
Received October 5, 2019, accepted November 21, 2019, date of publication December 2, 2019, date of current version January 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2957200

D3M: A Deep Domain Decomposition Method
for Partial Differential Equations
KE LI 1,2,3, (Student Member, IEEE), KEJUN TANG1,2,3, TIANFAN WU4, AND QIFENG LIAO 1
1School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
2Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA

Corresponding author: Qifeng Liao (liaoqf@shanghaitech.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 11601329.

ABSTRACT A state-of-the-art deep domain decompositionmethod (D3M) based on the variational principle
is proposed for partial differential equations (PDEs). The solution of PDEs can be formulated as the solution
of a constrained optimization problem, and we design a hierarchical neural network framework to solve
this optimization problem. Through decomposing a PDE system into components parts, our D3M builds
local neural networks on physical subdomains independently (which can be implemented in parallel), so
as to obtain efficient neural network approximations for complex problems. Our analysis shows that the
D3M approximation solution converges to the exact solution of the underlying PDEs. The accuracy and the
efficiency of D3M are validated and demonstrated with numerical experiments.

INDEX TERMS Domain decomposition, deep learning, mesh-free, parallel computation, PDEs, physics-
constrained.

I. INTRODUCTION
Partial differential equations (PDEs) are among the most
ubiquitous tools employed in describing computational
science and engineering problems. When modeling com-
plex problems, the governing PDEs are typically expensive
to solve through traditional numerical methods, e.g.,
the finite element methods [1]. While principal compo-
nent analysis [2], [3] (PCA), proper orthogonal decomposi-
tion [4], [5] (POD) and reduced basis methods [6]–[11] are
classical approaches for model reduction to reduce the com-
putational costs, deep learning [12] currently gains a lot of
interests for efficiently solving PDEs. There aremathematical
guarantees called universal approximation theorems [13] stat-
ing that a single layer neural network can approximate most
functions in Sobolev spaces. Although there is still a lack
of theoretical frameworks for explaining the effectiveness
of multilayer neural networks, deep learning has become a
widely used tool. Marvelous successful practices of deep
neural networks encourages their applications to different
areas, where the curse of dimensionality is a tormenting issue.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

New approaches are actively proposed to solve PDEs based
on deep learning techniques. Weinan et al. [14], [15] con-
nect deep learning with dynamic system and propose a deep
Ritz method (DRM) for solving PDEs via variational meth-
ods. Raissi et al. [16]–[19] develop physics-informed neural
networks which combine observed data with PDE models.
By leveraging a prior knowledge that the underlying PDE
model obeys a specific form, they can make accurate predic-
tionswith limited data. Long et al. [20] present a feed-forward
neural network, called PDE-Net, to accomplish two tasks
at the same time: predicting time-dependent behavior of
an unknown PDE-governed dynamic system, and revealing
the PDE model that generates observed data. Later, Sirig-
nano and Spiliopoulos [21] propose a deep Galerkin method
(DGM), which is a meshfree deep learning algorithm to solve
PDEs without requiring observed data (solution samples
of PDEs). When a steady-state high-dimensional paramet-
ric PDE system is considered, Zhu et al. [22], [23] propose
Bayesian deep convolutional encoder-decoder networks for
problems with high-dimensional random inputs. Recently,
Wu et al. [24], [25] and Zhang and Lin [26] contributes deep
learning strategies to discover of physical laws.

When considering computational problems arising in prac-
tical engineering, e.g. aeronautics and astronautics, systems

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 5283

https://orcid.org/0000-0002-5627-2932
https://orcid.org/0000-0003-2033-6356
https://orcid.org/0000-0003-0026-5423

K. Li et al.: D3M for PDEs

are typically designed by multiple groups along disciplinary.
The complexity of solving large-scale problems may take
an expensive cost of hardware. The balance of accuracy
and generalization is also hard to trade off. For this reason,
decomposing a given system into component parts to manage
the complexity is a strategy, and the domain decomposi-
tion method is a traditional numerical method to achieve
this goal. Schwarz [27] proposes an iterative method for
solving harmonic functions. Then this method is improved
by Sobolev [28], Michlin [29], Lions [30], [31]. Domain
decomposition is also employed for optimal design or con-
trol [32], for decomposing a complex design task (e.g.,
decomposition approaches to multidisciplinary optimiza
tion [33], [34]), and for uncertainty analysis of models gov-
erned by PDEs [35], [36].

In this work, we propose a variational deep learning solver
based on domain decomposition methods, which is referred
to as the deep domain decomposition method (D3M) to
implement parallel computations along physical subdomains.
Especially, efficient treatments of complex boundary condi-
tions are developed. Solving PDEs using D3M has several
benefits:

A. COMPLEXITY AND GENERALIZATION
D3M manages complexity at the local level. Overfitting is a
challenging problem in deep learning. The risk of overfitting
can be reduced by splitting the physical domain into subdo-
mains, so that each network focuses on a specific subdomain.

B. MESH-FREE AND DATA-FREE
D3M constructs and trains networks under variational for-
mulation. So, it does not require given data, which can be
potentially used for complex and high-dimensional problems.

C. PARALLEL COMPUTATION
The computational procedures of D3M are in parallel for dif-
ferent subdomains. This feature helps D3M work efficiently
on large-scale and multidisciplinary problems.

In this work, D3M is developed based on iterative domain
decomposition methods. The development of using domain
decomposition leads to an independent model-training pro-
cedure in each subdomain in an ‘‘offline’’ phase, followed
by assembling global solution using pre-computed local
information in an ‘‘online’’ phase. Section II reviews itera-
tive overlapping domain decomposition methods. Section III
presents the normal variational principle informed neural
networks, and our D3M algorithms. A convergence analysis
of D3M is discussed in Section IV, and a summary of our
full approach is presented in Section V. Numerical studies
are discussed in Section VI. Finally, Section VII concludes
the paper.

II. OVERLAPPING DOMAIN DECOMPOSITION
The Schwarz method [27] is the most classical example of
domain decomposition approach for PDEs, and it is still
efficient with variant improvements [37]–[39].

FIGURE 1. Partition into two overlapping subdomains.

Given a classical Poisson’s equation{
−1u(x, y) = f (x, y), in �,
u(x, y) = 0, on∂�.

