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ABSTRACT Recent breakthroughs in computer vision areas, ranging from detection, segmentation, to clas-
sification, rely on the availability of large-scale representative training datasets. Yet, robotic vision poses new
challenges towards applying visual algorithms developed from these datasets because the latter implicitly
assume a fixed set of categories and time-invariant distribution of tasks. In practice, assistive robots should
be able to operate in dynamic environments with everyday changes. The variations of four commonly
observed factors, including illumination, occlusion, camera-object distance/angles and clutter, could make
lifelong/continual learning in computer vision more challenging. Large-scale datasets previously made
publicly available were relatively simple, and rarely include such real-world challenges in data collection.
Benefited from the recent released OpenLORIS-Object dataset, which explicitly includes these real-world
challenges in the lifelong object recognition task, we evaluate three most adopted regularization methods
in lifelong/continual learning (Learning without Forgetting, Elastic Weights Consolidation, and Synaptic
Intelligence). Their performances were compared with the naive and cumulative training modes as the lower
bound and upper bound of performances, respectively. The experiments conducted on the dataset focused on
task incremental learning, i.e., incremental difficulty based on the four environment of factors. However, all
the three most reported lifelong/continual learning algorithms have failed with the increase in encountered
batches across various metrics with indistinguishable performance comparing to the naive training mode.
Our results highlight the current challenges in lifelong object recognition for assistive robots to operate in
real-world dynamic scene.

INDEX TERMS Machine intelligence, robotic vision systems.

I. INTRODUCTION
Humans are capable of accumulating new knowledge with-
out retaining complete learned information. This process is
known as lifelong/continual learning. Yet, it is challenging for
robots to retain earlier knowledge when they encounter new
tasks or information. The ability of lifelong/continual learn-
ing is, however, essential in particular to assistive robotics for
elderlies or patients with disabilities [1], [2]. The quality of
control input of assistive robotics is dependent on the subject
condition and can vary across time and environment [3], [4].
Here, for facing with the varying environments and condi-
tions, lifelong/continual robotics vision will help to operate
with such nonstationary human control inputs.
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Latest advances in computer vision performance were
initially driven by the availability of large-scale datasets,
such as ImageNet and COCO, for training and the more
powerful computational hardware [5], [6]. However, robotic
vision poses new challenges for applying visual algorithms
developed from these computer vision datasets because they
implicitly assume a fixed set of categories and time-invariant
task distributions. Semantic concepts change dynamically
over time. Thus, sizeable robotic vision datasets collected
from real-time changing environments for accelerating the
research and evaluation of robotic vision algorithms are
crucial.

In real-world scenarios, assistive robotics has to be
able to operate under an open environment with uncer-
tainties continuously. Some commonly observed factors,
such as illumination, occlusion, the angle/distance between
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the camera and objects (leading to different pixel sizes of
objects in the images), and clutter, could already make life-
long/continual learning in computer vision more challenging.
The lifelong/continual learning capability of assistive robotic
systems to provide reliable estimates in environments with
such uncertainties requires robust algorithm design. Object
recognition plays a vital role in assistive robotics applica-
tions since visual recognition functions are crucial for assis-
tive robots to make decisions and plan their actions, such
as visual-based robotic grasping and manipulation. Thus in
this context, the lifelong object recognition is a fundamental
problem.

Lifelong object recognition problems were previously
defined as: 1) instance-incremental; 2) class-incremental;
and/or 3) attribute-incremental [7]. It is essential to test the
ability of the algorithm to learn continuously without forget-
ting the previously learned patterns in terms of the instance,
class, and/or attribute. The challenge is to explore how to uti-
lize the knowledge gained from previous tasks that can help
to better learn new tasks and how to effectively remember
tasks that have been learned before. In other words, ideal
assistive robots shall behave like humans with the ability to
transfer, associate, and combine the knowledge. Thus far,
Learning without Forgetting (LwF), Elastic Weights Con-
solidation (EWC), and Synaptic Intelligence (SI) are three
widely-studied lifelong/continual learning methods applied
to class and instance incremental learning1 [10]–[12]. Their
performance to variations in environmental factors, yet,
remain unknown. Therefore, in this work, we look into the
performance of these state-of-the-art methods on record-
ings with different illumination, occlusion, the angle/distance
between the camera and objects (finally lead to different pixel
size in the image) and clutter to shed light on their limitations
in practice.

