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ABSTRACT Validation of power system simulation models is essentially a similarity analysis problem
based on multivariate time series. With the development of the internet of things (IoT) technology in the
power system, the interoperability and integration of devices in the practical project are improved, and
the cross interaction in the simulation process becomes more complex correspondingly. It is critical to
explore the inherent correlation from the high dimensional data to evaluate the credibility and to locate the
error of the simulation model. Thus, a model validation method based on factor analysis and the Prony
method is proposed in this paper. Firstly, the multivariate time series of the simulation model and the
practical/acknowledged system are replaced by a low number of common factors with physical meanings
by factor analysis. Secondly, the modified adaptive Prony method is applied to extract the features of each
common factor to ensure the best fitting of the non-stationary signal. Then the complete similarity evaluation
model of the simulation system is established based on energy proportion, information entropy, and variance
of the contribution rate. Finally, the error location is identified in the evaluation process based on the physical
meaning of extracted features. The feasibility and effectiveness of the proposed method are verified by an
application in the simulation model of a power electronics system developed in PSASP.

INDEX TERMS Validation of simulation model, power system, Internet of Things, similarity evaluation,
high dimensional time series.

I. INTRODUCTION
The current energy network is being reconstructed with
more renewable energy sources like wind power and solar
power [1]. The power system is being more compli-
cated with more and more power electronics, which is
combined with the development of renewable energy [2].
Compared with the conventional power system, the features
of the power system with high proportion electronic devices
changes with the behaviors of power electronic switches and
their non-stationary characteristics [3]. Internet of things is
identified as one of the technologies to solve the stability
and power flow reversal issues created by power electron-
ics [4], and the modern and intelligent power system will
not be possible without the IoT technology [4]-[6]. The
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interoperability and integration of devices in the practical
system are enhanced [5], and the cross interaction in the
simulation process becomes more sophisticated correspond-
ingly, which introduces challenges to the validation of the
simulation model.

Validation of simulation models is an important process
before performing simulation work, which ensures that the
model or modeling technique behaves in a way that we would
expect. The validation of the simulation model includes
model verification and model error location. Model verifi-
cation plays a pivotal role in order to estimate whether the
model is credible or not. Locating the errors in the model
is important for those models with unsatisfactory evaluation
results. One of the most basic methods of simulation model
validation is to evaluate the similarity between the output of
the simulation model and practical/ acknowledged results [7].
The similarity evaluation extracts the similarity elements of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 1185

https://orcid.org/0000-0002-0889-7612
https://orcid.org/0000-0002-7732-7947
https://orcid.org/0000-0003-0009-5604
https://orcid.org/0000-0002-7007-5679
https://orcid.org/0000-0003-2145-6683
https://orcid.org/0000-0003-4782-6777


H. Chen et al.: Validation Method for Simulation Model of IoT-Aided Power System

comparing systems and gives the weights of each element,
and the results could in some sense describe the degree of
model authenticity.

The Feature Selective Validation (FSV) method is recom-
mended by the IEEE Standard 1597.1/2 as an automated
validation method for computational electromagnetics mod-
eling and simulations [8]. One of the attractive advantages
of FSV is the use of natural language descriptors to bridge
the gap between expert opinion and the quantitative indi-
cators [8]–[9]. However, the FSV method has its limita-
tions: 1) Based on discrete Fourier transformation (DFT),
the FSV method is only suitable for stationary signals;
2) the FSV method is only applicable to the estimation of
one-dimensional data.

Compared with DFT, the Prony method has advantages in
processing the non-stability signal in power system with high
proportion electronic devices, due to its excellent capacity
of exactly describing transient signal and directly acquir-
ing the frequency, amplitude, and phase and decay factor
of signals [10]–[12]. Thus, some researchers have proposed
validation methods based on the Prony method to evaluate
model credibility. The frequency, damping and amplitude
credibility indexes are employed in [13] to represent the
feature error of transient signals. But this method is unable
to process the fault signals containing components with dis-
continuous or abrupt changes. An EMMD-Prony approach
for dynamic validation is proposed in [14], which processes
signals into stationary components by extremum field mean
mode decomposition (EMMD) and then applies the Prony
method to feature identification. However, the effect of the
mode mixing problem of EMMD on the evaluation results is
not considered.

