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ABSTRACT Accurate medical image registration is highly important for the quantitative analysis of infant
brain dynamic development in the first year of life. However, the deformable registration of infant brain
magnetic resonance (MR) images is highly challenging for the following two reasons: First, there are
very large anatomical and appearance variations in these longitudinal images; Second, there is a one-to-
many correspondence in appearance between global anatomical tissues and the small local tissues therein.
In this paper, we use a CNN (convolution neural network)-based global-and-local-label-driven deformable
registration scheme. Two to-be-registered image patches are input into the UNet-style regression network.
Then, a dense displacement field (DDF) between them is obtained by optimizing the total loss function
between two corresponding label patches. Global and local label patches are used only during training.
During inference, two new MR images are divided into many patch pairs and fed into the trained network.
By averaging the deformation of the patches at the same location, the final 3D DDF between the two whole
images is obtained. The highlight is that the global (white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF)) and local tissues can be registered simultaneously without any prior ground-truth deformation.
Especially for the local hippocampal tissues, the Dice ratios are substantially improved after registration
via our method. Experimental results are presented on the intrasubject and intersubject registration of infant
brain MR images between different time points, and the intersubject registration of brain T1-weighted MR
images on the OASIS-1 dataset, according to which the proposed method realizes higher accuracy on both
global and local tissues compared with state-of-the-art registration methods.

INDEX TERMS Infant brain MR images, deformable registration, label-driven learning.

I. INTRODUCTION
When we study early brain development, diagnose develop-
mental diseases, or establish population atlases, infant brain
deformable registration is a highly important step. As a non-
invasive method for obtaining high-contrast soft-tissue infor-
mation, magnetic resonance imaging (MRI) is widely used
in neuroimaging research on the infant brain. Unfortunately,
due to the rapid brain development and the maturation of the
brain myelin, there are dynamic and nonlinear anatomical
and appearance variations in infant brainMR images [1], [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kezhi Li .

Moreover, local tissues are typically part of one global tissue,
and they have similar appearances in MRI images. As shown
in Fig. 1, the hippocampi aremainly located in theGM region,
and they are strongly statistically correlated with other parts
of the GM. Hence, the global GM tissue alignment does
not correspond to the local hippocampal tissue alignment,
which is a one-to-many correspondence problem. In short,
deformable image registration of infant brain MR images is
difficult due to two issues: large anatomical and appearance
variations and one-to-many correspondences.

To resolve these two issues, we proposed a double-
learning deformable registration scheme for infant brain MR
images, and this scheme uses random regression forest to
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learn an appearance-displacementmodel and an appearance-
appearance model [3], [4]. This method yields more accu-
rate registration results than three groups of methods:
intensity-based methods [5]–[7], feature-based methods [8]
and a sparse-representation-based method [9]. However, the
double-learning methods [3], [4] require supervised defor-
mation information. For example, the predefined voxel-
level ground-truth deformations for learning are obtained via
traditional registration methods, which may introduce new
registration errors in the process of obtaining the ground-
truth deformations. To avoid over reliance on the defor-
mation supervision, Fan et al. proposed dual-supervised
(ground-truth deformation and image density dissimilarity)
BIRNet [10].

FIGURE 1. Slices of infant brain MR images and four labels: CSF, GM, WM
and hippocampus.

In recent years, increasingly many deep-learning-based
registration methods have been proposed [11]–[21] and
reviewed [22]–[26]. Some of these methods can overcome
the shortcomings of supervised transformation estimation.
They can maintain the voxel-to-voxel spatial correspon-
dence during deformable registration without any ground-
truth deformation supervision. Most are based on CNN,
including unsupervised [11]–[17] and weakly supervised
[20], [21] deep learning methods. Cao et al. used the con-
textual cues to train the voxel correspondence at the patch
center and applied a thin-plate spline to obtain the DDF
[11]. In contrast to Cao’s patch-based method, Balakrish-
nan et al. proposed VoxelMorph, which directly obtains the
whole DDF between two registering images by optimizing
the total loss function, and this function sums over the cross-
correlation (CC) similarity and deformation regularization
[12], [13]. They also extended their method to probabilistic
diffeomorphic registration [27], [28] and brain MRI segmen-
tation [29]. According to HuYP et al., these image-similarity-
driven unsupervised learning methods would inherit the key
shortcomings of classical intensity-based image registration
algorithms. For example, the intensity similarities, namely,
SSD (sum of squared intensity differences) and SAD (sum
of absolute differences), are only suitable for mono-modality
image registration with small intensity variations and are not
suitable for multimodality or mono-modality image registra-
tion with large intensity and appearance variations. Even

