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ABSTRACT The physical characteristics of the massive spectrum signals carrying the communication
information and the statistical laws of these characteristics also potentially reflect the communication
behavior of the communication individuals and the intelligence information related to the communication
behavior. Intercepting and cracking signal content usually faces enormous difficulties and costs, and more
often, we are not able to crack the encrypted signal content. However, by studying the physical features
extracted from the spectrum monitoring signals and the statistical laws of these features, it is also possible to
dig out the hidden relationships between communication individuals and even the communication network
structure, so as to analyze the communication behaviors of the communication individuals. Based on the
characteristics of carrier frequency, bandwidth, power, signal monitoring time and direction information
of spectrum monitoring signals, this paper identifies each spectrum signal and studies the distribution
characteristics and statistical laws of massive spectrum monitoring signals in the column coordinate system.
Due to the clustering of the spectrum signals generated by the sources in the power, monitoring time and
direction, and the correlation of the spectrum signals generated by the two parties in the communication
process, based on the improved density clustering algorithm, this paper proposes a method for mining the
communication relationship between communication individuals from the spectrum monitoring data, and
guesses and constructs the communication network structure by matching the communication individual
with the communication relationship. Finally, we analyze the communication network structure mined from
the spectrum monitoring data.

INDEX TERMS Spectrum monitoring data, communication network structure, communication relationship
discovery, data mining, density clustering.

I. INTRODUCTION
With the rapid development of wireless communication,
the scarcity of spectrum is becoming more and more promi-
nent. It is increasingly urgent to strengthen the monitoring
and analysis of spectrum signals and the management of
electromagnetic spectrum [1]–[3]. As the medium of infor-
mation transmission, it is of great significance to study the
spectrum signal [4]. At present, the mining and analysis
of massive spectrum monitoring signals mainly focus on a
spectrum situation display, signal feature extraction, signal
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classification and other aspects [5]. The physical chara-
cteristics of the massive spectrum signals carrying the
communication information and the statistical laws of these
characteristics also potentially reflect the communication
behavior of the communication individuals and the intelli-
gence information related to the communication behavior.
However, it is almost empty to research the communication
relationship, communication network structure and commu-
nication behavior of communication individuals from the
massive spectrum signals only according to the physical
characteristics of spectrum signals and the statistical rules of
these characteristics, without relying on cracking the signal
content.
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In the fields of anti-terrorism, military communications,
communication investigation, communication security and so
on, intercepting and cracking signal content usually faces
enormous difficulties and costs, and more often, we are not
able to crack the encrypted signal content. Therefore, it is
difficult to obtain the communication behavior of the commu-
nication individual based on the signal content in some spe-
cific scenarios. However, the physical characteristics of the
spectrum signals are difficult to encrypt, and these features
are easy to obtain. By studying the physical characteristics
extracted from the spectrum signals and the statistical laws
of these characteristics, it is also possible to dig out the
communication relationships between communication indi-
viduals, the communication network and other hidden infor-
mation, so as to further analyze and obtain the communication
behavior of the communicating individuals.

The communication relationship reflects the commun-
ication connections among communication individuals.
We can further speculate and construct the communica-
tion network structure by analyzing the statistical rules
of communication time, communication duration, com-
munication times, the sequence of communication, the
communication direction and other characteristics of the
communication individual. The communication network
reflects the communication relationship and communication
behavior among communication nodes (communication indi-
viduals) in the monitoring area. Through the research on net-
work connectivity, network communication path, and other
information, it is possible to analyze the network structure
and hierarchy, and estimate the node level in the network.

Due to environmental factors, the wireless channel has a
high bit error rate. The data link layer usually adopts the
stop-and-wait ARQ (Automatic Repeat Request) protocol to
ensure reliable data transmission [6]. Therefore, each time
when the sender sends a data frame, the receiver need to
reply to the feedback information for confirmation, so that
the spectrum signals generated by the two parties are related
in time. On the other hand, the continuity of communication
makes the spectrum monitoring signal continuous in time.
Even if the source position changes, the direction, and power
of the spectrum signal detected in a short time remain rel-
atively stable. Spectral signals show clustering property in
three dimensions of direction, power and monitoring time.