Most of the existing methods of model validation are based
on similarity assessment of one-dimensional time series.
In theory, however, the similarity assessment of simulation
results is said to be accurate if and only if all elements of all
output variables are processed. Therefore, model validation is
actually a problem of similarity analysis based on multivari-
ate time series. Some methods to calculate the credibility of
the simulation model were carried out by considering a finite
set of partial variables. FSV method is extended in [15], [16]
for comparison of data with multiple degrees of freedom.
However, the data dimension is still very low and the corre-
lation between variables was ignored. The analytic hierarchy
process (AHP) was combined in [17] to assess the credibility
of multivariate simulation results, but the assessment model
is subjective and the evaluation results cannot be used for
error location of simulation. According to the cross-iteration
process, a factor space is built in [18] to perform the validation
of the simulation model, but it can only be implemented when
the internal structure of the model is fully understood. Never-
theless, with the application of IoT technology, the integration
of the power system in monitoring, controlling, protection
and operation has been strengthened. It is unrealistic to trans-
fer a power system into a white-box model for verification.
At the same time, considering the tremendous amount of data

from the perception layer of the IoT construction, it is critical
to explore the internal correlation from high-dimensional
data, so that the data after dimensionality reduction can be
used to verify the simulation results, and more information of
model error location can be obtained to improve the accuracy
of the model.

In this paper, a validation method of power system simu-
lation model is proposed through evaluating the similarity of
multiple simulation results, in response to the development
trend of the power system with the IoT. Firstly, the factor
analysis is used to reduce the dimensions of the multiple
output results and the Prony method is used to identify the
features of signals. In order to validate the power system
dynamic simulation, including fault simulation, the modified
adaptive Prony method proposed in [12] is adopted. Then a
similarity evaluation model of multiple simulation results is
established in which weights of each element are objectively
obtained based on factor analysis and Prony analysis results.
Finally, the error and its location in the simulation model
based on the Factor analysis results and the physical meaning
of these features are identified if the evaluation results are
unsatisfactory.

II. FEATURE EXTRACTION METHOD FOR MULTIVARIATE
TIME SERIES
This section proposes a feature extraction method for high
dimensional time series. The common factors with low
dimensions of the high dimensional time series are estimated
by factor analysis and the features of each factor are extracted
by using the modified adaptive Prony method.

A. FACTOR ANALYSIS
Factor analysis is a statistical method used to describe
variability among observed and correlated variables. The
basic idea of factor analysis is to find out a potentially
lower number of unobserved factors to describe all or
most of the observed variables by studying the internal
structure of the correlation coefficient matrix or covariance
matrix of variables. Let’s assume a normalized time series
X = [X1, X2, . . . ,Xv]T of dimensional v, where the length
of each time series is N . The factor analysis model for X is
defined as follows:

X = AF+ ε (1)

where F = [F1, F2, . . ., Fr ]T is the common factor and
A = (aji)v×r is the factor loading matrix. The aji is the factor
loading between the observed variable Xj and the common
factor Fi. The ε = [ε1, ε2, . . ., εv]T is the stochastic error
with zero mean and finite variance.

The common factor F can be estimated as the following
steps:

1) Calculate A∗ = (a∗ji)v×v as (2) based on the method of
principal component analysis [19].

A∗ = diag(
√
λ1,

√
λ2, . . . ,

√
λv) [u1,u2, . . . ,uv]T (2)
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where λ1, λ2, . . ., λv and u1, u2, . . . ,uv are the eigenvalues
and the corresponding eigenvectors of the normalized corre-
lation coefficient matrix R.
2) Determine the number of common factors based on the

variance contribution rate g2i which reflects the influence of
common factor Fi on observed variables and can be calculated
as (3).

g2i =
v∑
j=1

(
a∗ji
)2

i = 1, 2, · · · , r (3)

Common factors are sorted in descending order by contri-
bution rate g2i . When the cumulative contribution rate of

the top r common factors
r∑
i=1

g2i /
v∑
i=1

g2i is greater than 85%,

it is approximated that these specific r common factors can
explain the original data.