though CC andMI (mutual information) are suitable for mul-
timodality image registration, they are time-consuming and
sensitive to image noise and intensity inhomogeneity (bias
field). Hence, Hu YP et al. proposed a label-driven weakly-
supervised registration framework that does not consider
intensity variations or inhomogeneity. They selected the Dice
similarity of the anatomical labels as the loss function for
optimizing the DDF between two unlabeled real images dur-
ing the training stage, and they used two new unlabeled real
images to acquire the DDF during inference [20], [21]. The
method of Hu YP et al. is regarded as a segmentation-based
registrationmethod[49]. In addition to the approaches that are
discussed above, without requiring any intensity similarity,
generative adversarial networks (GANs) were used to assess
the quality of image alignment [16], [22], [30]–[32]. The
segmentation task and the registration task can be improved
via competition with each other. Sometimes one task is
focused, e.g., registration-based or atlas-based segmenta-
tion, and segmentation-based registration [20], [21], [49].
Sometimes two tasks are combined, e.g., deep-learning-based
networks are used to simultaneously optimize two tasks [50],
to hybridlike optimize them [49], and to semi-supervised
learn them[51]. Since these networks can output segmenta-
tion labels, their methods are suitable for registration with
parts of labels or without labels.

Most of these methods can accurately align large global
tissues; however, they aren’t used directly for small local
tissue registration where there are one-to-many correspon-
dences between the MR appearances of local and global
tissues. Hence, we have applied a global-and-local-label-
driven deformable registration scheme for brain MR images.
The global labels are labels of the global tissues, such asWM,
GM and CSF in brain, and the local labels are labels that
are located in small regions, e.g., subcortical structures such
as the caudate, putamen, pallidum, hippocampus, amygdala,
thalamus and accumbens area. The major contributions are
summarized as follows:

1) Both global tissues and local tissues are accurately
aligned simultaneously. During training, not only the global
labels, such as WM, GM and CSF, but also the local labels
are utilized. This utilization overcomes the one-to-many issue
and establishes the voxel correspondences of global tissues
and local tissues. Furthermore, the deformation folding in the
neighborhoods of global regions will be alleviated due to the
alignment between the local tissues.

2) The local tissue alignment is subject-independent
and time-point-independent. The registration (dis)similarity
between the local tissues is incorporated as a part of the total
loss function, and the DDF between the local tissues is also
trained during the training stage. Therefore, regardless of the
intrasubject registration or intersubject registration of infant
brainMR images, small local tissue regions will be accurately
aligned for any age gap. This approach is also valid for adult
brain MR image registration.

3) The deformable registration that is based on global-and-
local-label-driven deep regression learning can help address
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FIGURE 2. Framework of the proposed deformable image registration scheme, which is based on
global-and-local-label-driven deep regression learning.

the huge appearance and morphological variations in infant
brain MR images without any ground-truth deformation.

In addition, we use DDF regularization, multi strides and
surface discarding to increase the accuracy and the smooth-
ness of the DDF, and we use data augmentations and shuffle
orders to increase the generalization performance.

This paper extends a preliminary version of this work that
was presented at the MLMI 2019 conference [33]. We build
on that work by providing additional comparisons, results,
analysis, and discussion. We compare five registration meth-
ods and conduct experiments not only on T1-weighted MR
images but also on T2-weighted MR images and adult brain
MR images.

II. METHODS
In this work (as illustrated in Fig. 2), we use a deep regression
architecture to model the infant brain deformable registration
network M:

(
IAm, I

B
m
)
⇒ φm for the m-th patch pair, where

m = 1, 2, . . . ,M and M is the total number of patches. The
3D patch pair

(
IAm, I

B
m
)
is extracted from the moving image A

and the fixed image B at the same position with a fixed stride.
Images A and B have been affinely aligned in preprocessing.
φm is the DDF that indicates the voxel dense correspondence,
and this DDF is the output of the registration network M by
minimizing the total loss function between all the label pairs,
namely, the warpedmoving label patch lWmn and the fixed label
patch lBmn, (n = 1, 2, . . . ,N ) within the m-th patch, where N
is the total number of labels. The total loss function includes
the label dissimilarity loss and the deformation regularization
term. The label dissimilarity is measured by calculating the
multiscale modality-independent Dice dissimilarity between
the same label patch pairs.We useGaussian kernels of various
scales to filter the labels to obtain multiscale filtered label
images. Then, we calculate the Dice dissimilarity between
these filtered label images and sum the Dice dissimilarities to
obtain the multiscale Dice dissimilarity. We use the bending

energy as a deformation regulation term to preserve the defor-
mation smoothness.