In order to mine the communication network from the
spectrum monitoring data, this paper first discusses the char-
acteristics of the spectrum monitoring data and the factors
affecting the spectrum monitoring data. Secondly, features
such as signal frequency, bandwidth, signal power and sig-
nal direction are extracted from spectrum monitoring data
to identify each spectrum signal. In the column coordinate
system constructed by signal direction, signal power and sig-
nal monitoring time, we study the distribution characteristics
and statistical rules of mass spectrum moni-toring signals.
The spectrum signals are clustered by the improved OPTICS
(Ordering Points to Identify the Clustering Structure) algo-
rithm, and clustering sets represent the spectrum signal sets

generated by different communication individuals in different
communication processes. Then, through the communication
network structure mining method proposed in this paper,
we discovered the communication relationship between the
stations and represented the network nodes in the polar coor-
dinate system, thus constructing the communication network
structure. Finally, we analyze the network structure to obtain
the communication behavior information of the station.

The experimental results show that the method has good
adaptability to the massive spectrum monitoring signals, and
can mine the communication relationship between the source
nodes from the spectrum monitoring data, and infer the
communication network structure. In addition, the method
realizes the communication behavior research of the commu-
nication individual through statistical analysis of the network
structure and the number of node communication.

The contributions of this paper are summarized as follows:
Firstly, this paper mines the communication relation-

ship between the communication individuals and the
commun-ication network structure from the spectrum mon-
itoring data, and obtain the communication behavior of the
communication individuals. Secondly, the research in this
paper is not to rely on communication content and frame
structure, but by mining the statistical laws of spectrum
signals to obtain the communication relationship between
communication indivi-duals and the communication network
structure. Besides, it lays foundation for further study on
analysis of commun-ication behavior rules and provides a
new perspective of analysis and mining of massive spectrum
monitoring data. Thirdly, we process the spectrum monitor-
ing data in the cylindrical coordinate system, change the ε-
neighborhood in the OPTICS algorithm to the (ε, h)-neighbor
domain suitable for the cylindrical coordinate system, and
study the relation-ship between ε, MinPts and h.

II. RELATED WORK
Although a large number of literatures have conducted
in-depth studies on spectral signals, these studies have
focused more on the characteristics and information of the
spectral signals themselves, such as the estimation of spectral
signal related parameters [7]–[9], signal detection [10], [11],
ano-maly detection based on signal characteristics [12]–[15],
monitoring and management of spectral signals [1]–[3], and
spectrum sensing [16]–[19], spectrum decision [20], [21]
and other related research. For the massive spectrum sig-
nals generated by communication, it is not deep enough
that the research on mining the connection between spec-
tral signals and the communication relationship between the
communi-cation individuals that generate spectral signals and
analyzing the behavior characteristics of these communi-
cation individuals.

The existing research on the communication behavior of
wireless communication individual mainly relies on monitor-
ing or eavesdropping to crack the content of the intercepted
spectrum signal [22]–[24], and analyzes com-munication
behavior and intention according to the content of the
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FIGURE 1. Schematic diagram of the transmission and reception process of a data frame based on
stop-and-wait ARQ.

signals [4], [5]. But more often, these methods do not capture
important communications that have been encrypted. In order
to avoid the cost and difficulty of cracking the signal content,
and to avoid the applicability of the analysis methods based
on communication content and prior knowledge (commu-
nication protocol frame format, etc.) in specific scenarios,
the research in this paper is not to rely on communication
content and frame structure, but by mining the statistical laws
of spectrum signals to obtain the communication relationship
between communication individuals and the communication
network structure. Besides, it lays foundation for further
study on analysis of communication behavior rules.