3) Factor loading matrix A can be obtained through the
orthogonal rotational transformation shown as (4), which is
required to ensure the variance of the squared loadings of a
factor (column) on all the variables (rows) inA is maximized,
so that each variable has a larger load on only a few common
factors and a smaller load on the other common factors. In this
way, explain the physical meaning of common factors can
better.

A = A∗T (4)

4) The factor weight coefficient matrixW is defined as (5),
which reflects the importance of observed variables to com-
mon factors.

W = ATR−1 (5)

5) Common factors can be estimated by (6).

F =WX (6)

B. FEATURE EXTRACTION BASED ON PRONY METHOD
In the Prony method, a time series [x(1), x(2), · · · ,
x(n), . . . , x(N )] is decomposed into a linear combination of
exponential functions as (7),

x̂(n) =
p
6
k=1

bkznk

=
p
6
k=1

Akejθk e(ζk+j2π fk )(n−1)1t (n = 1, 2,L · · · ,N ) (7)

where Ak , fk , ζk , and θk are amplitude, frequency, damping
and phase angle of k th exponential function, respectively. The
1t is the sampling period and p is the order of the Prony
model.

The Prony method is unsuitable for processing the fault
signals containing components with discontinuous or abrupt
changes. One solution is to apply the Prony method to a
number of short contiguous time windows inside the signal.
The modified adaptive Prony method was discussed in [12]
based on an adaptive technique that acts with the aim of
minimizing the mean square relative fitting error of signal

estimation. The steps of the modified adaptive Prony method
are:
1) Select an initial short time window length Lmin and

initial step size 1L for increments in Lmin.
2) Apply the Prony method to samples in the short

time window i.e. [x(ns), x(ns+1), · · · , x(ne)] in order
to obtain the model parameters (amplitude, damping,
frequency, and phase of Prony exponentials), where ns
and ne are the start and end numbers of signals in each
time window, respectively.

3) Calculate the mean square relative fitting error
(MSRFE) ef with (8) by using the exponentials obtained
in step 2.

ef =
1
nnz

ne∑
n=ns,x(n)6=0

[
x(n)− x̂(n)

]2
x(n)2

(8)

where nnz is the number of x(n) which is not equal to
zero in the short time window.

4) Compare ef with the threshold Ethr and:
a) If ef ≤ Ethr, set 1L equal to the maximum step size
1Lmax and increase the short time window length,
and then jump to step 2.

b) If ef > Ethr, set 1L = INT(1L/2) and decrease the
short time window length, and then jump to step 5.

5) Repeat step 2 and 3, and then compare ef with the
threshold Ethr and:
a) If ef ≤ Ethr, set 1L = INT(1L/2) and increase the

short time window length, repeat step 5 until 1L =
0, and then jump to step 6.

b) If ef > Ethr, set 1L = INT(1L/2) and decrease the
short time window length and repeat step 5.

6) Compare ne with the length N and:
a) If ne < N , store the Prony model exponential

parameters and jump to step 2 to analyze the next
contiguous short window.

b) If ne ≥ N , store the Prony model exponential param-
eters and jump to stop.

In addition, the order of the Prony model of each time
window is determined by (9) to assure the best curve fitting.

ptw = INT
(
ne − ns + 1

2

)
− 1 (9)

where INT() is Integral Function.
Each time window can be extracted a ptw-dimension fea-

ture matrix by the modified adaptive Prony method. The ptw,
nevertheless, is relatively large to ensure the accuracy of
the Prony model. Thus the energy proportion is taken as a
criterion to reduce the dimension of the feature matrix. The
exponential components are sorted in descending order and
the components having an energy proportion less than 0.1%
are ignored. The energy proportion is defined as,

ηk = Enk

/ ptw∑
k=1

Enk (10)
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where the subscript k denotes the k th exponential component.
The Enk is the energy of an exponential component, which
can be calculated as,

Enk =
N−1
6
n=0

(
Akejθk e(ζk+j2π fk )n1t

)2
(11)

Finally, an l×4 feature matrix FM is obtained from each
time window, as (12).