According to the total loss function, the network M is
trained under the weak supervision of global and local labels.
Firstly, each 64×64×64 patch is sampled from a moving
image and a fixed image that are centered at the same posi-
tion. Then, they are concentrated together and inputted into a
UNet-style and CNN-based networkM. The network output
is a 3D deformation field in 3 coordinate directions with
patches of the same size as the inputs. Then, the output
transformation is applied to warp the same position global-
label patches of CSF, WM and GM, and the local-label patch
of hippocampus. Furthermore, the multiscale label dissimi-
larity loss is calculated between these warped moving label
patches and the corresponding fixed label patches. At the
same time, the regularization loss is calculated according
to the output dense deformation. The two losses that are
specified above are summed to calculate the total loss. The
network parameters are optimized by minimizing the total
loss. Last, the pipeline is repeated for all sampled patches of
all training images with their global and local labels until the
network performance is acceptable.

Once the registration network has been trained, we apply
it during inference. By feeding a pair of patches from one
new testing MR image and the fixed image into the network,
the DDF between them is obtained without using any label
information. As illustrated in Fig. 2, only the blue paths are
needed, and the brown parts of the labels and the violet parts
of the loss functions are not used during inference. Then the
deformation registration network will output the 3D DDF
for that patch pair. Considering the influence of the patch
boundary, we discard the surfaces of the 3D DDF patch and
only use the middle patch part. By averaging the middle patch
outputs that cover each grid position, wewill obtain the whole
3D DDF for the whole images. The details are presented in
the following sections.
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FIGURE 3. Detailed architecture of the patch-based deformable registration network.

A. LOSS FUNCTION USING GLOBAL AND LOCAL LABELS
To train M, the total loss function of the m-th pair of label
patches is defined as:

E =
1
|{i}|

∑
i
EG
(
lWmi, l

B
mi

)
+

1
N1

∑
j
αjEL

(
lWmj, l

B
mj

)
+ βER (φm) , (1)

where i is the sequence number of the global label, j is the
local label sequence number after {i}, and |{i}| + | {j} | = N .
EG measures the global dissimilarity between the i-th warped
moving label patch lWmi and the corresponding fixed label
patch lBmi. EL represents the local dissimilarity between two
local label patches, namely, lWmj and l

B
mj. l

W
m = T(φm, lAm) is

the warped label patch that is obtained by transforming the
moving label patch lAm using DDF φm. αj = 1 if the voxel
number of local label j in patch m is larger than a prede-
fined threshold; otherwise, αj = 0. N1 = max(1,

∑
j αj).

β is a hyperparameter for regularization, which controls the
smoothness of the DDF. We empirically select β = 0.5 if∑

j αj = 0, as there are only global label loss; otherwise,
β = 1 since two losses occur, namely, global and local label
losses, in order to maintain a constant ratio between the loss
term and the regularization term. Therefore, we utilize all
possible global labels and the local labels that are mainly
located in the selected patches.

The multiscale dissimilarity loss function EG is defined as
follows:

EG
(
lWmi, l

B
mi

)
= 1−

1
N2

∑
σ

δDice

(
gσ
(
lWmi
)
, gσ

(
lBmi
))
, (2)

where N2 is the number of scales, which is set to 6 in this
work, with a scale set of σ {0,1,2,4,8,16}. σ is the isotropic
standard deviation of a 3D Gaussian filter kernel. If σ = 0,
no low-pass Gaussian filtering is applied. As σ is increased,
the filtered label images become smoother. We select the

largest value, namely, 16, to ensure that the main part of the
Gaussian kernel covers the patch. The Gaussian filter kernel
can be expressed as follows:

gσ =
1(√
2πσ

)3 e− |x|22σ2 , (3)

where |x| represents the distance to the kernel center. EL is
similar to (2), except that it is defined between two local
labels. gσ