On the other hand, based on the physical characteristics of
the signal, the research on mining massive spectrum moni-
toring data is not deep enough. Akyildiz et al. [3] analyzed
the differences between the two communication modes of
frequency hopping communication and fixed frequency com-
munication, and classified the spectrum signals by making
classification rules to find the communication relationship
between different classification sets. However, this method
only works with ideal and complete spectrum monitoring
data, and cannot effectively analyze the missing spectrum
monitoring data. Pan et al. [25] used multiple monitoring
devices to monitor spectral signals, and mined the com-
munication relationship between information sources, com-
bined with signal fading model to locate information sources.
However, the fading of signals is different in different envi-
ronments, and there is a large error in the location of the
geographical location of the source. Liu et al. [5] proposed
a method based on improved density clustering to mine the
communication relationship in spectrum monitoring data,
which provides an idea for the analysis of spectrum mon-
itoring data. However, for further analysis, the article does
not realize the identification of network nodes, so it is impos-
sible to speculate and construct the communication network
structure. Comparing the above three methods, we propose a
method for mining the communication relationship between
communication individuals and the structure of communica-
tion networks from spectrum monitoring data. It is a further
study on mining spectrum monitoring data and analyzing the
communication behavior of communication individuals.

Finally, due to the manifold distribution characteris-
tics of the spectrum data, in the process of data min-
ing, we use the method of density clustering such as
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [26]–[28], OPTICS [29] to process the data.

III. THE DATA PREPROCESSING
This section firstly discusses the influence of communi-
cation protocol and scanning period of monitoring equipment
on spectrum monitoring data. Then, based on the character-
istics of spectrum monitoring data, we propose the features
of identifying communication relationship and speculating
communication network, and express the distribution of data
in the column coordinate system.

A. FACTORS AFFECTING SPECTRUM MONITORING DATA
1) THE IMPACT OF COMMUNICATION PROTOCOLS ON
SPECTRUM MONITORING DATA
Since the wireless channel is easily interfered by the envi-
ronment, with a high bit error rate, in order to ensure reli-
able transmission of data, the radio station that adopts the
half-duplex communicationmode usually adopts the stop-and
-wait ARQ protocol at the data link layer. Fig. 1 shows the
length of time occupied by the sending of information frame
and the reply of confirmation frame in the communication
process based on the stop-and-wait ARQ protocol. The red
rectangle indicates the duration of the information frame
sent by the station, the green indicates the duration of the
confirmation frame (error pattern) sent by the station, the blue
indicates the duration of the station receiving the information
frame (or the confirmation frame), the yellow indicates the
conversion time of transmission and reception, and the blank
interval indicates the propagation delay Td . Therefore, for
a pair of communication stations, the monitored spectrum
signal set is jointly generated by both the transmitting sta-
tion and the receiving station, that is, corresponding to two
sources. The carrier frequency of the frequency hopping com-
munication continuously changes, and the information is not
transmitted when the channel is switched. However, the car-
rier frequency of fixed frequency communication remains
unchanged, and the amount of data detected in the same time
is larger.

2) THE IMPACT OF SCAN CYCLE ON SPECTRUM
MONITORING DATA
For monitoring equipment, the scanning period is affected
by the monitoring range and the monitoring scanning rate.
Different scanning periods correspond to monitoring data of
different densities. Fig. 2 shows the amount of data collected
by the monitoring device based on different scanning periods,
where the green rectangle indicates the duration of the spec-
trum signal propagating to the monitoring device, and purple
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FIGURE 2. Schematic diagram of monitoring data density of fixed-frequency communication spectrum.

FIGURE 3. Schematic diagram of monitoring the frequency hopping signal.

and orange indicate the monitoring conditions correspond-
ing to different scanning periods. Obviously, the smaller the
scan period is, the more spectrum data will be detected. For
fixed-frequency communication, the main reasons affecting
data distribution are propagation delay and scanning period.

