Bn,¥) nell,PPI] (1)

where, y(n) is the evaluation of the n-th sample in ABP
wave. n is the index of a sample and it is a positive integer.
PPI means the pulse to pulse interval, and here it is also
the length or the cycle of the ABP wave. f(-) represents the
morphological wave synthesized by several kernel functions.
B(-) is the baseline, and # and ¢ are the parameters vectors
of this model.

In (1), we should derive the detailed expression of
J(-) and B(-). Because the trend of an ABP wave only has a
slight change, the baseline can be approximated as a linear
local trend [1]:

Bn,¥)=kn+b )

where, k and b are the slope and the vertical intercept of
baseline, respectively. Then, ¥ = [k, b].

For the expression of f{(-), the key is to determinate the
type and the number of kernel functions. So far, the mixtures
of Gaussian or Lognormal functions are verified to be the
most effective in modeling ABP wave, and their number
varies from two to four for different subjects [17]. Thus,
in this study, we investigate the optimal ABP model expres-
sion in classification among the models mixed by two- to
four- Gaussian/Lognormal functions. For Gaussian function,
the expression of f{-) is:

h
fn.0) = g abicp)

=1

] nell,PPI] (3)
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where, h is the number of kernel functions, 2 = 2, 3 and 4.
gi(-) is the [-th Gaussian function in the model. f; is the
sampling frequency of the measured ABP signal. g, b;, and
¢ are the amplitude, the position and the width of the /-th
Gaussian function, respectively.

For the Lognormal function, the expression of f{(-) is:

h
f,0) =" LNi(n, ey, 1, v1)

I=1

h o] (]n(fs:ﬂl ))2
=y ——————exp[-— 22—
o V21 Xy x nffs 2(v1)

where, LN;(-) is the /-th Lognormal function in model, ¢, f;,
and y; are its parameters, respectively.

Therefore, the ABP wave can be quantified by the model-
ing parameters:

“

[PPI k b {a; by c;}'_1 or [PPI k b {oy By yi}i;]

&)

where, {~}f‘: | means the parameters of different models, e.g.,
{a; by cl}lz=1 is the parameters of f(-) which consists of two
Gaussian functions. Thus,

2
{ar b ali_ =lar by c2ay by 2] (0)
Then, we can obtain a vector of all ABP waves:

[PPI K B (A, B, C})]
or
[PPI K B {a; B, vl ©)

Fig. 1 depicts the process to select the optimal ABP model
for classification. The process includes: 1) ABP signal pre-
processing, 2) feature vector extracting, 3) model-related
classification, and 4) the optimal model selecting. There are
some noise, interference and abnormal segments in raw ABP
signal, and the ABP signal should be split into a series of
waves by the cardiac cycle. Hence, we should attenuate the
noise and interference, eliminate the abnormal segments,
and detect the start points of the ABP waves during ABP
signal pre-processing. Then, the processed ABP waves are
employed to compute the parameter of the different models
as the feature vectors for different classifications. Moreover,
the features between different classification are selected, and
the RF and PNN are utilized to train the classifiers to dis-
tinguish the ABP waves by gender, age, health, EB and ET.
Finally, some indexes are defined as the standard to assess the
performance of ABP modeling and classification, by which
we chose the optimal ABP morphological modeling method.

1) ABP SIGNAL PRE-PROCESSING
Three missions are assigned in the ABP signal pre-
processing: noise and interference attenuating, abnormal seg-
ments detecting and ABP wave start points positioning.

The raw ABP signal is corrupted by some noise and
interference, i.e., the baseline wanders, the power line
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interference and electromyogram (EMG). Here, a fast-
mathematical-morphology filtering approach, we proposed
in the previous study, is employed to attenuate these noise
and interference [26], and the core of this method is to
cut or fill the glitches attached at the ABP waveform by some
mathematical operators between a signal and a symmetric
structuring element (SSE). We can attenuate the different
noise or interference from ABP signal by adjusting the length
of SSE. For the power line interference and the EMG, an
alternate-hybrid filter is designed, and the length of SSE
is 10 samples. In addition, the length of SSE increases to
200 samples for designing another alternate-hybrid filter
to estimate the baseline wanders of the ABP signal. Then,
the processed signal is obtained by subtracting the baseline
wanders from the result of the former filter.

Although we have obtained a cleaner signal after filtering,
some abnormal segments caused by movement artifact, senor
sliding or disconnects still exist in the ABP signal, they lose
almost all the features of the ABP waveform and have a
great influence on the accuracy of wave modeling. Thus, it is
essential to detect and remove these abnormal segments from
ABP signal. Here, an ASCD method is engaged to detect the
abnormal segments [27].

In order to split the ABP signal into ABP waves, we should
find the start points of these waves. We find the start point is
the minimum between two systolic waves (inner a period).
Thus, we first compute the interval between two adjacent
systolic waves with a sliding window iterative method in [28],
then the start point is the minimum of the interval. Here,
the ABP wave is denoted as {x(n)}, then we can obtain the
PPI by the first-order difference of start points.

2) FEATURE VECTOR EXTRACTING
Fig. 1 illustrates the process to extract the feature vector from
measured ABP waves. First, in order to reduce the influ-
ence generated by the difference of ABP waves’ amplitude,
the ABP waves are normalized by:

PPI
x(n) — 5 3 x(n)
¥n) = = = ®
PPI PPI
\/ﬁ > <x(n) — b7 Z]x(n)>

n=1

where, y(n) is the result of the n-th sample in an ABP wave.

In (7), the features in the vector can be divided into
three parts: 1) PPI is the intervals of adjacent ABP
waves, it is the results of the first order of the start
points. 2) K and B are derived from the linear trend.
3) {A; B; C; }51:1 or {o; B; ¥, }f‘zl are estimated from the
measured ABP waves by modeling method. Here, according
to the expression of the linear trend as (2), we can compute k
and b by:

PPI) — (1
=X PPI) —i( ) ©)
b=y(l)—k (10)
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FIGURE 1. Process of optimal model selecting.

where, y(PPI) and y(1) are the end and the start of an ABP
wave, respectively.

For the models in (3) and (4), the ABP waves should obey
the Dirichlet and Neuman boundary conditions by [1], [29],
and the curve obtained by subtracting the linear trend from
the ABP wave can approximately meet these two conditions.
Then:

z(n) =y(n) —kn—> (11D
where, z(n) is the result we obtained and can be employed to
estimate the parameters of the models in (3) and (4).

For the model parameters estimation, a nonlinear curve
fitting method is engaged. The fitting error is defined as:

PPI
E®) = oo ; (&) = f (1, 8))° (12)
Then, we solve (12) by:
moin E(0)
subject to F{f(n,0),0} H b <6 <ub (13)
where, F{f(n, 0), 0} is the constraint condition.

Ib < 0 < ub is the boundary condition, /b and ub are the
lower and upper bounds of parameters. Here, the nonlinear
least-squares method is engaged to solve (13). Some details
we used are in Table 2.
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TABLE 2. Parameters setting of curve fitting.

Parameters Values
b [min(z(n)), 0, 0] *
ub [max(z(n)), PPI(i), PPI(i)]
F{fin, 0), 0} b1<bl+170<al7ﬂl77!<1
Intitial values mean(")
Optimization algorithm ‘Trust-Region’
Maximum number of iterations 500

Iterative termination condition AE(6)<0.001 or A6<0.001

"min(z(n)) and max(z(r)) are the minimum and maximum of an ABP wave,
respectively. mean(@) is the mean of @' corresponding to the average
parameters of the previous ABP wave’s model.

3) MODEL-RELATED CLASSIFICATION

The PNN and RF are utilized to design the classifiers,
which are trained and tested by the extracted feature vector.
The neural network toolbox and the ‘randomforest-matlab’
toolbox (available at https://code.google.com/archive/p/
randomforest-matlab/) are engaged to achieve the PNN and
the RF classifiers in MATLAB, respectively.

PNN is a kind of radial basis network suitable for classi-
fication [30]. Here, the function ‘newpnn(P, T, spread)’ in
the toolbox is utilized to create a two-layer network. P is the
input vectors. T is the target class vectors. spread is the spread
speed of the radial basis functions (RBF). The first layer con-
sists of RBF neurons and their weighted inputs are computed
with Euclidean distance weight function. The second layer
has competitive transfer function neurons and their weighted
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inputs are calculated with Dot product weight function. The
spread speed we used is 0.02.