FM =

A1 f1 ζ1 θ1
...

...
...

...

Al fl ζl θl

 (12)

III. SIMULATION VALIDATION AND ERROR LOCATION
A. DEFINITION OF SYSTEM SIMILARITY
The system similarity is an overall reflection of the similarity
between each similarity element of two systems. Suppose the
system A consists of ne_A elements and the system B consists
of ne_B elements; the nse elements are similar between A and
B system, hence, called similarity elements. The similarity
of each similarity element is recorded as s(eh_A, eh_B), and
the weight of each similar element is denoted by wh. The
similarity between A and B system can be defined as:

S (A,B) =
nse

ne_A + ne_B − nse

nse∑
h=1

wh · s(eh_A, eh_B) (13)

where S ∈ [0, 1], the S =1 means that the two systems are
exactly similar and the S =0 means that the two systems
do not have anything similar. In between, the systems have
higher similarity as the S approaches to 1. The similarity of
each similarity element is defined by (14).

s(eh_A, eh_B) = 1−

∣∣eh_A − eh_B∣∣∣∣eh_A + eh_B∣∣ (14)

B. SIMILARITY ELEMENTS EXTRACTION
Let’s suppose XS =

[
X1_S,X2_S, · · · ,Xv_S

]T is the normal-
ized multivariate time series of the practical/acknowledged
system and XM =

[
X1_M ,X2_M , · · · ,Xv_M

]T is that of the
simulation model.

In order to compare the two multivariate time series,
the dimensions of common factors, the division of short time
windows and the orders of corresponding feature matrixes
from the two series must be identical. Therefore, the multi-
variate time series XS from the practical/acknowledged sys-
tem is analyzed first to obtain the factor score coefficient
matrix WS. The common factor FM of the simulation model
is determined based on WS as (15).{

FS =WSXS = [F1_S,F2_S, . . . ,Fr_S]T

FM =WSXM = [F1_M,F2_M, . . . ,Fr_M]T
(15)

Similarly, the common factor FMi should be divided in the
same way as common factor FSi. Also, the orders of the
corresponding feature matrices can be unified by (16).

lij = min
(
lij_S, lij_M

)
(16)

where the subscript i denotes the common factor Fi and j
denotes the jth short time window.

A total of
r∑
i=1

mi feature matrices are extracted from one

system, where mi means the number of the short time win-
dows of common factor Fi. These feature matrices will be
used for similarity analysis to evaluate the similarity of
models.

C. FEATURE SIMILARITY
The feature similarity of each short time window is described
by the matrix SSTW_ij as follows.

SSTW_ij =

[
sAij sfij sζij sθij

]
(17)

where suij is calculated by (18) as,

suij =
lij∑
k=1

wk_ijsuk_ij (u = A, f , ζ, θ) (18)

where wk_ij is the weight of the exponential component,
which can be obtained by the following formula.

wk_ij =
(
ηk_ij_S + ηk_ij_M

)/ lij∑
k=1

(
ηk_ij_S + ηk_ij_M

)
(19)

where ηk_ij_S and ηk_ij_M are obtained by (10).

D. COMMON FACTOR SIMILARITY
Information entropy weight (IEW) is widely used as an index
in comprehensive evaluation [20]. IEW is computed accord-
ing to the amount of information that can be transferred
by the index, which describes the importance of this index
in the comprehensive evaluation. The smaller the entropy
of the index is, the more information it provides, and the
higher its weight is. The weight of each short time win-
dow is determined by information entropy weight in this
paper. The information entropy for a normalized time series
X = [x(1), x(2), . . . , x(N )]T is defined as below.

e(X ) = −
N∑
n=1

p(x (n)) log p(x (n))

s.t.
N∑
n=1

p(x (n)) = 1 (20)

The weight wij of the jth short time window of the common
factor Fi is derived according to the corresponding informa-
tion entropy eij by (21).

wij =
(
1− eij

)/ mi∑
j=1

(
1− eij

)
(21)
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The similarity of each common factor is obtained based on
the IEW as below.