II. METHODS
A. TASK INCREMENTAL SCENARIOS
FOR ASSISTIVE ROBOTS
The setting of task incremental learning is crucial to the sta-
bility and plasticity of task incremental learning for assistive
robots. Here, we have defined task incremental as incremental
on the difficulty for robots to recognize the object based on
four common factors, which describe different environments
the robots encounteredwith. The factors include illumination,
occlusion, the angle/distance between the camera and objects,
and clutter. Here, we listed three difficulty levels for each
environmental factor, as shown in Table 1.

This categorization includes these three difficulty degree
data and guaranteed the other three factors fixed on diffi-
culty degree 1 when one factor’s difficulty varied. We have
studied the performance for different difficulty degrees when
one of all factors was changed respectively. The data was

1There are some other Lifelong/Continual Learning algorithms, such as
Deep Generative Replay [8] and Variational Continual Learning [9], and we
pick these three representative methods in the paper because they are mature
and their original results are relatively easy to be reproduced.

TABLE 1. Task difficulty degrees of four environment factors.

collected in real scenes, similar to those in real-world assistive
robot operation when the robots had to perform robustly
in a dynamic environment. The details of our data collec-
tion, annotation, and experimental design were described
in [13], [14]. The dataset collected home and office objects
in dynamic environments such as office room, living room,
and kitchen. The sensor collected different videos of objects
under multiple factors, including illuminations, occlusions,
camera-object distances/angles (pixel sizes), and context
information (clutters). For each individual factor, the dataset
contains three different difficulty levels. The overview of the
dataset is shown as Figure 1, with 6 objects randomly selected
and factors’ level variations.

FIGURE 1. OpenLORIS-Object Dataset [13] Overview: showing four
challenges (illumination, occlusion, object pixel size, and clutter) with
three-level variants, picked samples of 6 objects (cup, glass, ladle, stapler,
toy and pencil) being presented.

B. LIFELONG/CONTINUAL LEARNING METHODS
Most recent computer vision methods have been established
on deep neural networks, which have a fundamental issue
called catastrophic forgetting that has not been addressed
yet [15]. It can lead to the decreasing performance for learn-
ing systems when new knowledge interferes with previously
trained knowledge [16], [17]. Many strategies have been
proposed in recent years in order to overcome catastrophic
forgetting in the field of lifelong learning [18]–[20]. However,
due to the experimental setting in previous research, very few
implemented their state-of-the-art methods on task incremen-
tal learning protocols [7]. Here, we have implemented Elastic
Weights Consolidation (EWC), Synaptic Intelligence (SI),
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and Learningwithout Forgetting (LwF) on our task incremen-
tal learning dataset [10]–[12].

1) ELASTIC WEIGHTS CONSOLIDATION
AND SYNAPTIC INTELLIGENCE
Elastic Weights Consolidation (EWC) and Synaptic Intelli-
gence (SI) have proposed quantitative ways to estimate the
importance of each parameter to the final target function of
lifelong learning tasks by measuring the output of previous
tasks. In other words, both methods utilize a representation
and computation to compute the importance of parameters’
importance level. Such importance level measurement is cal-
culated by some regularization representation. Thus, when
a new task is trained, the network regularizes the backbone
network’s parameters by giving penalties for changes in
some parameters. For those parameters which illustrated high
importance level for previous tasks will be protected from
changing significantly. Both of these two methods implement
this intuitive idea by defining surrogate loss function with
penalties. The loss functions of these two methods are given
by Equation 1.The differences of them are how they regular-
ize the network parameters. Besides using current tasks’ loss
to learn current information, EWC uses the fisher information
to calculate the sensitiveness of each parameter for the likeli-
hood function. SI reflects past credit for improvements of the
current task objective to individual parameter with surrogated
loss.