(1)

We divide� into two overlapping subdomains�i, i = 1, 2
(see Figure 1), where

� = �1 ∪�2, 01 := ∂�1 ∩�2,

02 := ∂�2 ∩�1, �1,2 := �1 ∩�2. (2)

Note that we here review the domain decomposition method
using two subdomains, while our D3M considers any number
of subdomains.

The original formula named Schwarz alternating method
is reviewed as follows. Let u0 be an initial guess defined in
� and vanishing on ∂�. For k ≥ 0, we define sequences uki
where uki denotes u

k restricted in �i. The u
k+1
i is determined

from an iteration algorithm:
−1uk+1/21 (x, y) = f (x, y), in �1,

uk+1/21 (x, y) = uk2(x, y), on 01,

uk+1/21 (x, y) = 0, on ∂�1 ∩ ∂�

(3)

and
−1uk+12 (x, y) = f (x, y), in �2,

uk+12 (x, y) = uk+1/21 (x, y), on 02,
uk+12 (x, y) = 0, on∂�2 ∩ ∂�.

(4)

III. DEEP DOMAIN DECOMPOSITION METHOD WITH
VARIATIONAL PRINCIPLE
Before introducing D3M, we first give a brief introduction
of variational principle. In this section, we consider the Pois-
son’s equation and reformulate (1) as a constrainedminimiza-
tion problem, and then we introduce the D3M algorithm.

A. VARIATIONAL PRINCIPLE
The Poisson’s equation with the homogeneous Dirichlet
boundary condition is (1), and we consider the situation that
f ∈ L2(�) and � is a square domain in this section. The
idea of the standard Deep Ritz method is based on the vari-
ational principle. That is, the PDE can be derived by a func-
tional minimization problem as described in the following
proposition.
Proposition 1: Solving the Poisson’s equation (1) is equiv-

alent to an optimization problem

min
u

E(u) =
∫
�

1
2
|∇u|2 dxdy−

∫
�

f · udxdy,

5284 VOLUME 8, 2020

K. Li et al.: D3M for PDEs

s.t. u = 0 on ∂�. (5)

The Lagrangian formula of (5) is given by

L(u, q)=
∫
�

1
2
|∇u|2dxdy−

∫
�

u · f dxdy+q
∫
∂�

udxdy, (6)

where q is the Lagrange multiplier.
Definition 1: H(div) denotes symmetric tensor-fields in

H1 space, in which functions are square integrable and have
square integrable divergence.

We employ a mixed residual loss [23] following
Hellinger-Reissner principle [40].With an additional variable
τ ∈ H(div), which represents flux, we can turn Equation (1)
into {

τ = −∇u, in �,
∇ · τ = f , in �.

(7)

The mixed residual loss is

L(τ, u, q) =
∫
�

[(τ+∇u)2+(∇ · τ−f)2]dxdy+q
∫
∂�

udxdy.

(8)

B. VARIATIONAL PRINCIPLE INFORMED
NEURAL NETWORKS
Though the Poisson’s equation (1) is reformulated as an
optimization problem, it is intractable to find the optimum
in an infinite-dimensional function space. Instead, we seek to
approximate the solution u(x, y) by neural networks. We uti-
lize Nu(x, y; θu),Nτ (x, y; θτ) to approximate the solution u
and the flux τ in domain �, where θu and θτ are the param-
eters to train. The input is the spatial variable in �, and
the outputs represent the function value corresponding to the
input. With these settings, we can train a neural network by
variational principle to represent the solution of Poisson’s
equation. The functional minimization problem (8) turns into
the following optimization problem

min
θ={θu,θτ }

∫
�

[
(Nτ +∇Nu)2 + (∇ · Nτ − f)2

]
dxdy

+q
∫
∂�

N2
udxdy. (9)

Remark 1: In practical implementation, Nu and Nτ are
embedded in one network N parameterized with θ , and the
two outputs of N denote the function values of Nu and Nτ
respectively.

Therefore, the infinite-dimensional optimization prob-
lem (5) is transformed into a finite-dimensional optimization
problem (9). Our goal is to find the optimal (or sub opti-
mal) parameters θ to minimize the loss in (9). To this end,
we choose a mini-batch of points randomly sampled in �.
These data points can give an estimation of the integral in (9)
and the gradient information to update the parameters θ . For
example, a mini-batch points {(xi, yi)}

m+n
i=1 are drawn in �̄

randomly, where {(xi, yi)}mi=1 in � and {(xi, yi)}
m+n
i=m+1 on ∂�.

Then the parameters can be updated by using optimization
approaches

θ (k+1) = θ (k) −∇θ
1
m

m∑
i=1

[(N(i)
τ +∇N

(i)
u)2 + (∇ · N(i)

τ − f)
2]

−∇θ
1
n

n∑
j=1

(q · N(j)
u)2. (10)

C. IMPLEMENTATION DETAILS FOR NEURAL NETWORKS
This section provides details for the architecture of our neural
networks.

For giving a direct-viewing impression, we show the
implementation with a plain vanilla densely connected neural
network to introduce how the structure works in Figure 2.
For illustration only, the network depicted consists of 2 lay-
ers with 6 neurons in each layer. The network takes input
variables x, y and outputs u, τ = [τx , τy]. The number of
neurons in each layer is M and σ denotes an element-wise
operator

σ (x) = (φ (x1) , φ (x2) , . . . , φ (xM)) , (11)

where φ is called the activation function. There are some
commonly used activation functions such as the sigmoidal
function, the tanh function, the rectified linear units (ReLU)
function [41], and the Leaky ReLU function [42]. We employ
the tanh function (our target function is twice differen-
tiable), and the automatic differentiation is obtained by using
PyTorch [43]. The total loss function comprises the residual
loss terms L1, L2 and the Lagrangian term which guaran-
tees the constraint conditions. The parameters are trained
with backpropogating gradients of the loss function and the
optimizer is L-BFGS [44] where the learning rate is 0.5.
In practice, the model architecture of neural networks is the
residual network (ResNet) [45]. These residual networks are
easier to optimize, and it can gain accuracy from consid-
erably increased depth. The structure of ResNet improves
the result of deep networks, because there are more previ-
ous information retained. A brief illustration of ResNet is
in Figure 3.