RF adds an additional layer of randomness to Bagging on
the basis of the decision tree method, and it utilizes the Gini
index to compute the weight. The function ‘classRF_train(P,
T, ntree, mtry, extra_options)’ in the toolbox [31] is engaged
to train RF classifiers. P and T are the input vector and the
target class vector, respectively. ntree is the number of trees
grown and here it is set to 30. extra_options are some other
options to control RF and their initial values we used are the
default. mtry is the number of predictors sampled for splitting
at each node and can be calculated by the number of features:

miry = LmJ (14)

where, |-| means the rounding down operation. The result of
h x 3 + 3 is the number of futures.

In this study, we classified the ABP waves by gender, age,
health, EB and ET based on the feature vectors. In Fantasia
database, there are 79310 ABP waves from healthy subjects
in total, in which that of 41170 belong to young subjects,
38140 belong to old subjects, 42955 belong to females and
36355 belong to males. In 2015 PhysioNet/CinC Challenge
database, we extracted 4595 ABP waves from EB subjects
and 12836 ABP waves from ET subjects. Thus, there are
96741 ABP waves in total. They were divided into a training
set, a validation set, and a testing set, and their corresponding
numbers for different classifications are shown in Table 3.
Here, the cross-validation is engaged to improve the perfor-
mance of classifiers.

TABLE 3. The sub-datasets of different classifications.

Training Validation Testing

Classification® Total Labels
Set Set Set

YvsO 56310 8000 15000 79310 1vs2

MvsF 56310 8000 15000 79310 1vs2

Ht vs EB 60905 8000 15000 83905 1vs2

Htvs ET 69146 8000 15000 92146 1vs2

EBvs ET 13431 2000 2000 17431 1vs2
Htvs EBvs ET 73741 8000 15000 96741 1vs2vs3
SThe “Y’, ‘O, ‘M, ‘F’ and ‘Ht’ are the abbreviations of young, old, male,
female and healthy, respectively.

4) THE OPTIMAL MODEL SELECTING

The aim of this study is to find the optimal morphologi-
cal modeling mixture for ABP-related classification, so it
is important to employ some indexes as the standards to
assess the performance of the ABP modeling method and
the classifiers. Here, the modeling accuracy and modeling
time-consumption are calculated to analyze the results of
modeling. The classification performance and time-
consumption are used to evaluate the results of different
classifiers. The time-consumption of the modeling and classi-
fication is counted by the functions (tic and toc) in MATLAB.
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The root mean square error (RMSE) is utilized to compute
the modeling accuracy:

PPI
1 A 02
RMSE = | - Zl (vov) = 3(m) (15)
n=
Then, the specificity (Sp), sensitivity (Se), accuracy (Ac)
and kappa coefficient (KC) are exploited to assess the perfor-
mance of classifiers. Among them, the definitions of Sp, Se,
and Ac are [32]:

N
Sp= ——— % 100% (16)
FP+TN
Se = ———— x 100% (17)
P ey
— + x 100% (18)

TP + FP+ FN + TN

where, TP, FP, FN, and TN are the true positive, false posi-
tive, false negative, true negative of the classification results,
respectively. Actually, TP is the number of ABP waves belong
to AA and are classified as AA. FP is the number of ABP
waves belong to BB and are classified as AA. FN is the
number of ABP waves belong to AA and are classified as
BB. TN is the number of ABP waves belong to BB and are
detected as BB. Here, AA and BB replace the categories that
the ABP waves should belong to. AA is young while BB
is old in the classification by age. AA is male while BB is
female in the classification by gender. AA is a patient while
BB is healthy in the classification of healthy subjects and
patients. AA is the patients with EB and BB is that of ET
in the classification of patients.

In addition, the KC is engaged to measure the average
performance of classifiers, and its definition is [33]:

KC = Po = Pe (19)
1 r_pe

po = =L 0)
Z’m (qr+ X q+41)

pe = =S @1

where, po and p, are the parameters derived from the confu-
sion matrix of classification results. py is the ratio of the true
classification, and p, is the ratio of false classification. r is the
number of the rows in the confusion matrix. g, replaces the
diagonal element in the confusion matrix. g, is the sum of
the elements on the line ¢, and g4, is the sum of the elements
on the column ¢. KC is in the range of [—1, 1]. The closer the
KC value of the classification result is to 1, and the better the
classification result is acquired. Moreover, we assess the clas-
sification result of each category by KC;, which is defined as:

KC, = Pt — Pt+D+t (22)
Z+t — Dt+P+t
pu = (23)
dr+
P+ = — (24)
QTt
p= 25)
m
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TABLE 4. (a) The modeling results with 2 Gaussian functions. (b) The modeling results with 3 Gaussian functions. (c) The modeling results with

4 Gaussian functions.

(a)

P* Y o) F M Ht EB ET

A, 3.138+0.382 2.772+0.293 2.998+0.391 2.919+0.381 2.962+0.388  2.504+0.774 2.607+0.624
B, 0.128+0.014 0.184+0.027 0.154+0.040 0.156+0.028 0.155+0.035  0.246+0.153  0.128+0.040
C,  0.048+0.008 0.076+0.014 0.060+0.020 0.062+0.016 0.061+0.018  0.121+0.129  0.046+0.013
A, 1.584+0278 1.334+0.376 1.397+0.354 1.543+0.332 1.464+£0.352 1.461£0.735 1.124+0.593
B,  0.373+0.037 0.434£0.056 0.393+0.062 0.413+0.046 0.402+0.056 0.382+0.134 0.276+0.457
C,  0.199+0.037 0.207+0.043 0.191+0.034 0.217+0.043 0.203+0.041  0.173+0.097 0.098+0.845
K 0.007+0.174 0.004£0.200 0.006+0.191  0.005+0.182 0.006+0.187  0.006+0.200 -0.064+1.104
B -1231%0.180 -1.182+0.203 -1.201+0.200 -1.215+0.185 -1.207+0.193 -1.090+0.200 -1.009+0.434
PPI  0.931+0.133 1.028+0.181 0.917+0.134 1.051+0.168 0.978+0.165 1.068+0.469 0.541+0.860
RMSE 0.214+0.037 0.192+0.067 0.197+0.060 0.211+0.048 0.203+0.055 0.144+0.044 0.138+0.056
DL 38343.507  39219.460  39368.852 38194.115  77562.967 4905.800 6949.124
Time  1651.567 1715277 1794.346 1572.498 3366.844 226.516 623.499

*The letter P means the model parameters or indexes used to evaluate the modeling results. The data in all Tables are
expressed as ‘mean+std’. DL is the abbreviation of data length.

(b)

P Y

(0)

F

M

Ht

EB ET

2.530+0.912
0.148+0.051
0.048+0.014
1.986+0.912
0.251+0.200
0.064+0.030
1.456+0.256
0.400+0.085
0.162+0.056
0.121+0.033

2.333+0.586
0.176+0.056
0.056+0.021
1.869+0.546
0.247+0.090
0.076+0.042
1.270+0.389
0.451+0.120
0.192+0.067
0.097+0.032

2.424+0.785
0.155+0.055
0.050+0.018
1.946+0.802
0.248+0.109
0.077+0.041
1.335+0.354
0.401+0.131
0.154+0.064
0.102+0.030

2.449+0.772
0.168+0.054
0.053+0.018
1.910+0.709
0.250+0.200
0.062+0.028
1.404+0.317
0.452+0.055
0.203+0.050
0.118+0.037

2.435+0.779
0.161+0.055
0.052+0.018
1.930+0.761
0.249+0.157
0.070+0.036
1.366+0.339
0.425+0.106
0.176+0.063
0.110+0.035

1.748+0.722
0.188+0.114
0.068+0.045
2.196+0.751
0.268+0.207
0.096+0.089
0.909+0.343
0.511+0.216
0.195+0.100
0.078+0.039

1.908+0.777
0.107+0.034
0.034+0.011
1.910+0.585
0.158+0.056
0.045+0.018
0.891+0.544
0.302+0.078
0.082+0.040
0.057+0.042

2242.379

2318.670

2439.056

2121.993

4561.049

281.393 778.523

©

Y

[0)