(
lWmi
)
and gσ

(
lBmi
)
represent the filtered labels for lWmi

and lBmi by Gaussian kernel gσ , which can be obtained via 3D
convolution. The values in gσ

(
lWmi
)
and gσ

(
lBmi
)
are between

0 and 1.
δDice measures the Dice similarity between two labels,

which is defined as follows:

δDice

(
gσ
(
lWmi
)
, gσ

(
lBmi
))
=

2
∥∥gσ

(
lWmi
)
◦ gσ

(
lBmi
)∥∥

1∥∥gσ
(
lWmi
)∥∥

1 +
∥∥gσ

(
lBmi
)∥∥

1

, (4)

where || ||1 denotes the `1 norm, and ‘◦’ denotes Hadamard
multiplication.

Additionally, the DDF should be smooth to preserve the
topological correspondence. A regularization term of the
bending energy is used in the following discrete form:

ER (φ) =
1
|V |

∑[(
∂2φ

∂x2

)2

+

(
∂2φ

∂y2

)2

+

(
∂2φ

∂z2

)2

+ 2
(
∂2φ

∂xy

)2

+ 2
(
∂2φ

∂yz

)2

+ 2
(
∂2φ

∂xz

)2 ]
, (5)

where |V | represents the number of voxels in a patch.

B. DEFORMABLE REGISTRATION NETWORK
The architecture of the deformable registration network for
brain MRI registration is illustrated in detail in Fig. 3. The
inputs are a pair of patches that are extracted from infant brain
MR images at two time points. The size of each input patch is
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64×64×64. The output DDF patch is of size 64×64×64×3,
and is located at the same location as the input patch.

The network consists of four upsampling Resnet blocks
and four downsampling Resnet blocks. Four summation skip
layers are used to shortcut the entire network and to alleviate
the gradient vanishing issue. The output DDF is calculated via
summation over five resolution levels. Four of the levels are
obtained via trilinear interpolation after convolving feature
data with a bias term from the three end layers of the up-
sampling blocks and the sm layer. The last part of the DDF is
obtained by convolving from the end layer of the last Resnet
block without using trilinear interpolation.

C. CALCULATION OF THE TOTAL DDF DURING INFERENCE
During inference, the total DDF is calculated by averaging
the output DDF φm from the network M. The total DDF
at location u, which is denoted as φtotal(u), is obtained as
follows:

φtotal (u) =
1
N3

∑
{m|u∈Pm}

φm (u) , (6)

where N3 = |{m| u ∈ Pm}| is the number of patches that
cover location u. N3 is related to the stride value ns and the
position u.

N3 (u) =
∏

i=d,w,h
min

(⌊
1+

ui
ns

⌋
,⌊

1+
ni − 1− ui

ns

⌋
,

⌊
npi
ns

⌋ )
, (7)

where nd × nh × nw is the image size, npd × nph × npw is the
patch size, and u = (ud, uw, uh) with 0 ≤ ui ≤ ni − 1.
We extract overlapping patches via a sliding windowwith a

stride of 32 during training and with a stride of 4 during infer-
ence.We choose the stride of 32 during training since it is half
of the patch size of 64 and the chosen patches cover the whole
images with enough overlap. During inference smaller stride
can produce smoother DDF, so we choose a stride of 4 for
efficiency. At the same time, to further increase the smooth-
ness of the DDF and to ensure that it contains sufficient
neighborhood information, surface-discarding is adopted. For
example, the patch size of the DDF is 64×64×64×3 during
training, while during inference, we only utilize the middle
part of the patch with a size of 58×58×58×3 by discarding
3-voxel-width surfaces on each face of the patch.

The DDFs and their Jacobian determinants are presented
in Fig. 4 and are obtained by Label-reg [20], [21] via the
global label (LRG) method and via our method, which com-
bines global and local label registration. The intrasubject
registration deformations of MR images from 2 weeks old to
12 months old are presented. The coronal slices of two DDFs
and their detailed grids are presented in the top row, and the
axial slices of the two DDFs and their Jacobian determinant
images are presented in the bottom row with pseudo color.
In the top row, the DDF on the left uses only the global WM,
GM and CSF labels and no local labels, while the DDF on
the right utilizes the global labels and the local hippocampal