D. DEEP DOMAIN DECOMPOSITION METHOD
In this part, we propose the main algorithms of our D3M.
Because the physics-constrained neural network is mesh-
free, we improve Schwarz alternating method with a bet-
ter inhomogeneous D3M sampling method at junctions 0i
to accelerate convergence. We note the performance of
normal deep variational networks and mixed residual net-
works can deteriorate when the underlying problem has
inhomogeneous boundary conditions. Our treatment to over-
come this weakness is to introduce the following boundary
function.
Definition 2 (Boundary function): A smooth function

g(x, y) is called a boundary function associated with � if

g(x, y) = e−a·d(x,y,∂�)u(x, y), (x, y) ∈ �, (12)

VOLUME 8, 2020 5285

K. Li et al.: D3M for PDEs

FIGURE 2. Illustration of the neural networks. x, y are inputs, u, τx , τy are outputs and the dashed box with σ
means the architecture of plain fully-connected neural networks.

FIGURE 3. The residual network building block of our method.

where a� 1 is a coefficient, the notation d(x, y, ∂�) denotes
the shortest Euclidean distance between (x, y) and ∂�. If the
point (x, y) is on the boundary, g(x, y) = u(x, y). If not,
the value of g(x, y) decreases to zero sharply. And we define
v := u− g, where v satisfies{

−1v = f +1g, in �,
v = 0, on ∂�.

(13)

Letting vi = ui − gi on each subdomain, Equation (7) can be
represented as {

τ = −∇vi, in �i,

∇ · τ = f +1gi, in �i.
(14)

The mixed residual loss is

L(τi, vi, q) =
∫
�i

[(τi +∇vi)2 + (∇ · τi − f −1gi)2]dxdy

+q
∫
∂�i

v2i dxdy,

≈
1
m1

m1∑
k=1

[(τ (k)i +∇v
(k)
i)2+(∇ · τ (k)i −f −1gi)2]

+
1
m2

m2∑
j=1

q · (v(j)i)2. (15)

It should be noted that, the integration is completed
by Monte Carlo, such that the domain decomposition
reduces the variance of samples significantly with the same
number of data because the area of samples becomes
smaller.

The procedure of D3M is as follows. We first divide the
domain � into d subdomains, and each two neighboring
subdomains are overlapping. The local solution of PDEs on
each subdomain is replaced by neural networks which can
be trained through the variational principle, where the global
solution on the whole domain consists of these local solutions
on subdomains. To bemore precise, let0i denote decomposed
junctions, θ is initial weights of neural networks, η is the
threshold of accuracy, Si and gi are the samples generated in
�i and on interface 0i to evaluate the output of networks in
each iteration, Ŝi are training samples in subdomain�i, ĝi are
training samples on 0i, n is training time in each iteration,
m1 and m2 are batch sizes, Nu is the neural networks for u,

5286 VOLUME 8, 2020

K. Li et al.: D3M for PDEs

Algorithm 1 Deep Domain Decomposition
1: Input: � = (x0, x1)× (y0, y1), p, 0i, η, θ , n, m1, m2.
2: Initialize: ε = 10× η, k = 0, gv0i = 0, Si, gi.
3: Divide the physical domain � into �1, · · · , �p.
4: while ε > η do
5: Run Algorithm (2) in each subdomain in parallel.

6: ε = 1
p

p∑
i=1
‖Sol(k+1)i − Sol(k)i ‖

2
2.

7: k = k + 1.
8: end while
9: Merge p parts Sol(k)i and get Dnn(k)sol .
10: Return: Dnn(k)sol .

Algorithm 2 Training for Subdomain �i

1: Input: Si, gvki , g
k
i , n, m1, m2.

2: Construct function gi using value of gvki , vi = Nu − gi.
3: for n steps do
4: Sample minibatch of m1 samples Ŝi = {(xi, yi)}

m1
i=1 in

�i.
5: Sample minibatch of m2 samples ĝi = {(xi, yi)}

m2
i=1 on

∂�i.
6: Update the parameters θi by descending its stochastic

gradient:

θ
(k+1)
i = θ

(k)
i −∇θ

1
m1

m1∑
k=1

[(N(k)
τ +∇v

(k)
i)2

+(∇ · N(k)
τ −f −1gi)2]−∇θ

1
m2

m2∑
j=1

(q · v(j)i)2.

7: end for
8: Sol(k+1)i = Nu(Si).
9: gv(k+1)i = Nu(g

(k)
i).

10: Return: Sol(k+1)i , gv(k+1)i .

Nτ is the neural networks for τ , k is the iteration time, and
Sol(k+1)i is the output of networks for subdomain�i in (k+1)-
th iteration. The formal description of D3M is presented in
Algorithm 1.

IV. ANALYSIS
While mixed residual formulation is a special case, we con-
sider the basic functional formulation first,

J (u) =
∫
�

1
2
∇u · ∇u−fudS. (16)

Definition 3: Given m closed subspaces {Vi}mi=1 and V =∑m
i=1 Vi ∈ C2(�), for any R < ∞, and a proper, lower

semi-continuous, coercive convex functional J : V → <,
we denote KR := {u ∈ V |J (u) < R}.
Assumption 1: J ∈ C1(KR) and ∃ αR > 0 s.t. ∀v, u ∈ KR

J (v)− J (u)− (J ′(u), v− u) ≥ αR|v− u|2, (17)

where J’ is uniformly continuous on KR.

Proposition 2: (P.L.Lions, 1989)The alternating Schwarz
method (3) and (4) converges to the solution of u of Equa-
tion (14). The error bound of û1

k+1 and û2
k+1 can be

estimated via maximum principle [31], [46], ∃ ρ ∈ (0, 1)
such that for ∀ k ≥ 0

‖u|�i − ûi
k+1
‖L∞(�i) ≤ ρ

k
‖u|�i − û

0
i ‖L∞(�i). (18)

where constants ρ is close to one if the overlapping region
�i,j is thin.
Lemma 1 (K. Hornik, 1991): On each subdomain�i, neu-

ral network Ni with continuous derivatives up to order K are
universal approximators in Sobolev space with an order K,
which means Ni ∈ H1(�i).
Lemma 2 (P. L. Lions, 1988): If the variational formula-

tion (16) satisfies the assumption (1), then it follows that there
exists a sequential un ∈ Vi obtained by Schwarz alternating
method converges to the minimum u∗i of J (ui) on each subdo-
main �i.
Theorem 1: Ji(Ni) denotes the objective function on the

subdomain �i. Under above assumptions, for ∀ε > 0,
∃M > 0, while iteration times k > M, Nk

i converges to
optimal solution u∗i of J (ui) in subdomain �i for a constant
C > 0

|Nk
i − u

∗
i |
2
≤ Cε1/2 in �i. (19)