F

M

Ht

EB ET

2.677+0.759
0.166+0.055
0.056+0.017
2.230+0.970
0.226+0.140
0.059+0.022
1.247+0.606
0.395+0.121
0.076+0.026
0.769+0.252
0.573+0.114

2.237+0.746
0.180+0.106
0.051+0.018
1.886+0.739
0.289+0.137
0.081+0.046
1.614+0.937
0.411+0.173
0.102+0.070
0.822+0.351
0.556+0.108

2.304+0.820
0.197+0.102
0.058+0.021
2.127+0.938
0.209+0.110
0.059+0.020
1.370+0.877
0.395+0.125
0.072+0.025
0.756+0.281
0.562+0.104

2.656+0.693
0.144+0.037
0.048+0.011
1.992+0.809
0.313+0.154
0.082+0.048
1.486+0.704
0.412+0.172
0.108+0.069
0.839+0.324
0.568+0.120

2.465+0.784
0.173+0.084
0.053+0.018
2.065+0.884
0.256+0.142
0.069+0.037
1.423+0.804
0.403+0.148
0.088+0.054
0.794+0.304
0.565+0.111

1.869+0.643
0.149+0.090
0.051+0.035
1.463+0.708
0.342+0.275
0.108+0.126
1.606+0.853
0.341+0.157
0.098+0.049
0.757+0.620
0.531+0.180

1.538+0.685
0.111+0.044
0.030+0.011
1.642+0.806
0.129+0.081
0.035+0.020
1.288+0.691
0.218+0.096
0.046+0.021
0.803+0.548
0.306+0.090

0.149+0.048
RMSE 0.068+0.018
Time  2670.839

0.130+0.062
0.044+0.018
2413.373

0.144+0.049
0.058+0.026
2758.277

0.135+0.063
0.053+0.015
2325.935

0.140+0.056
0.056+0.022
5084.212

0.146+0.080
0.042+0.021
332.540

0.072+0.038
0.037+0.038
905.445

The experiments were implemented via MATLAB 2016a,
which is installed at a laptop with an Intel(R) Core (TM)
17-6700HQ CPU at 2.6 GHz clock speed, 16 GB installed
memory, and 64-bit windows-7 operating system.

IIl. RESULTS

A. RESULTS OF ABP MORPHOLOGICAL MODELING

The proposed method is engaged to compute the ABP
morphological models of the experimental data in different
groups, and the results are shown in Table 4(a) to Table 5(c).
We only present the values of K, B, and PPI in Table 4(a),
because they are no changes among the models with different
kernel function mixtures. The variable DL means the sum of
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ABP waves’ lengths of one group, and the time is the time
consumed by modeling all ABP waves of one group.

Table 4(a) to Table 4(c) are the modeling results of two-,
three- and four-Gaussian functions, respectively. We can infer
from the tables that the accuracies of models increase as the
number of kernel functions grows from two to four. The range
of RMSE are 0.138 £ 0.056 to 0.214 £ 0.037, 0.057 +
0.042 to 0.121 +£ 0.033, and 0.037 + 0.038 to 0.068 =+
0.018 for different groups, and they diminish as the growth of
kernel functions’ number. The mean RMSEs of the different
mixtures are 0.192 £ 0.060, 0.101 £ 0.040, and 0.0528 +
0.025, and it decreases markedly as the more functions used
in models. Fig. 2 is the modeling results of an ABP wave we
chose randomly. The (a) to (c) indicate that the difference
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TABLE 5. (a) The modeling results with 2 Lognormal functions. (b) The modeling results with 3 Lognormal Functions. (c) The modeling results with

4 Lognormal Functions.

(a)

P Y (6] F M Ht EB ET
a 0.645+0.130 0.719+0.355 0.676+0.299 0.685+0.221 0.680+0.266 0.681+0.475 0.326+0.226
b 0.155+0.031 0.252+0.097 0.187+0.057 0.220+0.108 0.202+0.086 0.305+0.226 0.140+0.158

bal 0.512+0.074 0.479+0.148 0.500+0.118 0.492+0.115 0.496+0.117 0.486+0.177 0.424+0.104

a
b
P2

0.515+0.220 0.520+0.376 0.446+0.281 0.601+0.312 0.517+0.305 0.511+0.534 0.224+0.203
0.476+0.046 0.475+0.160 0.479+0.110 0.472+0.121 0.476+0.115 0.454+0.250 0.276+0.482
0.336+0.100 0.408+0.202 0.355+0.164 0.389+0.157 0.371+0.162 0.401+0.247 0.294+0.150

RMSE 0.122+0.034 0.115+0.039 0.121£0.032 0.117+0.041 0.119+0.036 0.088+0.030 0.110+0.065

Time 1371.209 1568.833 1580.329  1359.713  2940.042 212.986 652.246
(b)
P Y O F M Ht EB ET
a;  0.598+0.182 0.587+0.319 0.609+0.242 0.574+0.273 0.593+0.257 0.606+0.397 0.244+0.211
pi 0.150+0.025 0.235+0.062 0.186+0.070 0.197+0.053 0.191+0.063 0.248+0.138 0.141+0.354
1 0.492+0.089 0.495+0.208 0.530+0.131 0.450+0.175 0.493+0.158 0.528+0.154 0.392+0.123
a, 0.305+0.242 0.312+0.275 0.331+0.228 0.280+0.288 0.308+0.258 0.279+0.315 0.187+0.176
p>  0.439£0.112 0.327+0.160 0.397+0.133 0.371+0.164 0.385+0.148 0.400+0.281 0.195+0.144
y>  0.303+0.208 0.293+0.159 0.335+0.188 0.254+0.172 0.298+0.186 0.296+0.122 0.294+0.129
a3 0.270+0.248 0.335+0.299 0.186+0.217 0.438+0.275 0.302+0.276 0.290+0.361 0.121+0.161
ps 0.467+0.089 0.500+0.128 0.442+0.123 0.530+0.068 0.483+0.111 0.491+0.240 0.316+0.631
ys  0.230+0.148 0.278+0.135 0.190+0.120 0.327+0.135 0.253+0.144 0.288+0.163 0.220+0.122
RMSE 0.077+0.017 0.084+0.033 0.082+0.031 0.079+0.020 0.081+0.027 0.050+0.026 0.063+0.056
Time  1856.703 2264.538  2235.124  1886.117  4121.241 287.122 876.066
(©)
P Y (6] F M Ht EB ET
a;  0.306+0.283 0.442+0.266 0.307+0.242 0.447+0.309 0.371+£0.283 0.312+0.240 0.246+0.162
pi o 0.138+0.027 0.230+0.104 0.164+0.055 0.204+0.111 0.182+0.088 0.303+0.257 0.129+0.044
yi 0.372+0.167 0.425+0.155 0.397+0.177 0.398+0.147 0.397+0.164 0.362+0.188 0.404+0.119
a, 0.228+0.258 0.277+0.236 0.221+0.237 0.288+0.257 0.252+0.249 0.306+0.344 0.104+0.091
p> 0.405+0.135 0.384+0.134 0.409+0.124 0.379+0.145 0.395+0.135 0.442+0.254 0.276+0.116
> 0.220+0.170 0.309+0.227 0.258+0.227 0.268+0.174 0.263+0.205 0.304+0.152 0.202+0.116
a;  0.413+0.304 0.252+0.195 0.287+0.238 0.394+0.293 0.336+0.270 0.243+0.247 0.104+0.084
ps 0.278+0.157 0.319+0.174 0.273+0.164 0.327+0.166 0.298+0.167 0.321+0.257 0.285+0.127
73 0.406+0.236 0.284+0.151 0.324+0.197 0.374+0.219 0.347+0.209 0.339+0.193 0.219+0.128
ay;  0.224%0.195 0.269+0.246 0.318+0.251 0.160+0.141 0.245+0.222 0.310+0.341 0.092+0.085
ps 0.543+0.151 0.396+0.180 0.432+0.128 0.521+0.219 0.473+0.181 0.382+0.198 0.271+0.162
ys  0.246+0.164 0.303+0.218 0.344+0.223 0.191+0.106 0.274+0.194 0.354+0.202 0.263+0.153
RMSE 0.054£0.019 0.051+0.021 0.054+0.022 0.051+0.018 0.053+0.020 0.035+0.026 0.051+0.063
Time  2725.979 2735.770  3027.950  2433.799  5461.749 363.965 984.510

between a raw ABP wave and its model decreases with the
increase of kernel functions. We can conclude the same result
from (al) to (c1), which are the corresponding residual error
of the figures above them, respectively.