label simultaneously. In the bottom row, the first two left
images are the DDF and its Jacobian determinant via the
LRG method, and the last two images are sliced from the
results of our method. The background value is 0 in the DDF
image, and 1 in the Jacobian determinant image. From Fig. 4,
we conclude that there are three advantages of combining
global and local label information in the optimization of
the DDF. First, higher anti-folding performance is realized
and is illustrated in the two regions that are indicated by
the green arrows in the top row. Hence, the correct local
tissue alignment may provide smooth regularization to the
global neighborhood deformations. Second, as shown by the
yellow arrows, the local transformation alignment is more
accurate. This accuracy is significant when we analyze the
development of local tissues, lesions or tumors, and in the reg-
istration of small regions of interest (ROIs). Third, the DDF in
global regions via our method is smoother than via the LRG
method. As shown in the bottom row, there are fewer large
deformations in the global label regions, and the values of
Jacobian determinant in many regions are closer to 1 on the
right images.

FIGURE 4. DDFs and their Jacobian determinants, which were calculated
without (LRG method, in the left two columns) or with (our method,
in the right two columns) the local hippocampal labels.

III. EXPERIMENTAL RESULTS
The first experimental dataset included infant brain MR
images of 24 subjects, where each subject had T1-weighted
and T2-weighted MR images at 2 weeks old and at 3,
6, 9 and 12 months old. T1-weighted MR images were
obtained using a head-only 3T MR scanner with a resolution
of 1×1×1 mm3, and T2-weighted images were acquired
with a resolution of 1.25×1.25×1.95 mm3. In preprocess-
ing, each T2-weighted MR image was linearly aligned to
its corresponding T1-weighted MR images for each subject
at the same time point with FLIRT [34]–[36] and isotopi-
cally upsampled to 1×1×1 mm3 resolution. Then, from the
affinely registered images, the skull is removed to obtain
brain images, bias correction is used to remove intensity
inhomogeneity by a N4 bias field correction method in
ANTs [52], and histogram equalization is used to enhance the
images. Last, the corresponding segmentation labels, namely,
WM, GM and hippocampus, were obtained using the iBEAT
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TABLE 1. Means and standard deviations of the Dice ratios of three labels for intrasubject registration of T1-weighted MR images using five registration
methods. The GM and WM labels are global labels, and the hippocampal label is a local label.

toolbox [37] and via experts’ manual refinement. Next, all the
images were cropped to the same size of 160× 192×128.
Finally, data augmentations were leveraged by applying a
random affine transformation to each image and the corre-
sponding label prior to training, which were implemented
in the image argumentation layer using open-source code in
NiftyNet [38], [39].

The second experimental dataset is public OASIS-1 (Open
Access Series of Imaging Studies) [47], which consists of a
cross-sectional collection of 416 subjects of ages 18 to 96. For
each subject, the dataset contains T1-weighted MRI images
and their segmentation label images. The labels include
three global tissues: WM, GM and CSF. Since the MR and
label images are affinely aligned to the atlas, we continue
to segment small local subcortical labels, i.e., hippocampus
and caudate, via the run_first_all command with the corre-
sponding structure options in FSL packages. All images are
resampled to the same dimensions of 176× 208×176 with
1-mm isotropic voxels.

For intrasubject registration, we used 22 subjects for train-
ing, 1 subject for validation and 1 subject for inference; for
intersubject registration, we used 21 subjects for training,
1 subject for validation, 1 subject for inference and 1 subject
for the fixed images. The network was trained on a 12GB
Nvidia TitanX GPU with 10000 iterations. In each iteration,
a pair of randomly augmented MR images were generated
and further sampled to 60 patches, which can be calculated
as follows:

N4

=

⌊(
nd−

(
npd−ns

))
(nh−(nhd−ns)) (nw−(nwd−ns))

n3s

⌋
,

(8)

where nd × nh × nw is the image size, npd × nph × npw
is the patch size, and ns is the stride. For cropped exper-
imental images, the number of patches is N4 = ((160-
(64-32))/32)((192-(64-32))/32)((128-(64-32))/32) = 60 with
a patch size of 64×64×64 and a stride of 32. Hence, during
training, the total number of patch pairs of MR images was
10000×60 = 600000. In each cycle, the orders of subjects
and patches were shuffled. It took approximately 72 hours
using an Adam optimizer starting at a learning rate 10−5

with a minibatch size of 4 during training, and it took only
∼11 seconds to calculate the total DDF during inference with
the same stride.