For concision, we use Ni to represent Nk
i in the following

part.
Proof: un ∈ Vi denotes the sequential in Lemma 2, there

exist

|un − u∗i | ≤
C0

αR
ω|un+1 − un|, (20)

where C0 > 0 is a constant, ω|un+1 − un| = |J ′(un+1) −
J ′(un)|.
Then with Lemma 1 [13], in each subdomain �i, neural
network Ni ∈ H1. If the training times k in each subdomain
is enough, the universal approximation ensures the distance
between functions Ni and un is close enough in the Sobolev
space, with the constant C1 > 0

|Ni − un|2 ≤ C2
1 ε

2. (21)

While un converging to the minimum of u∗i of J (u), by the
optimality conditions it is clear that

(J ′(un+1), un+1 − un) < ε,

(J ′(un+1), un+1 − u∗i) < ε. (22)

Under the assumption, ∃ C > 0 and the difference between
two iterations can be represented as

|un+1 − un|2 ≤
1
αR
|J (un+1)− J (un)| ≤

1
αR
ε. (23)

Consider equation (20), (21) and (23), we have

|Ni − u∗i | ≤ |Ni − un| + |un − u∗i |,

≤ C1ε +
C0

αR
ω|un+1 − un|,

VOLUME 8, 2020 5287

K. Li et al.: D3M for PDEs

≤ Cε1/2. (24)

�
Theorem 2: For a given boundary function g and a fixed q,

the optimal solution N∗u of Equation (9) and v∗ of Equa-
tion (14) satisfy N∗u = v∗ + g.

Proof: We use τ and φ to denote −∇Nu and −∇v
respectively.

L(φ, v) =
∫
�

[(φ +∇v)2 + (∇ · φ − f −1g)2]dxdy

+q
∫
∂�

vdxdy, if v|∂� = 0

=

∫
�

[(τ +∇g+∇u−∇g)2 + (∇ · τ − f)2]dxdy

+q
∫
∂�

(u− g)dxdy

= L(τ, u). (25)

Function v we optimized is also the optimal solution Nu with
the formula N∗u = v∗ + g. �
Up to now, we prove that D3M can solve steady Pois-

son’s equationwith variational formulations. Then, we extend
D3M to more general quasilinear parabolic PDEs (26) with
physics-constrained approaches.

div(α(x, ui(x), τi(x)))
+γ (x, ui(x), τi(t, x)) = 0, x ∈ �i,

ui(t, x) = 0, x ∈ ∂�i,

(26)

where τi denotes ∇ui, and �i ∈ Rd are decomposed bound-
ary sets with smooth boundaries ∂�i. We recall the net-
work space of subdomain �i with generated data according
to [13]

Nn
i (σ)=

h(x) : Rk
→R|h(x)=

n∑
j=1

βjσ
(
αTj x−θj

) (27)

where σ is any activation function, x ∈ Rk is one set of
generated data, β ∈ Rn, α ∈ Rk×n and θ ∈ Rk×n denote
coefficients of networks. Set Ni(σ) =

⋃
∞

i=1N
n
i (σ). Under

the universal approximation of neural networks Lemma 1,
in each subdomain the neural networks f ni satisfies
div(α(x, f ni (x), τ

n
i (x))

+ γ (x, f ni (x), τ
n
i (t, x)) = hn, x ∈ �i,

f ni (t, x) = bn, x ∈ ∂�i,

(28)

where hn and bn satisfy

‖hn‖22,�i + ‖b
n
‖
2
2,∂�i → 0, as n→∞. (29)

For the following part of analysis, we make some assump-
tions.
Assumption 2: • There is a constant µ > 0 and posi-
tive functions κ(x), λ(x) such that for all x ∈ �i we have

‖α(x, ui, τi)‖ ≤ µ(κ(x)+ ‖τi‖),

and

|γ (x, ui, τi)| ≤ λ(x)‖τi‖,

with κ ∈ L2 (�i) , λ ∈ Ld+2+η (�i) for some η > 0.
• α(x, ui,∇ui) and γ (x, ui,∇ui) are Lipschitz continuous
in (x, ui,∇ui) ∈ �× R× Rd .

• In each subdomain, the derivatives of solutions from
alternating Schwarz method (3), (4) converge to the
derivative of solution ui. Precisely, there exists a con-
stant ρ1 ∈ (0, 1), such that for iteration times ∀k ≥ 0

‖∇u∗i −∇u
k
i ‖∞ ≤ ρ

k
1‖∇u

∗
i −∇u

0
i ‖∞.

• α(x, u, τ) is continuously differentiable w.r.t. (t, x).
• There is a positive constant ν > 0 such that

α(x, u, τ)τ ≥ ν|τ |2

and ∀τ1, τ2 ∈ Rd , τ1 6= τ2

〈α (x, u, τ1)− α (x, u, τ2) , τ1 − τ2〉 > 0.
Theorem 3: Suppose the domain � is decomposed into
{�i}

p
i=1, k > 0 denotes iteration times (omitted in notations

for brief). Ni(ψ) denotes networks space in subdomain �i,
where subdomains are compact. Assume that target func-
tion (26) has unique solution in each subdomain, nonlinear
terms div(x, u,∇u) and γ (x, u,∇u) are locally Lipschitz in
(ui,∇ui), and ∇uki uniformly converges to ∇u

∗
i with k. For

∀ ε > 0, there ∃ K > 0 such that there exists a set of neural
networks {Ni ∈ Ni(ψ)}

p
i=1 satisfies the L

2 error E2(Ni) as
follow

p∑
i=1

lim
k→∞

E2(Ni) ≤ Kε. (30)

Proof: In each subdomain �i, with iteration times
k > 0, Ek2 (Ni) denotes the L2 loss between Nk

i and u
∗
i .

lim
k→∞

Ek2 (Ni) = ‖ div(α(x, u∗i (x),∇u
∗
i (x)))

+γ (x, u∗i (x),∇u
∗
i (x))

−[div(α(x,Ni(x),∇Ni(x)))

+γ (x,Ni(x),∇Ni(x))]‖2�i
+‖Ni‖

2
∂�i
. (31)