The accuracies of the models with two- to four-Lognormal
functions also increase with the growth of the kernel func-
tions’ number. The mean RMSEs are 0.116 & 0.042, 0.077 +
0.033, and 0.051 % 0.030, respectively. We can obtain the
same results from (e) to (f) and (el) to (f1) in Fig. 2. The
conclusion is the same as that of the modeling results of the
Gaussian function.

However, we found that the Lognormal function is more
suitable for ABP wave modeling than the Gaussian function.
The mean RMSEs of Gaussian-function-based models are
0.192 +0.060, 0.101 + 0.040, and 0.0528 4+ 0.025, while that
of Lognormal-function-based models are just 0.116 &£ 0.042,
0.077 £ 0.033, and 0.051 £ 0.030 under the same number
of kernel function. The RMSEs of all groups in Table 4(a)
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are larger than that in Table 5(a). The same conclusion we
would obtain by comparing Table 4(b) with Table 5(b), and
Table 4(c) with 5(c) except some singularities we bolded them
up in tables. In Fig. 2, the ABP waveform has a long tail
after the high systolic wave, and we found that the Lognormal
function also has long tail after its peak, while the Gaussian
function is bilaterally symmetric. Thus, we can easily infer
that why the Lognormal-function-based models are more
precise than the models constructed by Gaussian functions.
Table 4(a) illustrates that the length of all ABP waves form
the healthy, EB and ET subjects is 89417.89 seconds (s).
The modeling time of two-, three- and four-Gaussian-based
models are 4216.859 s, 5620.965 s, and 6322.197 s and
that of Lognormal-function-based models are 3805.274 s,
5284.429 s, and 6810.224 s. For the models with the same ker-
nel function, the computational load increases as the growth
of the kernel functions’ number. The reason is that the number
of model parameters increases as the more kernel function
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FIGURE 2. An example of ABP wave modeling using different kernel functions mixtures. (a) two Gaussian functions, (b) three Gaussian functions,
(c) four Gaussian functions, (d) two Lognormal functions, (e) three Lognormal functions, and (f) four Lognormal functions. (a1) to (f1) are the residual

errors corresponding to (a) to (f), respectively.

employed by (3) and (4), and there are 9, 12 and 15 parameters
for the models with 2, 3 and 4 kernel functions. The time
consumed by the models with 2 and 3 Gaussian functions are
less than the models with 2 and 3 Lognormal functions, while
the model with 4 Lognormal functions costs more time than
the model with 4 Gaussian functions.

B. THE CLASSIFICATION RESULTS OF DIFFERENT MODELS
In this study, since some model parameters do not obey the
normal distributions, the two-sample Kolmogorov-Smirnov
test (ks-test) is utilized to examine the different levels of
the same parameter in different models, and the results are
depicted in Table 6(a) to Table 7(c). Then, we select the
parameters with markedly change to train the classifiers. The
null hypothesis is defined as the parameters of two differ-
ent group obey the same statistical probability distribution,
and & is denoted to express the hypothesis result under the
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probability p. & is 1 when the statistic test rejects the null
hypothesis less than the 5 % significance level, and O other-
wise. Most studies refer to statistically significant as p < 0.05
and statistically highly significant as p < 0.001. Because
the parameters K, B, and PPI are unchanged among different
models, we just listed the results in Table 6(a). The ks-test
results show that all the model parameters between two differ-
ent groups are markedly different at a highly significant level
(h = 1, p < 0.001), and most of them are in an extremely
significant level (h = 1, p = 0). Therefore, all the model
parameters are employed as the feature vector to train the
classifier in this study.

Then, the feature vectors of different groups are exploited
to train the classifiers with PNN and RF, the ABP waves are
classified by age, gender, health, EB and ET. Each classifier is
trained 100 times to eliminate the influence from the different
input samples by randomly changing the samples in training,
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TABLE 6. (a) The results of ks-test for the 2-Gaussians models’
parameters of different subjects. ‘h’ and ‘p’ are the hypothesis and
probability of ks-test. (b) The results of ks-test for the 3-Gaussians
models’ parameters. (c) The results of ks-test for the 4-Gaussians models’
parameters.

(@)
p Y vs O FvsM Ht vs Be Htvs Tc  TcvsBc
h )4 h )4 h p h p h P
A, 1 0 1 3.4x10™° 1 0 1 0 1 25x10™
B 1 0 1 0 1 0 1 0 1 0
C 1 0 1 0 1 0 1 0 1 0
A, 1 0 1 0 1 0 1 0 1 0
B, 1 0 1 0 1 1.1x10%% 1 0 1 0
G 1 0 1 0 1 0 1 0 1 0
K 1 65x10°7 1 58x107 1 1.6x10* 1 0 1 1.5x107%%
B 1 0 1 1.6x10"° 1 0 1 0 1 27x10%"
PPI | 0 1 0 1 96x10%° 1 0 1 0
(b)
p Y vsO FvsM Ht vs Be Htvs Tc Tc vs Be
h p h P h P h p h )4
A 1 0 1 22x10™ 1 0 1 0 1 1.1x10"
B, 1 01 0 1 1.6x10%° 1 0 1 0
Cc 1 01 0 1 2.1x107% 1 0 1 0
A, 10 1 34x10°8 1 29x1072" 1 2.8x10%° 1 1.3x107%
B, 1 01 0 1 1.7x10"" 1 0 1 0
G 1 01 0 1 6.3x107% 1 0 1 0
A; 10 1 29x10°" 1 0 1 0 1 3.8x10™
B, 1 01 0 1 1.5x10"% 1 0 1 0
G 1 0 1 0 1 1.9x107 1 0 1 0
(©)
p Y vsO FvsM Ht vs Bc Htvs Tc Tc vs Be
h p h P h p h p h p
A 1 0 1 0 1 0 1 0 1 9.5x107%
B, 1 01 0 1 0 1 0 1 0
¢ 1 01 0 1 1.9x10%% 1 0 1 0
A, 1 0 1 0 1 0 1 0 1 1.8x107%
B, 1 01 0 1 1.2x10"° 1 0 1 0
G 1 01 0 1 1.1x10" 1 0 1 0
A, 1 0 1 0 1 2.0x10% 1 1.6x10"° 1 1.4x10%*
B 1 01 0 1 0 1 0 1 0
G 1 01 0 1 3.4x107° 1 0 1 0
A, 10 1 27x10%% 1 0 1 2.0x107% 1 2.9%x10%
B, 1 0 1 26x10°" 1 3.0x10" 1 0 1 0
c 1 0 1 0 1 5.5x10"° 1 0 1 0

validation, and testing sets, and the results are shown in
Table 8(a) to Table &(f).

Table 8(a) shows the classifying results of the young and
old subjects, the 2G’, ‘3G’, ‘4G’, 2L, 3L and ‘4L’ are
the abbreviations of the ABP models with two Gaussian
functions mixtures, three Gaussian functions mixtures, four
Gaussian functions mixtures, two Lognormal functions mix-
tures, three Lognormal functions mixtures, and four Lognor-
mal functions mixtures, respectively. The results are shown
as the ‘mean = standard deviation’ of 100 train results.

For the classifying approaches, the results of RF-based
classifiers are better than that of PNN-based classifiers.
The KC of RF-based classifiers for 2G to 4L models are
98.335 £ 0.119%, 99.425 £ 0.090%, 99.761 + 0.054%,
98.534 + 0.093%, 99.602 + 0.066%, and 99.618 + 0.067%,
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TABLE 7. (a) The results of ks-test for the 2-lognormal models’
parameters. (b) The results of ks-test for the 3-Lognormal models’
parameters. (c) The results of ks-test for the 4-Lognormal models’
parameters.