SCF =


sA1 sf1 sζ1 sθ1
sA2 sf2 sζ2 sθ2
...

...
...

...

sAr sfr sζr sθr

 (22)

where sui is calculated by (23).

sui =
mi∑
j=1

wijsuij (u = A, f , ζ, θ) (23)

E. EVALUATION RESULT
The variance contribution rate of each common factor reflects
the importance of that factor in factor analysis of multivariate
time series. Theweight of common factorFi can be calculated
as follows.

wi = g2i

/
r∑
i=1

g2i (24)

where g2i is the variance contribution rate of common
factor Fi.

The similarity between the simulation model and the prac-
tical/acknowledged system, based on the weights of common
factors, is calculated by (25).

S =
[
SA S f Sζ Sθ

]
(25)

where suij can be obtained by (28) as,

Su =
r∑
i=1

wisui (u = A, f , ζ, θ) (26)

The similarity of these four features is independent of each
other. For each of the four specific features, the simulation
model satisfies the credibility requirement when the similar-
ity of feature reaches a predefined criterion.

F. EVALUATION PROCESS AND MODEL ERROR LOCATION
Fig. 1 shows the complete process of simulation model
validation. The model errors are located in which specific
subsystems by analyzing the common factor similarity, and
the error parameters are identified according to the features
with low similarity. Once the errors are identified, the simu-
lation model can be improved for accurate results.

IV. CASE STUDIES
Over the past few years, the MMC has become a subject of
interest for power systems and industrial applications includ-
ing HVDC transmission systems, FACTS, medium-voltage
variable-speed drives, and medium/high voltage DC/DC con-
verters [21]. The modeling and simulation play an important
role in analyzing the operational characteristics of MMC
applied in power system [22]. A 2-terminal MMC based
HVDC system is shown in Fig. 2, where the AC grid is
replaced by equivalent Thevenin models. The simulation is

FIGURE 1. Process of credibility evaluation and error location.

FIGURE 2. Circuit diagram of the simulation system.

carried out in PSCAD/EMTDC (an electromagnetic transient
simulation software) and PSASP (an electromechanical tran-
sient simulation software). The simulation results of PSASP
are validated with reference to EMTDC simulation results.

A three-phase short-circuit grounding fault is applied at
bus PCC_A for 0.1s to verify the results under transient
conditions. The simulation results of PSCAD/EMTDC and
PSASP are provided in Fig.3.

A. FEATURE EXTRACTION
The time series from PSASP and PSCAD/EMTDC simu-
lation models are extracted by the proposed feature extrac-
tion method. The factor analysis for multivariate time series
results in the variance contribution rate, the top 3 common
factors are 48.87%, 22.43%, and 18.96%, respectively. The
cumulative contribution rate is 90.26% which is greater than
85%; So, these 3 factors reflect the original multivariate time
series. The factor loading matrix is shown in Table 1. The
common factor F1 reflects the information of AC voltage,
active power, reactive power and DC current at the faulty
terminal. The common factor F2 reflects the DC voltage and
the common factor F3 reflects the information of active and
reactive power. The MMC model can be divided into three
modules; the AC side model, DC side model, and the control

VOLUME 8, 2020 1189
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FIGURE 3. Curves of simulation results.

TABLE 1. Factor loadings matrix.

system model [23]. Therefore, the three common factors can
be classified as the above three models.

The modified adaptive Prony method is applied on com-
mon factors to extract their feature matrices. The common
factors with short timewindows are shown in Fig.4. As shown
in Fig.4, piecewise points appear at the point where the

FIGURE 4. Common factors and short time windows.

signal mutated and signal in each time window is relatively
stationary.

A feature matrix can be extracted from each time window.
The feature matrices, extracted from 2nd short time window
in the common factor F1 of two multivariate time series, are
shown in TABLE 2.

TABLE 2. Feature matrix.

B. VALIDATION AND ANALYSIS
The three parameters i.e. the weights of Prony exponential
components, the weights of the short time windows and the
weights of the common factors need to be determined in order
to get feature similarity, common factor similarity and the
simulation model similarity.