With Lemma 1, it is clear that the sum of last term is smaller
than K1ε, where K1 > 0 is a constant. We assumed that ∇uki
uniformly converges to ∇u∗i with k , and this means that

‖∇u∗i −∇u
k
i ‖∞ ≤ ρ

k
1‖∇u

∗
i −∇u

0
i ‖∞. (32)

So that we have

lim
k→∞

Ek2 (Ni)

≤

∫
�i

| div(α(x, u∗i (x),∇u
∗
i (x)))− div(α(x, uki (x),∇u

k
i (x)))

+ div(α(x, uki (x),∇u
k
i (x)))− div(α(x,Ni(x),∇Ni(x)))|dx

+

∫
�i

|γ (x, u∗i (x),∇u
∗
i (x))− γ (x, u

k
i (x),∇u

k
i (x))

5288 VOLUME 8, 2020

K. Li et al.: D3M for PDEs

+γ (x, uki (x),∇u
k
i (x))− γ (x,Ni(x),∇Ni(x))|dx + K1ε

≤

∫
�i

| div(α(x, u∗i (x),∇u
∗
i (x)))−div(α(x, u

k
i (x),∇u

k
i (x)))|dx

+

∫
�i

| div(α(x,uki (x),∇u
k
i (x)))−div(α(x,Ni(x),∇Ni(x)))|dx

+

∫
�i

|γ (x, u∗i (x),∇u
∗
i (x))− γ (x, u

k
i (x),∇u

k
i (x))|dx

+

∫
�i

|γ (x, uki (x),∇u
k
i (x))−γ (x,Ni(x),∇Ni(x))|dx+K1ε

≤

∫
�i

| div(α(x,u∗i (x),∇u
∗
i (x)))−div(α(x, u

k
i (x),∇u

k
i (x)))|dx

+

∫
�i

|γ (x, u∗i (x),∇u
∗
i (x))− γ (x, u

k
i (x),∇u

k
i (x))|dx

+K2ε + K1ε, (33)

where K2 > 0 is a constant, and the error bound between uki
and Nk

i is proved from Theorem 7.1 in [21].

lim
k→∞

∫
�i

| div(α(x, u∗i (x),∇u
∗
i (x)))

− div(α(x, uki (x),∇u
k
i (x)))|

2dx

≤

∫
�i

(|uki |
q1 + |∇uki |)|

q2 + |u∗i |
q3 + |∇u∗i |)|

q4)

×(|u∗i − u
k
i | + |∇u

∗
i −∇u

k
i |)dx

≤ (
∫
�i

(|uki − u
∗
i |
q1 + |∇uki −∇u

∗
i |
q2 + |u∗i |

max{q1,q3}

+|∇u∗i |
max{q2,q4})rdx)1/r

×(
∫
�i

ρk‖u∗i − u
0
i ‖∞ + ρ

k
1‖∇u

∗
i −∇u

0
i ‖∞dx)

≤ (
∫
�i

‖uki − u
∗
i ‖

q1
∞ + ‖∇u

k
i −∇u

∗
i ‖

q2
∞ + sup

�i

|u∗i |
max{q1,q3}

+ sup
�i

|∇u∗i |
max{q2,q4}dx)ε

≤ K3ε, (34)

where K3 > 0 is a constant depends on ε. While γ (·) is
also Lipschitz continuous, we can prove the upper bound of∫
�i
|γ (x, u∗i (x),∇u

∗
i (x))−γ (x, u

k
i (x),∇u

k
i (x))|dx in the same

formula with Equation (34), denoted as K4ε. Hence we can
obtain

p∑
i=1

lim
k→∞

E2(Ni) ≤
p∑
i=1

(K1ε + K2ε + K3ε + K4ε)

≤ Kε. (35)

�
Theorem 4: Under Assumption 2 and Equation (29), with

iteration times k → ∞, the set of neural networks Ni
converge to the unique solutions to (26), strongly in Lρ(�i)
for every ρ < 2. In addition, in each subdomain the
sequence {Nn

i (x)}n∈N is bounded in n under the constraint of
Proposition 2 and converges to ui.

Proof: In each subdomain, the convergence can be
obtained from the Theorems 7.1 and 7.3 in [21]. With the

Proposition 2, the sequence {Nn
i }n∈N is uniform bounded in

n, and the rates of convergence to the solution u∗ are related
to overlapping areas. �

Specially, the n in {Nn
i (x)}n∈N means training times instead

of iteration times.We leave the proof for time-dependent data-
free variational formulations for future work.

V. D3M SUMMARY
To summarize the strategies in Section III and IV, the full
procedure of D3M comprises the following steps:

• pre-step: Set the architecture of neural networks in each
subdomain;

• offline step: Construct functions for boundary condi-
tions, train networks and generate local solutions;

• online step: Estimate target input data using neural net-
works. If solutions don’t converge, transfer information
on interfaces and go back to the offline step.

The pre-step is cheap, because the setting of neural net-
works is an easy task. In the offline stage, the complex
system is fully decomposed into component parts, which
means that there is no data exchange between subdomains.
Since we only approximate the data on interface with nor-
mal simple approach such as Fourier series and polynomial
chaos [36], [47], the approximation is also low costly. After
decomposition, the requirement for number of samples for
the Monte Carlo integration of the residual loss function (15)
is significantly reduced, while the density of samples does
not change. Since the number of samples decreasing and the
domain becoming simpler, we can use neural networks with
few layers to achieve a relatively high accuracy. If we keep
the same number of samples and layers as the global setting,
D3M should obtain a better accuracy. The cost of the online
step is low, since no PDE solve is required. This full approach
is also summarized in Figure 4, where transformations of data
happen between adjacent subdomains.

For the problemswe focus on (systems governed by PDEs),
the cost of the D3M is dominated by the local training pro-
cedures in the offline step. Here we present a rough order of
magnitude analysis of the computational costs where Csolve
denotes the cost of one block in each training epoch (i.e.,
the cost of any block with the same number of neurons in
each training iteration is taken to be equal for simplicity).
The dominant cost of D3M is the total number of blocks of
neural network and training times,

∑p
i=1 NiBiTiCsolve, where

Ni is sample size, Bi is number of blocks and Ti is training
times. If we consider equal offline sample sizes, number of
blocks and training epochs, Ni = Noff ,Bi = Boff ,Ti = Toff
for all subdomains {Di}

p
i=1, then total cost can be written as

pNoff Boff Toff Csolve. The total cost is decreased by employing
the idea of hierarchical neural networks [48], [49].