A. REGISTRATION RESULTS OF INFANT BRAIN MRI
The Dice ratios of WM, GM and hippocampus are calculated
to evaluate the registration performance in Tables 1-4. We list
the Dice ratio results of intra/intersubject registration from
2-week, 3-, 6- and 9-month-old to 12-month-old subjects.
These ratio results are obtained via Demons [40]–[42],
via Mutual Information (MI) [5], [6], [43], via symmet-
ric normalization (SyN) in ANTs [48] with the CC loss
function (a python version seen in DIPY package), via
Label-reg [20], [21] with global labels (LRG) and via our
method, respectively. The Demons and MI methods are
implemented by SimpleITK [42]–[44].

The Dice ratios between the i-th warped moving label lWi
and the corresponding fixed label lBi are calculated as the
following without any Gaussian filtering:

δDice

(
lWi , l

B
i

)
=

2
∣∣lWi ∩ lBi ∣∣∣∣lWi ∣∣+ ∣∣lBi ∣∣ . (9)

The target registration error (TRE) is also used to mea-
sure the image registration accuracy, which is defined as
the arithmetic-mean-centroid distance between the warped
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TABLE 2. Means and standard deviations of the Dice ratios of three labels for intersubject registration of T1-w MR images using five registration methods.

TABLE 3. Means and standard deviations of the Dice ratios of three labels for intrasubject registration of T2-w MR images using five registration methods.

moving label and the corresponding fixed label.

TREamc
(
lWi , l

B
i

)
=

∥∥∥∥∥
∑

uw∈lWi
uw∣∣lWi ∣∣ −

∑
uB∈lBi

uB∣∣lBi ∣∣
∥∥∥∥∥
2

, (10)

where uw and uB are voxel coordinates in labels lWi and
lBi , respectively, and || ||2 denotes the `2-norm. The TRE
results are listed in Tables 5-8.

In Tables 1-4, for the global GM and WM labels, our reg-
istration scheme has similar Dice ratios to the LRG method
and has higher Dice ratios than the Demons, MI and SyN
methods in most cases. For the local hippocampal label,
our registration method yields the best results among the
five registration methods and realizes Dice ratios of more
than 83.8% in all cases. For example, in comparison with
the best results of the other four methods in terms of the

mean Dice ratios of hippocampus: 1) for the intrasubject
registration of T1-weighted MR images in Table 1, our
method improves the ratios by approximately 82%, 34%,
18% and 18% for images of 2-week-old and 3-, 6- and
9-month-old subjects, respectively, to 12-month-old subjects;
2) for the intersubject registration of T1-weightedMR images
in Table 2, our method enhances the results by approximately
81%, 48%, 34% and 31%, respectively; 3) for the intrasub-
ject registration of T2-weighted MR images in Table 3, our
method improves the results by approximately 58%, 31%,
36% and 16%, respectively; 4) for the intersubject regis-
tration of T2-weighted MR images in Table 4, our method
enhances the results by approximately 93%, 63%, 37% and
35%, respectively; 5) Comparing the global WM, GM and
local hippocampus region registration results for intersubject
registration for any time gap in Tables 2 and 4, the Dice
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TABLE 4. Means and standard deviations of the Dice ratios of three labels for intersubject registration of T2-w MR images using five registration methods.

TABLE 5. Means and standard deviations of the TREs (mm) of three labels for intrasubject registration of T1-w MR images using five registration methods.

ratios of the hippocampus that are obtained using our method
are the largest (best) among all 15 values in each column.
For intrasubject registration from 2-week-old to 12-month-
old subjects and form 3-month-old to 12-month-old subjects
in Tables 1 and 3, the Dice ratios of the hippocampus that
are obtained using our method are also the largest among all
15 values; and for the remaining time gap (last two columns),
our hippocampus registration results are better than most of
those of the other four methods.