L̃EWC/SI = Lnew︸︷︷︸
current tasks’ loss

+ λEWC/SI

l∑
i=1

�(θ (i)n − θ
(i)
o )2︸ ︷︷ ︸

surrogate loss

(1)

where L̃, Lnew denotes the whole loss function and current
task’s loss respectively. Note that the loss function consists of
two components: current loss Lnew and surrogate loss. In the
surrogate loss, λEWC/SI denotes strength parameter in EWC
and SImethods (λEWC in EWCmethod and λSI in SImethod),
which can be seen as hyper-parameters to control the degree
of remembering previous knowledge. � here is to calculate
the representation in previous tasks’ parameters. In EWC,
� was estimated by Fisher Information Matrix while in SI it
was replaced by the curvature near extreme points [10], [11].
θ
(i)
n and θ (i)o are ith learnt weights from current and previous
tasks respectively [10], [11].

In our task incremental scenarios, we have implemented
EWC and SI methods across different difficulty tasks.
Although the difficulties keep varying during the learning
process, some previously trained patterns are generally kept
fixed and shared across multiple tasks, which means a more
generalized and robust model can be learned during the life-
long learning process.

2) LEARNING WITHOUT FORGETTING
Learning without Forgetting (LwF) is also one of the state-
of-the-art lifelong/continual learning methods to learn new
knowledge and retain previously learned knowledge at the

same time. LwF can be seen as a knowledge distillation
method which only requires to access new tasks’ data in life-
long/continual learning context. The distillation is modeled
by using loss function to give constraints or penalties for
new tasks’ training. In Convolutional Neural Network (CNN)
models, θs and θo denote the parameters of convolutional
layers and fully connected layers in previous tasks respec-
tively and θn denotes new parameters in the current task. The
conventional solutions for addressing catastrophic forgetting
in such CNN models are: Solution 1: keep θs and θo fixed
and exploit the output of some layers in the network to
train θn; Solution 2: optimize on θs, while keeping θo fixed
and learning θn; Solution 3: joint training optimize θs, θo and
θn at the same time. While Solution 1 and Solution 2 cannot
always achieve high performance and Solution 3 will cost
large computational burden [12].

LwF acts like a trade-off between Solution 2 and Solu-
tion 3. The pipeline of LwF contains two steps:
• Warm-up step: Renew θn with keeping θs and θo fixed
by using new tasks’ data.

• Joint-training step: Train on θn, θs and θo at the same
time till the model converges with the distillation loss
function.

Similar to EWC and SI, θn and θo can be seen as current
task’s and old tasks’ leanrt parameters. Here the distillation
loss function has two components: Lnew for learning current
tasks’ knowledge and Lold for retaining old knowledge. The
whole loss function can be formulized as Equation 2.

L̃LwF =λLwF (−
l−1∑
i=1

y(i)o · log ŷ
(i)
o︸ ︷︷ ︸

old tasks’ loss Lold

)−yn · log ŷn +R(θn, θo, θs)︸ ︷︷ ︸
current tasks’ loss Lnew

(2)

where, l denotes the number of encountered tasks; yo and
ŷn are ground truth and output of current task; y(i)o and ŷ(i)o
represent the output of ith old task computed by current
task’s model and ground truth of old tasks; R(θn, θo, θs) and
λLwF are regular term and hyper-parameter for new-old task
trade-off tuning.

In our task/difficulty incremental learning setting, we have
implemented LwF to retain the old knowledge learnt from
previous encountering segment data with different environ-
mental difficulty levels or background distribution variants.

III. EXPERIMENT
To explore the stability and plasticity of task incremental
learning for robotic vision and to compare performances
across different lifelong learning methods, we have defined
multiple difficulty experimental settings and implemented
three methods (EWC, SI, and LwF) on different protocols.