(@)
P Y vsO FvsM Ht vs Be Htvs Tc Tcvs Be
h p h p h p h _p h p
A 1 0 1 0 1 1.1x10™” 1 0 1 0
B 1 0 1 0 1 0 1 0 1 0
C, 1 0 1 35x10% 1 28x10%" 1 0 1 0
A4, 1 0 1 0 1 0 1 0 1 0
B, 1 0 1 0 1 0 1 0 1 0
G 1 0 1 0 1 0 1 0 1 0
(b)
YvsO FvsM  HtvsBc Ht vs Tc Tc vs Be
h P h_p h p h _p h p
A, 1 0 1 0 1 84x10™ 1 0 1 0
B 1 0 1 0 139x10%® 1 0 1 0
1 0 1 0 1 18x10°¢ 1 0 1 0
A; 1 19x10™ 1 0 1 6.0x10™ 1 0 1 1.7x10"°
B, 1 0 1 0 1 26x10%2 1 0 1 0
C 1 28x10% 1 0 1 43x10%* 1 0 1 1.6x10%
A; 1 0 1 0 1 21x10™ 1 0 1 2.5x10'™
B 1 0 1 0 1 43x10™" 1 0 1 0
C 1 0 1 0 1 13x10°% 1 0 1 4.0x10°"?
(©)

p YvsO FvsM HtvsBc Ht vs Tc Tc vs Be
h p h_p h p h p h P
A, 1 0 1 0 1 73x10™% 1 0 1 2.6x10"

B 1 0 1 01 0 1 0 1 0
G 1 0 1 0 1 83x10™ 1 0 1 3.5x107%%
A, 1 0 1 0 1 1.7x10% 1 0 1 0
B, 1 21x10™ 1 0 1 23x10% 1 0 1 0
G 1 0 1 01 0 1 1.9x10"° 1 1.8x107
A4; 1 0 1 0 1 1.5x10%% 1 0 1 1.5x10%
B 1 0 1 0 1 53x10% 1 9.1x10%° 1 1.3x10"
G 1 0 1 0 1 24x10"° 1 0 1 4.1x10°8
Ay 1 34x10%%° 1 0 1 7.3x10M 1 0 1 0
B, 1 0 1 01 0 1 0 1 0
C 1 0 1 0 1 1.7x107" 1 33x10™* 1 1.7x10"*

respectively, while that of PNN-based classifiers are just
96.975 £ 0.204%, 98.453 £+ 0.140%, 99.197 £+ 0.088%,
97.882 £ 0.132%, 99.424 + 0.073% and 99.285 + 0.080%.
Meanwhile, the time RF-based classifiers taken is less than
that of PNN-based classifiers taken. That is, the RF-based
classifiers take less training time and achieve higher accuracy.

For the classifying results of the models with different
kernel functions mixtures, the KC and the Time in Table 8(a)
increase as the increase of kernel functions. For instance,
the KC increases from 98.335 4+ 0.119% and 99.425 +
0.090% t0 99.761 £ 0.054% for the 2G, 3G, and 4G models,
respectively. The KC increases from 98.534 £ 0.093% and
99.602 £ 0.066% to 99.618 + 0.067% for the 2L, 3L and
4L models, respectively. For models with the same order but
different kernel functions, the KC of 2G- and 3G-models are
less than that of 2L- and 3L-models, respectively. But the KC
of the 4G-model is higher than that of the 4L.-model, and it is
the highest value among the classification results, as is bold
in Table 8(a).
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TABLE 8. (a) The results of classification for the young and old subjects with different models. ‘2G’, ‘3G, ‘4G, 2L, ‘3L and ‘4L’ mean the models with two
gaussian functions mixtures, three gaussian functions mixtures, four gaussian functions mixtures, two Lognormal functions mixtures, three Lognormal

functions mixtures, and four Lognormal functions mixtures, respectively. (b) The results of classification for the male and female subjects with different
models. (c) The results of classification for the healthy and EB subjects with different models. (d) The results of classification for the Healthy and ET

subjects with different models.

@

TP

FP

FN

TN Sp (%) Se (%) Ac (%) KC (%) KC\ (%) KC, (%) Time (s)

G PNN 7095+63
RF 7157+62

109+11 118+9 7679+61 98.605+0.145 98.366+0.129 98.490+0.102 96.975+0.204 96.857+0.244 97.094+0.300 22.613+0.387

69£7

55+8

7718463 99.111£0.094 99.231+0.106 99.169+0.060 98.335+0.119 98.516+0.204 98.154+0.192 4.794+0.146

3G PNN 7147+50
RF 7191451

5748
28+6

58+7
15+4

7737+48 99.264+0.101 99.189+0.099 99.228+0.070 98.453+0.140 98.439+0.190 98.467+0.213 22.673+0.373
7766+50 99.643+0.072 99.789+0.050 99.713+0.045 99.425+0.090 99.593+0.096 99.258+0.150 5.465+0.119

PNN 7176+55

4G RF 7212455

20+5
144

40+6
42

7764+56 99.738+0.060 99.450+0.088 99.599+0.044 99.197+0.088 98.943+0.169 99.453+0.123 25.089+0.239
7771455 99.824+0.048 99.942+0.024 99.881+0.027 99.761+0.054 99.889+0.047 99.634+0.100 5.976+0.153

oL PNN 7155+53
RF 7186451

86+8
68+7

729
42+5

768754 98.891+0.104 98.997+0.121 98.942+0.066 97.882+0.132 98.061+0.231 97.703+0.209 22.971+0.521
7705+51 99.123+0.088 99.424+0.069 99.268+0.046 98.534+0.093 98.885+0.133 98.186+0.181 5.047+0.170

3L PNN 7197+52
RF 7210+£52

18+4
17+4

25+5
13+4

7760+52 99.773+0.051 99.647+0.070 99.713+0.037 99.424+0.073 99.320+0.135 99.529+0.105 25.087+0.484
7760+52 99.780+0.046 99.824+0.055 99.801+0.033 99.602+0.066 99.660+0.107 99.544+0.094 5.710+0.178

4L PNN 7178+61
RF 7196+61

23+4
15+4

31+4
13£3

7769+62 99.708+0.053 99.573+0.062 99.643+0.040 99.285+0.080 99.179+0.119 99.392+0.109 26.643+0.185
777662 99.802+0.046 99.818+0.045 99.809+0.034 99.618+0.067 99.649+0.088 99.588+0.095 6.504+0.134

(b)

TP

FP

FN

TN Sp (%) Se (%) Ac (%) KC (%) KC\ (%) KC, (%) Time (s)

2G

PNN 6551458 310+17 318+17 7821+54 96.192+0.210 95.365+0.261 95.814+0.136 91.566+0.276 91.460+0.447 91.675+0.436 22.04+0.093

RF 6680+55 191£16 189+12 7940+54 97.657+0.195 97.253+0.181 97.472+0.098 94.908+0.198 94.932+0.318 94.885+0.412 5.141+0.074

100£10 8053£53 99.066+0.102 98.543+0.140 98.826+0.088 97.635+0.176 97.319+0.259 97.954+0.220 22.696+0.122

8101£51 99.651£0.064 99.559+0.060 99.609+0.041 99.213+0.083 99.187=0.111 99.239+0.139 5.848+0.120

8092+58 99.576+0.068 99.327+0.088 99.462+0.058 98.916+0.117 98.761+0.161 99.073+0.147 25.762+0.357

3G PNN 6771449 76+8
RF 6841+51 28+5 30+4
4G PNN 6827+£58 3446 46+6
RF 6856+58 134

18+4 8114+58 99.844+0.047 99.745+0.060 99.799+0.037 99.594+0.074 99.530+0.110 99.659+0.103 6.630+0.180

2L

PNN 6634+47 211+17 243+17 7912+52 97.406+0.205 96.467+0.234 96.975+0.159 93.907+0.319 93.502+0.428 94.317+0.436 23.007+0.234

RF  6689+47 169+15 188+15 7954+50 97.921£0.179 97.269+0.216 97.622+0.116 95.210+0.234 94.969+0.393 95.454+0.383 5.905+0.136

PNN 6836+52
RF 6848+51

3L

25+5
2445

3846
26+5

8100+52 99.687+0.061 99.448+0.081 99.578+0.055 99.149+0.112 98.982+0.149 99.317+0.132 25.147+0.217
8102+52 99.703+0.056 99.615+0.079 99.663+0.052 99.321£0.104 99.290+0.146 99.353+0.121 5.790+0.132

PNN 6840+52
RF  6849+53

4L

20+4
13+4

3146
22+4

8109+53 99.752+0.054 99.545+0.088 99.657+0.052 99.310+0.104 99.162+0.164 99.458+0.119 26.985+0.413
8116+53 99.834+0.045 99.677+0.059 99.762+0.035 99.521£0.071 99.404+0.107 99.638+0.098 6.964+0.260