In Tables 5-8, we list the TREs results of intra/intersubject
registration from 2-week-old and 3-, 6- and 9-month-old
to 12-month-old subjects that were obtained via the five
methods. Under most cases for the global labels, the TREs
that are obtained by our method are smaller than 1mm; are
lower than those by the Demons, MI and SyN methods; and
are similar to those by the LRG method. Under all cases

for the local hippocampus region, our method realizes the
smallest TREs in comparison with the other four methods.
For example, in comparison with the best hippocampus TRE
results of the other four methods: 1) in Table 5, for the intra-
subject registration of T1-weightedMR images, the TREs are
reduced to approximately 19%, 31%, 37% and 28% of the
corresponding smallest mTRE (mean of TREs) of the other
four methods from images of 2-week-old and 3-, 6- and 9-
month-old subjects, respectively, to 12-month-old subjects;
2) for the intersubject registration of T1-weightedMR images
in Table 6, our method reduces mTRE to approximately
18%, 55%, 31% and 16%, respectively; 3) for the intrasub-
ject registration of T2-weighted MR images in Table 7, our
method reduces mTRE to approximately 32%, 41%, 48%
and 24%, respectively; and 4) for the intersubject registra-
tion of T2-weighted MR images in Table 8, our method
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TABLE 6. Means and standard deviations of the TREs (mm) of three labels for intersubject registration of T1-w MR images using five registration methods.

TABLE 7. Means and standard deviations of the TREs (mm) of three labels for intrasubject registration of T2-w MR images using five registration methods.

reduces mTRE to approximately 23%, 19%, 48% and 20%,
respectively.

We draw the following conclusions: 1) The registra-
tion of the local tissue, namely, the hippocampus, is
subject-independent, modality-independent and time-point-
independent. Our method realizes satisfactory alignment per-
formance for both intrasubject and intersubject registration
of T1- or T2-weighted MR images for every time-point pair,
namely, it realizes the largest Dice ratios and the smallest
TREs; 2) For global tissues (WMandGM), our scheme yields
satisfactory registration results, which are similar to those
of LRG and superior to those of Demons and MI in most
cases; 3) With a smaller longitudinal age gap, the infant brain
MR images are more similar; hence, the registration become
easier and higher Dice ratios can be realized. However,

among the five registration methods, namely, the learning-
based methods, LRG and our method, these tendencies are
not readily observed since the Dice ratio values for the larger
time gap from the low time point to 12 months old are closer
to those for the smaller time gap from the high time point
to 12 months old. Furthermore, for the local hippocampus
region, this variation tendency is not observed for our reg-
istration method, which realizes larger Dice ratios under any
time interval; 4) Among the five methods, only our method
can yield convincing registration results for local tissue. For
example, under the same registration condition, the Dice
ratios and TREs of the hippocampus from our method are
the best among the five methods; 5) Comparing the Dice
ratios or TREs between global and local regions, the regis-
tration accuracy of local hippocampus region that is realized
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TABLE 8. Means and standard deviations of the TREs (mm) for three labels for intersubject registration of T2-w MR images using five registration
methods.

FIGURE 5. Visualization of the intrasubject registration of T1-weighted MR images. We present intrasubject registration results from 2-week-old,
3-, 6-, and 9-month-old to 12-month-old infant brain MR images from the second row to the fifth row, respectively. The top sagittal slice is from a
12-month fixed image, and the slices in remaining four rows from left to right are a moving image and warped images by Demons, MI, SyN, LRG
and our method. In this figure, the red color denotes the fixed hippocampal contours, the green color denotes the moving or warped contours, and
the yellow denotes the overlap contours between the fixed and the warped contours. Our proposed method can realize the largest hippocampus
overlaps (shown in the last column).

using ourmethod is higher than that for the globalWMorGM
region that is realized using any of the five methods in
most cases. Therefore, our method is suitable not only for
large or global region registration but also for small or local
tissue registration.

Qualitative comparisons are presented in Fig. 5-8, which
show the sagittal slices of MR images from 2-week-old and
3-, 6-, and 9-month-old to 12-month-old intra- or intersubject

registration. In these figures, sagittal slice in top row comes
from 12-month fixed images, and the sagittal slices from
left to right in the four bottom rows are moving images and
warped images by Demons, MI, SyN, LRG and our method,
respectively. In these figures, the red color denotes the fixed
hippocampal contours, the green color denotes the mov-
ing or warped contours, and the yellow represents the overlap
contours between the fixed and the warped contours. Our
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FIGURE 6. Visualization of the intersubject registration of T1-weighted MR images. The sagittal slices are in the same order as in Fig. 5. Our
proposed method still realizes the largest hippocampus overlaps (shown in the last column).