A. EXPERIMENTAL SETTINGS
As is shown in Table 1, we have defined three difficulties
for each environmental factor. Motivated by the human brain

3436 VOLUME 8, 2020



F. Feng et al.: Challenges in Task Incremental Learning for Assistive Robotics

learning process and real-world assistive robotics applica-
tions, a data pre-processing had been executed with two
steps:

• Segmentation: 3 difficulty degrees have been divided
into 9 segments each factor, with the equal number of
images per segment since in one level’s training data,
the poses vary a lot in the taken video. In this case, for
each factor, segment 1-3, 4-6, 7-9 belonged to level 1, 2,
3 respectively. We have given a brief explanation of the
experiment such as ‘‘illumination’’: the 3-level factor of
the dataset is further split into 3 segments for each based
on the different views of each object. Thus, we have 9
batches of data (3-level factor, 3 segments for each level)
in total and indexed as segment 1-9.

• Shuffling: A shuffle operation has been done in
these nine segments. Since in real-world applications,
the robots often encounter with dynamic environments
with shuffled difficulty levels instead of increasing or
decreasing the difficulty levels of the environment all the
time.

We have conducted separated experiments on four factors,
and the experiment for each factor was carried out in the same
way (same backbone model, train/test split, hyper-parameters
selection). The experiment setting diagram is provided in
Figure 2.

FIGURE 2. Experiment pipeline overview: 4 separated experiments with
shuffled segments difficulty incremental data based on 4 factors:
illumination, occlusion, pixel size and clutter. For each factor, we have
9 batches/segments of data (3-level factor, 3 segments for each level) and
indexed as segment 1-9. For each segment train/test process, we trained
on current segment and tested the model on all 9 segments’ testing data.

For each training tasks, we have tested on all segment
testing data. That means each time we only trained/fine-tuned
the one specific segment data and tested on all three levels.
In this context, the difficulty of this task is mostly caused
by the concept/distribution drift between tasks under different
levels’ testing data.

In the new dataset [13], the original data has been split into
four factors. Here we have picked the part of the released
dataset: each factor includes 9 segments, each of them with
3100 training samples, 700 testing samples, and 34 classes.
The backbone deep neural network model for feature extrac-
tion we used is MobileNetV2 [21]. We set 50 epochs and set
batch size (the size of mini-batch during training processes)
as 64 for each training task. For each task, we set 50 epochs to
fine-tune the model. We take 5-fold cross-validation method
to select hyper-parameters of the models for each indepen-
dent factor’s experiment (including learning rate, λ in Equa-
tion 1 and Equation 2, etc). We have conducted 5 times
cross-validation each segment training. In ‘‘illumination’’
experiment, we chose learning rate = 0.1 for all methods,
λEWC = 1.75 for EWC, λSI = 2.5 for SI and λLwF = 1.5 for
LwF. The deep learning platform we used was PyTorch, and
the GPU hardware are 4 pieces of NVIDIA 1080Ti.

For comparison, we also provide two training schemes
without any lifelong learning techniques.

• Naive training: We train our model on the first task
(such as recognizing objects under the environment with
normal illumination, 25% occlusion, low clutter, and
lager than 200×200 pixels of objects) and fine-tuned the
model on the second task (recognizing objects under the
environment with normal illumination, 50% occlusion,
low clutter, and lager than 200× 200 pixels of objects),
the same for the next tasks via changing one of the
environment factors. This scheme can be seen as transfer
learning.

• Cumulative training: We train on the first task, and for
the second task, we fine-tune our model using both
first and second task’s training data. This scheme can
be seen as multi-task learning, which utilizes all the
encountered data to train the current model. We note
that both naive training and three lifelong learning algo-
rithms in this paper do not need to have access to the
previously learned data when learning the current task.
While cumulative training needs all the task data.