(©

P

FP

FN

TN

Sp (%)

Se (%)

Ac (%)

KC (%)

KCi (%)

KGC) (%)

Time (s)

PNN
2G RF

779+23
785+24

38+6
1243

46+7
3946

14137+24
14164+24

99.729+0.041
99.915+0.023

94.481+0.852
95.265+0.794

99.440+0.066
99.660+0.044

94.589+0.644
96.672+0.451

94.163+0.898
95.000+0.834

95.024+0.726
98.410+0.419

24.244+0.151
5.424+0.135

PNN
3G RF

794+27
802+27

16+4
4+2

3145
22+5

14159+28
1417128

99.890+0.031
99.969+0.015

96.260+0.645
97.274+0.577

99.690+0.044
99.821+0.030

96.993+0.414
98.256+0.291

96.047+0.680
97.120+0.609

97.963+0.554
99.422+0.271

24.666+0.513
6.809+0.297

PNN
4G RF

807+25
805+25

7£2
4+2

20+4
2245

14166+25
14169+25

99.951+0.016
99.969+0.017

97.641+0.519
97.33740.601

99.824+0.032
99.824+0.033

98.293+0.310
98.293+0.328

97.505+0.547
97.185+0.634

99.096+0.301
99.430+0.322

28.772+0.742
10.549+0.475

PNN
2L RF

798423
791+24

17+4
10+3

27+5
35+6

1415724
14165+23

99.879+0.028
99.932+0.019

96.681+0.579
95.774+0.677

99.703+0.043
99.703+0.042

97.124+0.417
97.102+0.421

96.490+0.612
95.536+0.713

97.769+0.513
98.724+0.353

24.338+0.109
6.950+0.193

PNN
3L RF

792423
780+23

14+3
7+3

30+5
43+7

14164+22
14171£21

99.902+0.024
99.952+0.021

96.371+0.632
94.812+0.868

99.709+0.042
99.670+0.051

97.158+0.423
96.745+0.529

96.165+0.664
94.526+0.911

98.175+0.447
99.077+0.409

27.035+0.194
7.850+0.235

PNN
4L RF

797+26
800+26

8+3
442

24+6
2145

1417128
1417528

99.943+0.019
99.969+0.014

97.102+0.639
97.505+0.611

99.787+0.038
99.834+0.036

97.926+0.356
98.379+0.339

96.938+0.675
97.364+0.646

98.938+0.344
99.418+0.259

29.420+0.474
9.072+0.314

(d)

TP

FP

FN

N

Sp (%)

Se (%)

Ac (%)

KC (%)

KCi (%)

KG (%)

Time (s)

PNN
RF

2036+37
2045+36

315
20+4

4416
3546

12888+36
12899+36

99.760+0.041
99.846+0.031

97.864+0.289
98.296+0.295

99.497+0.059
99.631+0.050

97.889+0.256
98.449+0.209

97.523+0.332
98.024+0.342

98.258+0.298
98.879+0.222

27.847+0.404
7.800+0.350

PNN
RF

2045437
2067+£37

20+5
9+3

41+£5
19+£5

12895+37
12905+37

99.849+0.036
99.929+0.021

98.030+0.223
99.083+0.220

99.596+0.049
99.811+0.037

98.305+0.207
99.210+0.156

97.715+0.258
98.936+0.256

98.902+0.265
99.485+0.151

28.558+0.659
8.734+0.413

PNN
RF

2047+31
2084+33

113
13+4

46+6
9+3

12896+33
12894+32

99.918+0.021
99.901+0.028

97.817+0.280
99.590+0.153

99.625+0.043
99.857+0.026

98.426+0.174
99.407+0.109

97.470+0.326
99.524+0.178

99.401+0.155
99.290+0.200

32.257+0.601
10.245+0.411

PNN
RF

2065+43
2064+43

2445
1945

3245
3446

12878+44
12883+44

99.812+0.036
99.851+0.038

98.468+0.243
98.386+0.276

99.624+0.045
99.646+0.050

98.433+0.187
98.523+0.205

98.220+0.282
98.126+0.320

98.648+0.255
98.924+0.274

26.997+0.131
6.867+0.193

PNN
RF

2061+42
2062+40

23+5
18+4

23+4
22+4

12893+42
12898+41

99.823+0.040
99.857+0.031

98.915+0.196
98.952+0.207

99.697+0.044
99.731+0.039

98.735+0.185
98.876+0.163

98.740+0.226
98.783+0.241

98.730+0.287
98.971+0.226

29.638+0.188
7.547+0.286

PNN
RF

2077+39
2071440

20+4
17+4

19+4
2545

12884+40
12887+40

99.846+0.034
99.868+0.029

99.080+0.198
98.814+0.239

99.739+0.036
99.721+0.038

98.913+0.148
98.838+0.160

98.931+0.230
98.622+0.277

98.895+0.244
99.054+0.209

32.399+0.361
10.480+0.362
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TABLE 8. (Continued.) (e) The results of classification for the EB and ET subjects with different models. (f) The results of classification for the Healthy,
EB and ET subjects with different models.

©)
TP __FP_FN __IN Sp (%) Se (%) Ac (%) KC (%) KC\ (%) KC, (%) Time (s)
»G PNN SIB2I8 743 8+3 1467419 99.515£0.177 98.446:0.527 99.234+0.171 98.023£0.435 07.893+0.709 98.158+0.654 0.699+0.009
RF  520£19 52 642 1469419 99.682+0.133 98.95140.459 99.490+0.142 98.684+0.360 98.578+0.623 98.793£0.491 0.693+0.019
3G PNN 510220 843 0+3 1464120 99.434:0.23 98222:0.584 99.115+0.244 97.720£0.623 97.587+0.788 97.859+0.854 0.748%0.011
RF 522419 52 642 146719 99.678+0.165 98.820+0.459 99.451+0.173 98.585£0.449 98.399+0.623 98.776:+0.639 0.882+0.022
4G PNN 519519 5527 1053 1467+19 99.69420.148 98.06120.606 99.264+0.180 98.098£0.474 97.379+0.805 98.832+0.560 084420011
RF 52319 3+2  6+2 146819 99.785+0.133 98.918+0.443 99.556:0.135 98.857+0.346 98.532+0.597 99.186:0.494 1.072+0.036
5 PNNSIB£19 103 1143 146119 99.320+0.198 978950523 08.04820.219 97.29420.557 97.138£0.712 97.454+0.748 0.725:0.015
RF 522420 7+2 842 1464420 99.55130.17 98.525+0.449 99.280+0.179 98.148+0.460 97.997+0.607 98.302+0.629 0.756+0.019
5 PNN SISEIS 823 1043 1467416 99.451+0.218 98.128+0.573 99.104£0.225 97.681+0.580 97.467+0.772 97.903:0.819 0.7970.012
RF 516+16 53 843 1470415 99.64240.17 98.462+0.568 99.333+0.202 98.271+0.528 97.921+0.762 98.629+0.651 0.973+0.026
4L PNN SIIE20 382 1423 1472220 99.802+0.116 97357£0491 99.161+0.146 9781740385 06.444£0.646 99.232:0.445 0.899+0.017
RF 518+19 3+2 742 147119 99.7740.111 98.685+0.390 99.485+0.137 98.666+£0.356 98.222+0.524 99.116£0.426 1.152+0.035
®
KC (%) KC (%) KC, (%) Time (s) KC (%)

»G PNN 96.802:0.208 96.570+0.317 94.509£0.872 98.003+0.281 30.070+0.493

RF  97.93140.229 97.220+0.375 98.34440.632 98.695+0.271 9.255+0.441

3G PNN 97.804£0236 97.299+0.382 972400635 98.68920.321 31.294+0.346

RF  98.852+0.158 98.567+0.255 99.041+0.355 99.146+0.223 10.654:0.294

4G PNN 98253:0.193 97.534:0.349 984660518 99.109+0.234 34.791:0.292

RF  99.045+0.123 99.023£0.194 99.242+0.337 99.000+0.214 13.599:0.330

oL PNN 977430199 97.825:0.308 96.648+0.709 98.070£0.322 29.860:0.935

RF  97.993+0.172 97.435+0.343 98.325+0.520 98.591+0.257 9.643+0.640

5L PNN 9817720211 982870284 97.250+0.556 983970301 32.386:0.127

RF  98.257+0.192 97.745+0.337 99.094+0.357 98.602+0.258 10.298:+0.194

4L PNN OB.57620.181 08.4480259 98.975+0448 O8.588+0.298 35.713+1.035

RF  98.647+0.173 98.45140.294 99.426+0.300 98.601+0.247 13.105+0.689

Therefore, if we only consider the classification accuracy,
the 4G-model is the best choice. However, time-consumption
is also a very important factor in practical applications. Thus,
the 2L-model may be a good choice because it has the KC
of 98.534 + 0.093% and the least modeling time.