FIGURE 7. Visualization of the intrasubject registration of T2-weighted MR images. The arrangement of the sagittal slices is the same as in Fig. 5.
Our proposed method still realizes the largest hippocampus overlaps (shown in the last column).

method obtains the largest yellow overlap contours among the
five methods, which shows the best registration performance
for the local tissue, namely, the hippocampus.

B. REGISTRATION RESULTS OF OASIS-1
In order to evaluate the generalization performance of our
method, we apply it on the public OASIS-1 dataset, and
we compare the performances of our registration method
on two global tissues (WM and GM) and two local tissues

(hippocampus and caudate) with those of the LRG method.
In this intersubject registration experiment, 416 subjects are
used, where one subject is randomly chosen for the fixed
images, 30 for the testing images, and the remainder for the
moving images. The other parameters are the same as in the
first experiment.

The quantitative results are presented in Fig. 9. For the
global regions, namely, WM and GM, the Dice ratios and
TREs of our method are slightly better than those of the LRG
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FIGURE 8. Visualization of the intersubject registration of T2-weighted MR images. The sagittal slices are in the same order as in Fig. 5. Our
proposed method can realizes the largest hippocampus overlaps (shown in the last column).

FIGURE 9. Quantitative results for four labels.

method, except the Dice ratio on GM, which is slightly lower.
For the local regions, namely, the hippocampus and caudate,
the registration accuracy of our method is much better than
that of the LRG method. For example, the Dice ratios of our
method are higher than those of the LRG method, and the
TREs of our method are lower than those of the LRGmethod.

Qualitative results of intersubject registration of
T1-weighted MR images are presented in Fig. 10. Not only
for the hippocampus tissue in the top row but also for the

FIGURE 10. Visualization of the intersubject registration of T1-weighted
MR images. The first row corresponds to the 60th sagittal slice, and
the second row corresponds to the 103th sagittal slice. The slices of four
columns, from left to right, are from a fixed image, a moving image, and
the warped moving images that are obtained by the LRG method and our
method. Our proposed method can realize the largest hippocampus
overlaps (as shown in the top-right slice) and the largest caudate
overlaps (as shown in the bottom-right slice).

caudate region in the bottom row, our method realizes larger
contour overlaps than the LRG method. In addition, accord-
ing to the inner dot blue line region, slices of the warped
image that is obtained using our method (4th column) are
more similar to those of the fixed image (first column) than
those of the warped image that was obtained via the LRG
method (third column).

From the experiments of infant brain and OASIS-1 dataset,
we can draw the following advantages using our method.
Both LRG and our method provide highly satisfactory results
for the registration of the global tissues, namely, WM and
GM. However, in the local tissue, namely, the hippocam-
pus or the caudate, the LRG method does not yield the same
satisfactory registration results as in the global regions; hence,
the registration of the global regions does not guarantee that
the local region can also be aligned. As our method uses
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both global labels and local labels, it provides satisfactory
registration results in global and local tissue regions. Thus,
our method can overcome the one-to-many correspondence
problem between local regions and global regions. From
the results of registration between large-time-gap images,
e.g., from 2-week-old and 3-month-old to 12-month-old
MR images, although there are substantial anatomical and
appearance variations between those time intervals, our
method still yields satisfactory registration results; hence,
our method can overcome the problem of anatomical and
appearance variations.

Our method also has several shortcomings: First, the com-
putational burden is increased in the training stage since local
labels are also used. Second, if local tissues are too small and
too far away, then they cannot be found in the same position
patches. Hence, it is highly difficult to align them. Third,
the deformation field should be smoother around the local
tissues that are being learned. Global deformation and local
deformation should be balanced.

IV. CONCLUSION
In this work, we have proposed a novel patch-based
deformable registration method for infant brain MR images,
which combines global and local label information for train-
ing the DDF via a UNet-style [45] regression network with-
out any ground-truth deformation. Then, during inference,
the total DDF between two new longitudinal infant brain
MR images is calculated by averaging the network outputs
for denser pairwise patches. Our registration scheme can
overcome the problems of large anatomical and appearance
variations and one-to-many correspondences between global
tissues and local tissues. Experimental results are reported
for intrasubject and intersubject registration of T1- or T2-
weighted MR images of infant brains at various time points,
and they demonstrate promising registration performance not
only for global tissues but also for local tissues. An addi-
tional experiment on the OASIS-1 dataset results in the same
conclusions. The registration performance of our method on
local tissues is satisfactory and is independent of the subjects,
modalities, and time points.
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