VI. NUMERICAL TESTS
Here we consider two classical problems, the Poisson’s equa-
tion and the time-independent Schrödinger equation, to verify
the performance of our D3M. All timings conduct on an Intel

VOLUME 8, 2020 5289

K. Li et al.: D3M for PDEs

FIGURE 4. D3M summary.

FIGURE 5. Illustrations of the physical domain with four overlapping
components.

Core i5-7500, 16GB RAM, Nvidia GTX 1080Ti processor
with PyTorch 1.0.1 [43] under Python 3.6.5. We train the
networks only 30 epoch using L-BFGS in numerical tests
(cost within two minutes). The choices of the neuron and
the layer numbers are empirical, which may not be optimal.

A. POISSON’S EQUATION{
−1u(x, y) = 1, in �,
u(x, y) = 0, on ∂�,

(36)

where the physical domain is � = (−1, 1) × (−1, 1).
The domain decomposition setting is illustrated in Figure 5.
To further improve the efficiency of D3M, we propose
a new type of sampling methods. We randomly sample

in each subdomain, and the number of samples increases
with iteration times increase. The sample size on interfaces
remains the same to provide an accurate solution for data
exchange. An illustration of our D3M sampling method is
represented in Figure 6
Remark 2: According to the research on overfitting,

the hypothesis set (w.r.t. the complexity of neural net-
works) should match the quantity and quality of data
instead of target functions [50]. So in the initial sev-
eral iterations, the number of residual blocks is small.
The number increases while the sample size in Figure 6
increases.

After decomposition, with designed gi satisfying Defini-
tion 1 for each subdomains, the function vi := ui−gi satisfies
the homogeneous Poisson’s equation and follows (3) and (4).

The results of D3M is shown in Figure 7(a). For compari-
son, we plot the result of normal deep Ritz method (DRM)
with the same type of network and the finite element
method (FEM) in Figure 7(b) and (c). We set the result of
FEM (degrees of freedom Nh = 1089) as the groundtruth
and define the relative error er =

‖sol−femsol‖2
‖femsol‖2

. We compare
results using residual network (ResNet), and the comparison
including relative errors are shown in Table 1.We can see that
with the same setting for networks, our D3M offers a higher
accuracy than normal DRM in this experiment.With the num-
ber of residual block increasing, the parameter of network is
increasing so that the performance of approximation becomes
better.

B. SCHRÖDINGER EQUATION
In the area of domain decomposition methods, the steady-
state Schrödinger equation is one of the classical

5290 VOLUME 8, 2020

K. Li et al.: D3M for PDEs

FIGURE 6. D3M sampling: A new type of mesh-free sampling.

FIGURE 7. Solutions computed by three different methods.

TABLE 1. The relative error for Poisson’s equation.

problems [51], [52].[
−h̄2

2 m
∇

2
+ V (r)

]
9(r) = E9(r). (37)

where h̄ =
h
2π is the reduced Planck constant, m

is the particle’s mass and E is a known constant
related to the energy level. This equation occurs often
in quantum mechanics where V (r) is the function for
potential energy. Here we consider an infinite potential
well

V (r) =

{
0, r ∈ [0, 1]d ,
∞, r /∈ [0, 1]d .

(38)

VOLUME 8, 2020 5291

K. Li et al.: D3M for PDEs

FIGURE 8. The solutions of wave function and probability density for a time-independent
Schrödinger equation.

The variational loss is

L(τi,Ni, q) =
∫
�i

[1Ni(r))+1gi − ENi(r))+ Egi]dr

+q
∫
∂�i

(Ni(r))2dr+γ (
∫
�i

|Ni(r)|2dr−1+Pi)2,

(39)

where
∫
�
|9(r)|2dr = 1, because 9(r) is the wave function

and 9(r)2 means the probability density of particle appear-
ing. Pi denotes the probability of particle appearing in�\�i.
It should be noted that Ni is an approximation of 9(r)i − gi,
where 9(r)i is the global solution 9(r) restricted on the
subdomain�i and gi is the boundary function for the interface
of �i.

For this two dimensional time-independent Schrödinger
equation, we can calculate the analytical solution 9(r) =
A sin(mπr1b)C sin(nπr2a), where A = C =

√
2, a = b = 1 and

n = m = 1 in this infinite potential well case with domain

TABLE 2. Relative errors for the wave function and the probability
density.

[0, 1] × [0, 1]. As shown in Figure 8, excellent agreement
can be achieved between the exact solutions and predictions
from our D3M. Compared with the solutions of DRM, D3M
shows a better performance especially in peak values. The
comparison of accuracy for both the wave equation and the
probability density is shown in Table 2 and Figure 9. Under
the same conditions including network structure, Lagrangian
multiplier, learning rate, number of samples and training

5292 VOLUME 8, 2020

K. Li et al.: D3M for PDEs

FIGURE 9. Comparison of relative errors corresponding to different
number of residual blocks.

epoch, our D3M shows smaller errors in both wave equation
and probability density.

VII. CONCLUSION
This paper proposes a new deep domain decomposition
method (D3M). The most significant contribution of the
proposed approach is parallel computation, which lays a
foundation for employing physics-constrained deep learning
framework in large-scale engineering simulations or designs.
This is accomplished by incorporating domain decompo-
sition method into the loss function. And our framework
absorbs the idea of mixed finite element method, so that the
boundary condition can be satisfiedmore accurately.We have
demonstrated that the deep domain decomposition method
can solve general parabolic PDEs with high accuracy.

In theory, our approach is feasible to solve complex sys-
tems with many subdomains and corresponding neural net-
works. In practice, the approach suffers from three main
bottlenecks. One is that a bad initialization of neural networks
can lead to superfluous cost for following iterations. Sec-
ond is the choice of functions for approximating interfaces.

And another is that the choice of Lagrangian multiplier is
important but lacks of prior. We leave these questions for
future work.

ACKNOWLEDGMENT
(Ke Li and Kejun Tang contributed equally to this work.)

REFERENCES
[1] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast

Iterative Solvers: With Applications in Incompressible Fluid Dynamics.
New York, NY, USA: Oxford Univ. Press, 2014.