Table 8(b), Table 8(c), Table 8(d), Table 8(e), and Table 8(f)
display the classification results of males vs females, healthy
subjects vs patients with EB, healthy subjects vs patients with
ET, patients with EB vs patients with ET, and healthy subjects
vs patients with EB vs patients with ET. The performance
of most PNN-based classifiers is worse than that of RF-
based classifiers, and only three of the results are opposite,
i.e., the classification of 2L- and 3L-models in Table 8(c),
and the classification of 4L-model in Table 8(d). There is
no much difference in the KC between two classification
methods for the 4L-model, and their average difference of
KC is just 0.075%. The time PPN-based classifiers taken is
still more than that of RF-based classifiers.

Meanwhile, the accuracies and time consumption of the
most classifiers also increase as more kernel functions used,
and only the 3L-model in Table 8(c), 4L-model in Table 8(d),
and 3G-model in Table 8(e) are unusual. But it does not
matter, and the KC of them is still over 96%, which does
not have a bad influence on our optimal modeling method
selecting. The highest KC from Table 8(b) to Table 8(f) are
99.594 £ 0.074%, 98.379 £ 0.339%, 99.407 £+ 0.109%,
98.857 £ 0.346%, and 99.045 + 0.123%, which correspond

4144

to the 4G-, 4L-, 4G-, 4G-, and 4G-models in each classi-
fication, respectively. The 4L-model is in the classification
between healthy subjects and patients with EB. While when
the modeling time is taken consider for each kind of classi-
fication, the most promising models in practical application
from Table 8(b) to Table 8(f) are 2L-, 2L-, 2L-, 2G-, and
2L-models, whose KC are 95.210 £+ 0.234%, 97.102 +
0.421%, 98.523 £ 0.205%, 98.684 + 0.360%, and 97.993 £+
0.172%, respectively. The 2G-model is in the classification

between patients with EB and ET.
Table 9 presents the statistical results of the classification
for different models. The ‘mKC’, ‘mCTime’ and ‘mRMSE’

TABLE 9. The statistical results of classification and ABP modeling.

mKC (%) mCTime (s) mRMSE MTime (s)
o T B S g amers
I AT A oon s
(o I TN s
2 RE grsssatan sheios 01160082 3805274
T R T
T R0 B o o
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are the mean of KC, the mean time consumption of the
different classification, and the mean of RMSE, respectively.
The ‘MTime’ is the sum of the ABP wave modeling time of
healthy subjects and patients with EB and ET. We can obtain
some conclusions as follows:

(1) The modeling accuracy increases with the increase
of kernel function, and the Lognormal-function-based
models have less mRMSE than the Gaussian-function-
based models under the same number of kernel
functions.

(2) The RF-based classifiers have better performance than
the PNN-based classifiers. The mKC of PNN-based clas-
sifiers is less than that of the RF-based classifiers, while
they take more time in training and testing classifiers.

(3) The classifying accuracy increases with the increase of
kernel function, while the time consumption in modeling,
classifiers’ training, and testing also increases. Especially
for the 4G-model and 4L-model, the modeling time is
even over 6000 s.

(4) Classifying accuracy is not directly proportional to the
modeling accuracy. Though we can see that the mKC
increases with the increase of the same kernel functions,
and the mRMSE decreases. However, we found that this
conclusion is wrong when we compare the mRMSE and
mKC of the models between two different kernel func-
tions. For example, the mKC of RF-based classifiers
for 3G- and 4G-models are higher than that 3L- and
4L-model, i.e., 98.923 £ 0.471% vs 98.512 &+ 0.988%
and 99.160 = 0.537% vs 98.945 £ 0.515%, while their
mRMSE are higher than 3L- and 4L-model, i.e., 0.101 £
0.040 vs 0.077 £ 0.033 and 0.053 £ 0.025 vs 0.051 +
0.030.

(5) The 2L-model seems to be cost-effective in the ABP-
related classification, though the 4G-model based clas-
sification has the best performance. The mKC of
4G-model is 99.160 =+ 0.537%, while that of 2L.-model is
97.585 + 1.203%. The average accuracy only increases
by 1.575%, but we have to pay nearly twice as much as
time in modeling, training and testing the classifiers and
store 6 extra variables. The results indicate the informa-
tion we extracted from the models with three and four
kernel function is redundant. Therefore, the 2L-model
has greater potential in practical applications.

IV. DISCUSSION

In this work, we explored the optimal morphological model
for ABP-related classification by the principle as shown
in Fig. 1. For two popular ABP wave models with the kernel
functions mixtures of Gaussian or Lognormal, as shown
in (3) and (4), we compare the modeling and classifica-
tion performance of the models with different kernel func-
tions mixture and different order. For the results of ABP
wave modeling, we found the accuracy grows with the
increase of kernel functions, whereas more time is con-
sumed. The models of Lognormal function have higher
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precision than the models of Gaussian function under the
same model order, and the lognormal function is more suit-
able for ABP wave modeling. This conclusion is consistent
with [21] and [22].

The two-sample ks-test results show that the parameters of
all models are markedly different at a highly significant level
(h = 1, p < 0.001, as shown in Table 6(a) to Table 7(b)).
Thus, all the parameters are employed as the feature vectors
to train the classifiers using PNN and RF. The results of
different classification are illustrated in Table 8(a) to 8(f), and
the average results are shown in Table 9. We concluded that
the classifying accuracy is not proportional to the modeling
accuracy, and the 4G-models has the highest classification
accuracy. However, the accuracy is most important but not
the only index we considered, and the time-consumption and
the number of variables are the other indexes that should
be addressed. Then, the 2L-model is acceptable in practi-
cal applications. Table 9 presents that the accuracy of the
4G-model related classification is only 1.575% high than that
of 2L-model, while the modeling time increase by 2516.923 s
since 6 model parameters is added with the increase of
model order. The mKC of 2L-model related classifications
is still 97.585 + 1.203%. Therefore, the increase of the
model order will inevitably lead to information redundancy in
classification.

Therefore, we explored the relationship between the
features’” number and the classifiers’ performance. For
2L-model, there are 45 combinations of the features, as shown
in Table 10, where ‘o’ means the feature in this row is
selected as an element of a feature vector. The combination
is numbered as Nu, Nu is the integer ranging from 1 to 45 for
the 2L-model. Combination 1 means a feature vector contains
one parameter A, ..., combination 9 means a feature vector
contains all the parameters, ..., and combination 45 means a
feature vector contains PPI. Similarly, there are 120 combi-
nations constructed by model parameters of 4G-model. The
numbering process is similar to Table 10 and we were not
about to repeat.

Table 10(a) shows the 2L-models related classification
results of Ht vs EB vs ET. There are 45 results corresponding
to different parameter combinations, and 11 combinations of
them whose KC is over 97% (combinations 5 to 9, 14 to 17,
24, and 30). The combination 9 has the best performance with
the KC of 98.016 £ 0.223% and contains all features. The
combinations 5 and 14 contain the fewest features, and their
KC are 97.382 £ 0.201% and 97.582 £ 0.237%, respectively.
The combination 14 only consists of By, C1, A2, B>, and C5.
The mean of KC increases by only 0.207% from combi-
nation 6 to 9, which indicates the information redundancy
exists. Combination 6 consists of Aj, B, Cy, A2, B>, and C».
When the K is added into combination 6, we obtain the
combination 7 with the KC of 97.844 + 0.220%, and the
mean of KC increases by only 0.035%. However, the mean
of KC for combination 8 decreases after adding B into
combination 7, which means the B has a negative impact
on the classification. After adding PPI into combination 8§,
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TABLE 10. Different combinations of features. ‘x’ means null, ‘o means the features in this row is selected. (a) The results of 2L-models related
classification for Ht vs EB vs ET under different feature vectors. (b) The results of 4G-model related classification for Ht vs EB vs ET under different

feature vectors.