Table 3 shows theweights and the duration proportion (DP)
to the total duration of each short time window. The weight
of the short time window in the duration of the fault is greater
than the DP of that, while the weight of the short time window
in time period before the fault is smaller than the DP, which
means the short time window in the duration of the fault
conveys more information and its weight is higher.

TABLE 3. Weights and Duration Proportions of time windows.
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The common factor similarity can be described as follows
by (27).

SCF =


A f ζ θ

0.8640 0.9951 0.7967 0.5630
0.1728 0.8473 0.7317 0.3226
0.3527 0.9719 0.5681 0.6774

 (27)

The common factor similarity matrix SCF shows that the
common factors F1 obtained from two systems have similar
features for amplitude, frequency, and damping. However,
their features for the phase are different. The similarity of
common factors F2 is poor in the amplitude and phase fea-
tures. The similarity features of common factors F3 are not
high for amplitude and damping. The results are in line with
Fig. 4.

The weights of common factors are obtained as 0.5414,
0.2485 and 0.2101, according to the variance contribution
rate, which means the AC side model represented by F1 has
the greatest impact on the accuracy of the simulation system.
Hence, the similarity of simulation models is obtained.

S =
[

A f ζ θ

0.5848 0.9568 0.7325 0.5273

]
(28)

This means that the simulation results of PSASP and
PSCAD/EMTDC are almost similar except the amplitude
and phase; where the similarity is not so high. Therefore,
the similarity ofMMCmodel in PSASP should be considered
for further improvement.

The errors on the DC and control side can also be identified
by SCF. The common factor F2 has a poor similarity for
the amplitude and phase feature. The difference between
the DC side models is due to the difference in mecha-
nism between electromechanical transient and electromag-
netic transient simulation tools. The result of common factor
F3 shows the difference between the control module of two
MMC simulation models. The model errors are identified
based on amplitude and damping parameters that have great
influence. The MMC control system in PSASP is simple than
PSCAD/EMTDC, like the modulation process is simplified
to a first-order lag model; which has lack of data because
the time constant of the lag cannot be obtained from the field
project. This parameter must also be optimized to get a higher
similarity between the two models.

C. COMPARISON WITH THE FSV METHOD
The credibility of the simulation model is assessed by the
FSV method [3] to verify the method proposed in this paper.
The FSV overall evaluation indexes ADM, FDM and GDM
of the 10 groups of simulation data are given in Table 4.

The results of the validation method proposed in this paper
are consistent with those of the FSV method. The common
factors F1 of the two groups of simulation results have a
high similarity as shown in (24). The variables with higher
factor loading on F1 are Uac_A, P_A, Q_A, P_B, and Idc_B,
which have good evaluation results in FSV analysis. The
evaluation results of common factor F2 are unsatisfactory,

TABLE 4. Overall evaluation results of FSV.

and the FSV evaluation results of Udc_A and Udc_B with high
factor loading to F2 are poor too. The FSV evaluation results
of P_A,Q_A, and P_B are good, but the results ofQ_B are poor.
Correspondingly, the similarity features of common factor F3
is high for frequency but low for amplitude and damping.

The advantage of FSV is that its evaluation results can be
described in natural language, and the corresponding rela-
tionship between expert opinions and quantitative evaluation
is established. However, applying FSV in multivariable sim-
ulation, evaluation results of each variable rather than the
overall evaluation results are obtained. In comparison with
FSV, the proposed method can not only effectively evaluate
the overall situation of the model, but also can be the evidence
about model error location based on the physical meaning of
factor analysis and Prony analysis in the evaluation process.

V. CONCLUSION
In this paper, a validation method for the simulation model
of power system integrated with the internet of things is pro-
posed which has the ability to process high-dimensional sim-
ulation data and provide evidence for model error location.
The method consists of two main parts. First, a feature
extraction method for multivariate time series is proposed
based on factor analysis andmodified adaptive Pronymethod.
Second, a validation model based on the similarity evalu-
ation is established. The validation discussed in this paper
identifies the model errors and their locations; which can
be used to improve the simulation model against the prac-
tical/acknowledged system. The method is verified by an
application to MMC-HVDC model in PSASP.
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