[2] S. Wold, K. Esbensen, and P. Geladi, ‘‘Principal component analysis,’’
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[3] B. Schölkopf, A. Smola, and K.-R. Müller, ‘‘Kernel principal compo-
nent analysis,’’ in Proc. Int. Conf. Artif. Neural Netw. Springer, 1997,
pp. 583–588.

[4] G. Berkooz, P. Holmes, and J. L. Lumley, ‘‘The proper orthogonal decom-
position in the analysis of turbulent flows,’’Annu. Rev. FluidMech., vol. 25,
no. 1, pp. 539–575, Jan. 1993.

[5] K. Willcox and J. Peraire, ‘‘Balanced model reduction via the proper
orthogonal decomposition,’’ AIAA J., vol. 40, no. 11, pp. 2323–2330, 2002.

[6] K. Veroy, D. Rovas, and A. Patera, ‘‘A posteriori error estimation for
reduced-basis approximation of parametrized elliptic coercive partial dif-
ferential equations: ‘Convex inverse’ bound conditioners,’’ ESAIM: Con-
trol, Optim. Calculus Variat., vol. 8, pp. 1007–1028, Aug. 2002.

[7] A. Quarteroni and G. Rozza, ‘‘Numerical solution of parametrized Navier–
Stokes equations by reduced basis methods,’’ Numer. Methods Partial
Differ. Equ., vol. 23, no. 4, pp. 923–948, 2007.

[8] H. C. Elman and Q. Liao, ‘‘Reduced basis collocation methods for partial
differential equations with random coefficients,’’ SIAM/ASA J. Uncertainty
Quantification, vol. 1, no. 1, pp. 192–217, Jan. 2013.

[9] P. Chen, A. Quarteroni, andG. Rozza, ‘‘Comparison between reduced basis
and stochastic collocation methods for elliptic problems,’’ J. Sci. Comput.,
vol. 59, no. 1, pp. 187–216, Apr. 2014.

[10] Q. Liao and G. Lin, ‘‘Reduced basis ANOVA methods for partial differ-
ential equations with high-dimensional random inputs,’’ J. Comput. Phys.,
vol. 317, pp. 148–164, Jul. 2016.

[11] J. Jiang, Y. Chen, and A. Narayan, ‘‘A goal–oriented reduced basis
methods–accelerated generalized polynomial chaos algorithm,’’
SIAM/ASA J. Uncertainty Quantification, vol. 4, no. 1, pp. 1398–1420,
Jan. 2016.

[12] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[13] K. Hornik, ‘‘Approximation capabilities of multilayer feedforward net-
works,’’ Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[14] E. Weinan, ‘‘A proposal on machine learning via dynamical systems,’’
Commun. Math. Statist., vol. 5, no. 1, pp. 1–11, Mar. 2017.

[15] W. E and B. Yu, ‘‘The deep Ritz method: A deep learning–based numerical
algorithm for solving variational problems,’’ Commun. Math. Stat., vol. 6,
no. 1, pp. 1–12, Mar. 2018.

[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics informed
deep learning (Part I): Data-driven solutions of nonlinear partial
differential equations,’’ 2017, arXiv:1711.10561. [Online]. Available:
https://arxiv.org/abs/1711.10561

[17] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics informed
deep learning (Part II): Data-driven discovery of nonlinear partial
differential equations,’’ 2017, arXiv:1711.10566. [Online]. Available:
https://arxiv.org/abs/1711.10566

[18] M. Raissi, P. Perdikaris, and G. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[19] F. Song, G. Pange, C.Meneveau, andG.Karniadakis, ‘‘Fractional physical-
inform neural networks (fPINNs) for turbulent flows,’’ Bull. Amer. Phys.
Soc., to be published.

[20] Z. Long, Y. Lu, X. Ma, and B. Dong, ‘‘PDE-Net: Learning
PDEs from data,’’ 2017, arXiv:1710.09668. [Online]. Available:
https://arxiv.org/abs/1710.09668

[21] J. Sirignano and K. Spiliopoulos, ‘‘DGM: A deep learning algorithm
for solving partial differential equations,’’ J. Comput. Phys., vol. 375,
pp. 1339–1364, Dec. 2018.

VOLUME 8, 2020 5293

K. Li et al.: D3M for PDEs

[22] Y. Zhu and N. Zabaras, ‘‘Bayesian deep convolutional encoder–decoder
networks for surrogate modeling and uncertainty quantification,’’ J. Com-
put. Phys., vol. 366, pp. 415–447, Aug. 2018.

[23] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, ‘‘Physics-
constrained deep learning for high-dimensional surrogate modeling and
uncertainty quantification without labeled data,’’ J. Comput. Phys.,
vol. 394, pp. 56–81, Oct. 2019.

[24] K. Wu and D. Xiu, ‘‘Numerical aspects for approximating governing
equations using data,’’ J. Comput. Phys., vol. 384, pp. 200–221, May 2019.

[25] K. Wu, T. Qin, and D. Xiu, ‘‘Structure-preserving method for recon-
structing unknown Hamiltonian systems from trajectory data,’’ 2019,
arXiv:1905.10396. [Online]. Available: https://arxiv.org/abs/1905.10396

[26] S. Zhang and G. Lin, ‘‘Robust data-driven discovery of governing physical
laws with error bars,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 474,
no. 2217, 2018, Art. no. 20180305.

[27] H. A. Schwarz, Ueber Einen Grenzübergang Durch Alternirendes Ver-
fahren (Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich).
Zürich, Switzerland: Zürcher u. Furrer, 1870.

[28] S. L. Sobolev, ‘‘The Schwarz algorithm in the theory of elasticity,’’ Dokl.
Acad. Nauk USSR, vol. 2, pp. 235–238, 1936.

[29] S. G. Mikhlin, ‘‘On the Schwarz algorithm,’’ Dokl. Akad. Nauk SSSR,
vol. 77, no. 4, pp. 569–571, 1951.

[30] P.-L. Lions, ‘‘On the Schwarz alternatingmethod. I,’’ inProc. 1st Int. Symp.
Domain Decomposition Methods Partial Differ. Equ., vol. 1. Paris, France,
1988, p. 42.