B. EVALUATION METRICS
To compare the performance over time for lifelong learning
metrics inspired by previous research, we evaluated the strate-
gies on 4 metrics, including accuracy, backward transfer,
forward transfer, and overall accuracy. Matrix A ∈ AN×N

represents train-test accuracy matrix. There are N tasks in
total, and the current task index was n. Ai,j, an entry of A,
denotes the accuracy on task j’s test set when trained on
task i’s training set. The matrix is shown below, meaning
each accuracy Ai,j in one Lifelong Learning (LL) process
with N training and testing sets (denoted as i and j in our
setting) respectively. Thus, accuracy is the average value of
elements on and below diagonal ofAi,j, backward transfer and
forward transfer equals the average value of elements below,
and above the diagonal of Ai,j respectively. Overall accuracy
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is the average value of all elements in Ai,j [22].

LL Test1 Test2 Test3 . . . TestN
Train1 A1,1 A1,2 A1,3 . . . A1,N
Train2 A2,1 A2,2 A2,3 . . . A2,N
Train3 A3,1 A3,2 A3,3 . . . A3,N
. . . . . . . . . . . . . . . . . .

TrainN AN ,1 AN ,2 AN ,3 . . . AN ,N

1) ACCURACY
Accuracy measures strategies’ performances on both current
and previous tasks and can be calculated by average test
precision on all tasks encountered (Equation 3).

Accuracy =

∑N
i≥j Ai,j

N (N+1)
2

(3)

2) BACKWARD TRANSFER
Backward Transfer (BWT) represents the performance on
previous tasks, which could be considered as the representa-
tion of overcoming forgetting ability for each lifelong learn-
ing method. We evaluate BWT by average test accuracy on
each previous task (Equation 4).

BWT =

∑N
i>j Ai,j

N (N−1)
2

(4)

3) FORWARD TRANSFER
Forward Transfer (FWT) considers the performance on future
tasks, which is common to be seen in real-world assistive
robot cases. Our learning model inside the robots cannot be
trained on each possibility of dynamic environments. When
dealing with a new environment at a new difficulty level,
how robot learning models behave mattered. We have eval-
uated FWT by average test accuracy on each future task
(Equation 5).

FWT =

∑N
i<j Ai,j

N (N−1)
2

(5)

4) OVERALL ACCURACY
Overall Accuracy considers the performance of the learning
system over time and computed by test accuracy on all tasks
(Equation 6).

Overall− Accuracy =

∑N
i,j Ai,j
N 2 (6)

IV. RESULTS
We have evaluated four metrics, including accuracy, back-
ward transfer, forward transfer, and overall accuracy,
on EWC, SI and LwF strategies together with naive and
cumulative training modes in different difficulty levels based
on four factors: illumination, occlusion, the angle/distance
between the camera and objects and clutter.

The results have been shown in Figure 3.
Four metrics for each factor were provided, and the x/y axis

represented the number of encountered tasks and the values of

metrics respectively. Each row indicates one separated exper-
iment based on one factor (illumination, occlusion, pixel size,
and clutter). For every sub-figure in Figure 3, each metric has
been computed several times (8 times for BWT and FWT,
9 times for Accuracy and Overall Accuracy). For example,
in the ‘‘illumination’’ experiment, we have computed four
metrics (Accuracy, Backward Transfer, Forward Transfer,
and Overall Accuracy) each time when we encounter a new
task.

For all experiments, we have run ten times and recorded the
mean value (see points in each result) and standard deviation
(see error bar in each result). Note that for Backward Transfer,
no recording on task 1 has been provided since there existed
no Backward Transfer results at the moment of task 1, similar
reason for no task 9’s Forward Transfer provided.