P Nu
1 23 --8 91011 --171819 ---24 --- 45

A, o o o - 0 0o X X X X X see X eee X

B, x o o0 0 0 0+ 0 X X x X

C, X X O - o O X o 0 O O o X

A, X X X =+ 0 O X X -0 X O o X

B, X X X - o O X X o X X o X

G X X X - o o X X o X X o X

K X X X - o o X X o X X o X

B X X X =+ 0 O X X o X X o X

PPI x x x - o X X o X X o o

(2)

Nu KC(%) Nu KC(%) Nu KC(%)

1 26.235+0.788 16 97.636+0.207 31 83.627+0.526

2 62.898+0.940 17 97.951+0.204 32 91.093+0.428

3 82.096+0.606 18 22.647+0.856 33 96.044+0.286

4 94.284+0.320 19 66.375+0.714 34 23.736+0.744

5 97.382+0.201 20 91.472+0.475 35 53.237+0.757

6 97.809+0.231 21 94.713+0.332 36 73.463%0.524

7 97.844+0.220 22 95.020+0.288 37 92.222+0.352

8 97.796+0.225 23 96.217+0.283 38 26.750+0.906

9 98.016+0.223 24 97.318+0.267 39 57.745+0.724

10 29.772+£0.928 25 23.901+0.716 40 85.843+0.501

11 61.931£0.826 26 82.581+0.647 41 22.500+0.758

12 87.540+0.462 27 90.066+0.466 42 83.042+0.547

13 96.823+0.253 28 92.471+0.392 43 75.180+0.692

14 97.582+0.237 29 95.487+0.309 44 83.627+0.526

15 97.629+0.220 30 97.047+0.230 45 91.093+0.428

(®)

Nu KC(%) Nu KC(%) Nu KC(%) Nu KC(*%) Nu KC(%) Nu KC(%)
1 20.523+0.656 21 97.324+0.198 41 98.831+0.144 61 98.505+0.168 81 98.169+0.182 101 81.138+0.456
2 70.661+0.659 22 98.168+0.162 42 98.960+0.150 62 98.652+0.167 82 98.197+0.193 102 91.375+0.397
3 88.295+0.486 23 98.486+0.136 43 10.602+0.623 63 98.644+0.158 83 98.207+0.212 103 92.805+0.400
4 94.378+0.353 24 98.538+0.170 44 72.733£0.674 64 98.653+0.155 84 98.470+0.193 104 94.678+0.367
5 97.024+0.252 25 98.736+0.155 45 89.713+£0.375 65 98.760+0.174 85 40.259+0.863 105 96.598+0.310
6 97.659+0.198 26 98.831+0.157 46 95.013+0.298 66 45.347+0.671 86 75.333£0.435 106 51.918+0.708
7 97.965+0.190 27 98.846+0.143 47 97.501+0.205 67 74.055+0.625 87 86.420+0.391 107 77.713+0.535
8 98.600+0.145 28 98.862+0.146 48 98.097+0.183 68 93.912+0.315 88 96.476+0.301 108 84.041+0.536
9 98.719+0.137 29 98.928+0.132 49 98.307+0.186 69 96.300+0.265 89 97.384+0.238 109 91.668+0.402
10 98.798+0.166 30 46.639+0.846 50 98.630+0.147 70 97.155+0.244 90 97.552+0.232 110 95.916+0.296
11 98.901+0.154 31 72.566+0.839 51 98.728+0.146 71 98.269+0.168 91 97.777+0.219 111 23.252+0.825
12 98.953+0.140 32 93.028+0.380 52 98.760+0.147 72 98.493+0.164 92 98.135+0.189 112 54.490+0.870
13 99.011+0.149 33 95.814+0.241 53 98.772+0.149 73 98.532+0.159 93 31.440+0.750 113 72.331+0.753
14 98.981+0.150 34 97.075+0.210 54 98.862+0.165 74 98.522+0.159 94 62.714+0.664 114 92.778+0.423
15 99.054+0.128 35 98.084+0.156 55 37.446+0.747 75 98.634+0.175 95 92.642+0.352 115 26.984+0.761
16 36.106+£0.698 36 98.490+0.154 56 76.904+0.599 76 5.954+0.688 96 96.080+0.270 116 57.781+0.895
17 68.053+0.845 37 98.567+0.150 57 87.427+0.454 77 77.155£0.722 97 96.396+0.295 117 85.727+0.556
18 84.369+0.586 38 98.705+0.152 58 96.497+0.218 78 90.816+0.432 98 96.917+0.253 118 22.253+0.756
19 95.3254+0.295 39 98.799+0.153 59 97.656+0.200 79 94.168+0.307 99 97.444+0.256 119 82.891+0.592
20 96.649+0.228 40 98.840+0.138 60 97.971+0.173 80 97.759+0.186 100 11.660+0.723 120 75.063+0.715

we get the combination 9 whose KC increases by 0.22%.
Thus, the optimal feature combination should contain A, By,
C] s Az, Bz, C2, and PPI.

Table 10(b) is the 4G-model related classification results of
Ht vs EB vs ET. Half of the combinations’ KC are over 97%
(combinations 5 to 15, 21 to 29, 34 to 42, 47 to 54, 59 to 65,
70 to 75, 80 to 84, 89 to 92, and 99), which are bold in table.
The combinations 5, 34, 47, 59, 70, 80, and 89 contain only
5 features. The combination 80 consists of A3, B3, C3,A4, and
B, with the highest KC of 97.759 + 0.186%. Then, the KC
of the combinations increases with the increase of features.
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For example, the mean KC increases by only 0.454% from
combination 8 to 15, while the number of features increases
by 7. This means that we spend more time identifying the
parameters, but the accuracy of the classification is not
significantly increased. The same cases occur in the com-
binations 22 to 29, the combinations 35 to 42, the combina-
tions 48 to 54, the combinations 60 to 65, the combinations
71 to 75, and the combinations 81 to 84. There is exces-
sive information redundancy in the classification based on
4G-model. Therefore, the 2L-model has greater potential in
practical applications.
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We can infer from the experimental results that the two
types of modeling mixtures can accurately describe the
change of ABP waves. The features extracted from the mod-
els are effective in ABP signal related classifications, and
the lowest mKC is over 95%, as shown in Table 9. Here,
the experimental data are from the databases Fantasia and
2015 PhysioNet/CinC Challenge, and the ABP signals are
recorded from 74 subjects (20 healthy subjects, 17 subjects
with EB, and 37 subjects with ET). One of the critical reasons
for the high performance of the classifiers is a limited dataset,
which leads to overfitting. In the future, we would collect
more clinical data to build a ‘big dataset’ for classifiers
training with deep learning. The ABP wave modeling method
can be engaged as a feature extractor in deep neural net-
works. Moreover, there are three other arrhythmias, ventricu-
lar tachycardia, ventricular flutter, and ventricular fibrillation
in the database. We would improve the 2L-model related
classification method to detect the three arrhythmias in the
future.

V. CONCLUSION

In this work, we explored the optimal morphological model
for ABP signal related classification. Two kinds of most
popular modeling methods with Gaussian or Lognormal
kernel function mixtures are engaged to fit the measured
ABP waves of different subjects who are from the Fantasia
and 2015 PhysioNet/CinC Challenge databases. The 2G-,
3G-, 4G-, 2L-, 3L- and 4L-models of the young, old, male,
female, and healthy subjects and the patients with EB and
ET are obtained, and the modeling time consumption and
accuracy are compared. The results show that the models with
Lognormal function mixtures are more suitable for ABP wave
modeling than the models with Gaussian function mixtures.
Then, the parameters of different models are exploited to train
the classifiers by PNN and RF, by which we classify the ABP
waves according to the age and gender of healthy subjects
and whether the subjects are healthy or the patients with
EB or ET. We compare the performance of classifications
and the results of ABP modeling. The results indicate that
the classification performance is not directly proportional to
the modeling accuracy, and the 4G-model based classification
has the best performance, while the 2L.-model has greater
potential in practical applications. In the future, we will apply
the ABP modeling method to more data and explore its
practical applications in m-health.
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