On the other hand, for frequency hopping communica-
tion, there will be more missing spectral signals. In order to
resist interference, the carrier frequency of frequency hopping
communication is constantly changing. The characteristics
of this hopping also largely avoid the monitoring of moni-
toring equipment. Fig. 3 shows the monitoring of frequency
hopping communication. The abscissa is time, in units of
scan cycles, and the ordinate is frequency. The yellow rect-
angle in the Fig.3 indicates the frequency range monitored
within one scan bandwidth, and the horizontal lines with
different lengths represent different frequency hopping sig-
nals. The monitoring equipment monitors within the range
of 30-90MHz, and the scanning bandwidth (corresponding to
the height of the yellow rectangle in the figure) is 20MHz.
One scanning period corresponds to three yellow rectangles.
The signal in the white area is undetected, so the actual
scanned signal contains a large number of missing signals.
This lack results in a smaller data density of monitoring
data and uneven distribution of data. In the data processing
process, it is necessary to consider a data processing method
that can accommodate data missing.

B. FEATURE SELECTION
Due to the interaction and transmission of information, there
is a communication relationship between communication

individuals, which constitutes the basis of the communication
network. In order tomine the communication relationship and
communication network among sources from the spectrum
monitoring data, this paper firstly classifies the spectrum
signals by clustering method based on the characteristics of
spectrum signals. Each cluster set corresponds to the spec-
trum signal set generated by the source in their respective
communication. Then we replace the source with the clus-
tering set, and determine the communication relationship
between the source nodes according to the distribution char-
acteristics of the data of the clustering set in time. Finally,
we construct a communication network based on the com-
munication relationship between nodes, so as to mine the
communication network from the spectrum monitoring data.

1) SIGNAL POWER
The signal power represents the distance information of the
station relative to the monitoring device. Due to the error
of the monitoring equipment and the fading during signal
propagation, the monitored signal power exhibits a normal
distribution. If the position of the station is relatively fixed,
the power of the monitored spectral signal exhibits a stable
distribution. Even if the radio is moving, the power of the
spectrum signal monitored in a short period of time exhibits
a stable distribution or change.

2) SIGNAL DIRECTION (ANGLE)
The signal direction (angle) represents the direction informa-
tion of the station relative to the monitoring device. Due to
the error of the monitoring equipment and the fading during
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signal propagation, the monitored signal power exhibits a
normal distribution. If the position of the station is relatively
fixed, the angle of the monitored spectral signal exhibits a
stable distribution. Even if the radio is moving, the angle
of the spectrum signal monitored in a short period of time
exhibits a stable distribution or change.

3) SIGNAL MONITORING TIME
Since wireless communication has a large error rate, the sta-
tion usually performs error control based on stopping waiting
for the ARQ protocol. The sender sends the data frame, and
the receiver sends the acknowledgement frame immediately,
so the spectrum signals generated by both parties are roughly
the same in the time range. On the other hand, the spectrum
monitoring signal appears continuously in time, so that the
spectrum signal exhibits a stream pattern in the time domain.

Features such as carrier frequency, signal bandwidth, sig-
nal power, time of signal occurrence and signal direction
that extracted from spectrummonitoring data carry important
information of spectrum signals and can uniquely identify
spectrum monitoring signals. Therefore, we take them as
features of mining communication relations and speculating
communication network structure.

C. FEATURE REPRESENTATION
Let the spectrum monitoring data set be X = {x1, x2, · · · , xi,
· · · , xn}T , where xi = {fi,Bi, θ i,Pi, ti}, fi represents the
signal frequency, Bi represents the signal bandwidth, θi rep-
resents the signal direction, Pi represents the signal power,
and ti represents the signal monitoring time. In order to study
the clustering properties of spectral data more intuitively, this
paper introduces a cylindrical coordinate system to describe
the distribution of data. Let the spectrum monitoring data set
be Y = {y1, y2, · · · , yj, · · · , yn}T , where yj = {θj,Pj, tj.
Fig. 4 shows the distribution of spectral data generated by
a pair of communication stations in a cylindrical coordinate

FIGURE 4. The distribution of spectrum signal in the cylindrical
coordinates.