From the results, these three most reported regulariza-
tion strategies have failed with the increase in encoun-
tered batches across all four metrics with indistinguish-
able performance comparing to the naive training mode.
More specifically, several phenomena can be found, and
both intuitive and theoretical explanations can support those
phenomena.
• In our experiment, we have trained certain condition
such as ‘‘Normal’’ and tested over all previous tasks
at each time. For each task, we only trained/fine-tuned
dataset sampled from one specific level and tested on all
three levels per factor. In this context, the difficulty is
mostly caused by the concept/distribution shift between
tasks under different levels’ testing data. The testing is
progressively more diverse.
All methods held high accuracy in task 1 (can be seen in
the first column of Figure 3) but then decreased sharply
in task 2. This is because, for task 1, both training
and testing data has been all sampled from the same
distribution so the learning system can obtain relatively
good performance, but for testing after task 2’s training,
they forget some information learned in task 1’s learning
process. Thus, the accuracy drops a lot. For each task,
these methods only performed well on its current task’s
testing set while failed on other level tasks. The cur-
rent task’s accuracy has been pretty high (almost 88%-
95%), and other tasks tended to be low (15%-30%).
While our experimental metrics focused on both current
tasks and other tasks, so the accuracy appeared to be
similar.

• In some cases, (for example, Task 7’s Backward Trans-
fer, and Task 4’s Accuracy in the experiment based on
illumination), naive training scheme may not show the
worst performance. These three regularization methods
sometimes cannot address the concept/distribution drift
problem. The main reasons these methods fail to retain
old information and obtain new knowledge are that
1) In this difficulty incremental learning scenario, heir
regularized term cannot represent the valuable param-
eters’ information from previous tasks. 2) The concept/
distribution drift problem in OpenLORIS-Object dataset
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FIGURE 3. Each row indicates one separated experiment based on one factor (illumination, clutter, pixel size or occlusion). Four metrics (columns) are
used for evaluating the 5 methods. For each sub-figure, it correspond to one metric for one factor, and the curves indicate 5 methods, respectively. The
x-axis is the number of encountered tasks, and the y-axis is the metric (all of four metrics have maximum value ‘‘100%′′) evaluated after learning current
task. Best view in color.

is more substantial than other benchmark datasets,
while the distribution gap between previous and current
tasks is large. When the algorithms optimize the loss
function with the regularized term, the learnt informa-
tion may cause interference on current tasks’ learning.

This may cause their precision on the current task even
lower than naive training scheme.

• In most results, the naive training scheme and cumula-
tive training scheme can be seen as the lower bound and
upper bound respectively.
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• For all conditions, the curve showed a similar trend since
the data distribution changed a lot during sequential
task learning, so the visual systems developed cannot
perform well for all the tasks consistently. Furthermore,
for the instance or class incremental learning process
reported in previous work [10], [12], [23], they are easier
to improve the recognition capability under the lifelong
or continual learning scheme. However, the task diffi-
culty change (task incremental) should be more chal-
lenging with relatively sharper domain/concept drifts,
which pose novel problems for exiting lifelong learning
algorithms.

• The three regularization based learning algorithms fail
because (1) they only deal with smoother concept drift
such as permutation MNIST dataset compared with
OpenLORIS-Object dataset; (2) these three methods
are far from being applied to object recognition tasks
under ever-changing difficulty, the potential improve-
ment for them is to design the algorithms that more
tightly coupled with the classifiers (current they are
loosely coupled, meaning the lifelong learning algo-
rithms are independent with the object recognition tech-
niques). From these experiments, we have found hav-
ing achieved high performances over naive benchmarks
(such as the three learning methods did) sometimes
avoid further development of real applicable methods,
because the researchers focus on too much about the
naive benchmark themselves without considering the
real challenges.We do believe the challenges themselves
should be specifically modeled (e.g. with latent variable
models for intrinsic unknown challenges) in order to
thoroughly address the problems.

V. CONCLUSION
This work introduces lifelong/continual object recogni-
tion methods for long-term robot deployment based on a
novel robotic vision dataset. The dataset captures com-
monly observed variations in illumination, occlusion,
the angle/distance between cameras and objects, and clutter
of recordings in real-world. Using the new dataset and bench-
marks, we find the most widely-used methods (EWC, SI,
and LwF) are quite limited with performance similar to naive
training mode across all metrics. Our results have shown that
the development of novel algorithm to tackle these practical
factors is urgent and necessary. The dataset made available
will serve the testbed for the real-world deployment of future
methods for mobile assistive robots.
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