[31] P.-L. Lions, ‘‘On the Schwarz alternating method. II,’’ in Proc. 2nd
Int. Symp. Domain Decomposition Methods Partial Differ. Equ., vol. 4.
Philadelphia, PA, USA: SIAM, 1989, pp. 47–70.

[32] H. Antil, M. Heinkenschloss, R. H. W. Hoppe, and D. C. Sorensen,
‘‘Domain decomposition and model reduction for the numerical solution
of PDE constrained optimization problems with localized optimization
variables,’’ Comput. Vis. Sci., vol. 13, no. 6, pp. 249–264, Aug. 2010.

[33] Z.-J. Liao, R. Chen, Z. Yan, and X.-C. Cai, ‘‘A parallel implicit domain
decomposition algorithm for the large eddy simulation of incompressible
turbulent flows on 3D unstructured meshes,’’ Int. J. Numer. Methods
Fluids, vol. 89, no. 9, pp. 343–361, Mar. 2019.

[34] F. Kong, V. Kheyfets, E. Finol, and X.-C. Cai, ‘‘An efficient parallel
simulation of unsteady blood flows in patient-specific pulmonary artery,’’
Int. J. Numer. Methods Biomed. Eng., vol. 34, no. 4, p. e2952, Apr. 2018.

[35] Q. Liao and K. Willcox, ‘‘A domain decomposition approach for uncer-
tainty analysis,’’ SIAM J. Sci. Comput., vol. 37, no. 1, pp. A103–A133,
Jan. 2015.

[36] Y. Chen, J. Jakeman, C. Gittelson, and D. Xiu, ‘‘Local polynomial chaos
expansion for linear differential equations with high dimensional random
inputs,’’ SIAM J. Sci. Comput., vol. 37, no. 1, pp. A79–A102, Jan. 2015.

[37] S. Li, X. Shao, and X.-C. Cai, ‘‘Multilevel space–time additive Schwarz
methods for parabolic equations,’’ SIAM J. Sci. Comput., vol. 40, no. 5,
pp. A3012–A3037, Jan. 2018.

[38] S. Zampini and X. Tu, ‘‘Multilevel balancing domain decomposition by
constraints deluxe algorithms with adaptive coarse spaces for flow in
porous media,’’ SIAM J. Sci. Comput., vol. 39, no. 4, pp. A1389–A1415,
Jan. 2017.

[39] D. Zhang, L. Yang, and G. E. Karniadakis, ‘‘Bi-directional coupling
between a PDE-domain and an adjacent Data-domain equipped with multi-
fidelity sensors,’’ J. Comput. Phys., vol. 374, pp. 121–134, Dec. 2018.

[40] D. N. Arnold, ‘‘Mixed finite element methods for elliptic prob-
lems,’’ Comput. Methods Appl. Mech. Eng., vol. 82, nos. 1–3,
pp. 281–300, 1990. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/004578259090168L

[41] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[42] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, 2013, vol. 30, no. 1, p. 3.

[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. (2017). Automatic Differentiation
in Pytorch. [Online]. Available: https://openreview.net/pdf?id=BJJsrmfCZ

[44] D. C. Liu and J. Nocedal, ‘‘On the limited memory BFGS method for
large scale optimization,’’Math. Program., vol. 45, nos. 1–3, pp. 503–528,
Aug. 1989.

[45] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[46] L. Kantorovich and V. Krylov, ‘‘Approximate methods of higher analysis,’’
Bull. Amer. Math. Soc., vol. 66, no. 3, pp. 146–147, 1960.

[47] M. Arnst, R. Ghanem, E. Phipps, and J. Red-Horse, ‘‘Dimension reduction
in stochastic modeling of coupled problems,’’ Int. J. Numer. Methods Eng.,
vol. 92, no. 11, pp. 940–968, Dec. 2012.

[48] L. W. T. Ng and K. E. Willcox, ‘‘Multifidelity approaches for optimiza-
tion under uncertainty,’’ Int. J. Numer. Meth. Eng., vol. 100, no. 10,
pp. 746–772, Dec. 2014.

[49] K. Li, K. Tang, J. Li, T. Wu, and Q. Liao, ‘‘A hierarchical neural
hybrid method for failure probability estimation,’’ IEEE Access, vol. 7,
pp. 112087–112096, 2019.

[50] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From
Data, vol. 4. New York, NY, USA: AMLBook, 2012.

[51] A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms
and Theory. Berlin, Germany: Springer-Verlag, 2006, vol. 34.

[52] T. Hagstrom, R. Tewarson, and A. Jazcilevich, ‘‘Numerical experiments on
a domain decomposition algorithm for nonlinear elliptic boundary value
problems,’’ Appl. Math. Lett., vol. 1, no. 3, pp. 299–302, 1988.

KE LI received the B.S. degree in information and
computational science from Chongqing Univer-
sity. He is currently pursuing the master’s degree
with the School of Information Science and Tech-
nology, ShanghaiTech University, the Shanghai
Institute of Microsystem and Information Tech-
nology, the Chinese Academy of Sciences, and
the University of Chinese Academy of Sciences.
His research interests include uncertainty quantifi-
cation, domain decomposition, and deep learning.

KEJUN TANG received the B.S. degree in com-
putational mathematics from Yantai University.
He is currently pursuing the Ph.D. degree with
the School of Information Science and Technol-
ogy, ShanghaiTech University, the Shanghai Insti-
tute of Microsystem and Information Technology,
the Chinese Academy of Sciences, and the Univer-
sity of Chinese Academy of Sciences. His research
interests include tensor methods, machine learn-
ing, and scientific computing.

TIANFAN WU received the B.S. degree in math-
ematics and statistics from Miami University,
Oxford. He is currently pursuing the master’s
degree with the Viterbi School of Engineering,
University of Southern California. His research
interests include data science and computational
statistics.

QIFENG LIAO received the Ph.D. degree in
applied numerical computing from the School
of Mathematics, The University of Manch-
ester, in December 2010. From January 2011 to
June 2012, he held a postdoctoral position with
the Department of Computer Science, University
of Maryland, College Park. From July 2012 to
February 2015, he held a postdoctoral position
with the Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology. He is

currently an Assistant Professor with the School of Information Science
and Technology, ShanghaiTech University. His work was supported by
the National Natural Science of China and Shanghai Young East Scholar.
His research interest includes efficient numerical methods for PDEs with
high-dimensional random inputs.

5294 VOLUME 8, 2020