FIGURE 5. The distribution of spectrum signal in the polar coordinates.

system. Obviously, the data shows clustering and communi-
cation directivity. The data set Y is projected into the polar
coordinate system in the cylindrical coordinate system, and
we obtain the data set Z = {z1, z2, · · · , zk , · · · , zn}T , where
zk = {θk ,Pk}. Fig. 5 shows the distribution of the data set
Z in a polar coordinate system, the origin representing the
position of the monitoring station. The distribution of data
in polar coordinates indicates radio stations relative position
to the monitoring equipment and the relative position among
stations. This provides a node location for the construction
of the communication network, although it is not a real geo-
graphical location.

IV. COMMUNICATION RELATIONSHIP DISCOVERY
A. COMMUNICATION RELATIONSHIP MINING METHOD
Mining the communication relationship between the sources
from the spectrum monitoring data is to classify the mon-
itored spectrum signals according to the characteristics of
the signals. In this process, the spectrum signals generated
by each communication station during each communication
process are separated from the spectrummonitoring data. The
spectrum data of the classification set represents the spectrum
signal generated by the radio station in a communication.
Based on the classification results, the classification sets of
spectrum data with similar time range are matched to mine
the communication relations.

B. DENSITY CLUSTERING
Signal power, signal direction, and signal monitoring time
can uniquely identify themonitored spectrum signal. Because
of the propagation delay and path loss and the error of the
monitoring equipment, the monitored spectrum signal has
errors in signal power and signal direction. These errors result
in the approximate normal distribution of signal power and
direction. Signal monitoring time represents the time when
the signal appears. Spectrum monitoring data is acquired
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FIGURE 6. The distribution of data.

based on scanning of monitoring equipment, and continuous
communication causes the monitored spectral signals to be
continuous in time. The data represented by signal power,
signal direction and signal monitoring time exhibit manifold
clustering, as shown in Fig. 4. On the other hand, because the
monitored data is missing and confusing, it also determines
to classify the data by clustering.

The data of data set Y exhibits manifold characteristics.
In the dimension of time, since the scanning period is con-
stant, the spacing of the generated data is relatively stable,
so scaling the spacing of the data in the time dimension does
not change the clustering characteristics of the data. On the
other hand, we study the distribution law of data in the cylin-
drical coordinate system. Based on the characteristics of the
cylindrical coordinate system, this paper changes the spher-
ical ε-neighborhood in the original OPTICS algorithm to a
columnar neighborhood, and the neighborhood is defined as:

Nε
(
yj
)
=
{
yi ∈ D | dist

(
yi − yj

)
≤ ε

}
(1)

where

dist
(
yi, yj

)
=

√
(θi − θj)2 +

(
Pi − Pj

)2
+ δ(ti − tj) (2)

δ (t) =

{
0, |t| ≤ h
∞, |t| > h

(3)

h is the threshold of the time difference between the
data, which determines the height of the columnar field. ε
determines the bottom area of the columnar neighborhood.
After defining the column neighborhood Nε

(
yj
)
, the value

of MinPts needs to be further determined, and ε and h are
estimated to determine the range of the neighborhood.

Daszykowski et al. [30] proposes that the selection of
MinPts value in the neighborhood depends on the number
of objects in the data. In addition to this, the distribution
characteristics of the data and additional information about
the data cluster can also be used to define MinPts.

Based on the value of the preset MinPts, we estimate ε
and h. Daszykowski et al. [30] optimizes the neighbor-hood
radius ε by estimating the data set with the same dimension
as the research data but uniformly distributed within the
experimental range, regardless of the distribution of objects in
the data set. As shown in Fig. 6, the data set U contains m data
points and follows the normal distribution. The data set V is
uniformly distributed and is the same as the data dimension,
the number of data, and the experimental range of the data
set U. Selecting the optimal neighborhood radius ε for the
data set U is to calculate the distance of each object in the
data set V to its MinPts − th neighbor, sort the m calculated
distances in ascending order, and then select a distance equal
to 95% as ε.
Inspired by the literature [30], in order to estimate the

column neighborhood, this paper combines the distribution
of data objects to estimate the columnar neighborhood of
the data set with the same data dimension but uniformly
distributed within the experimental range. In cylindrical coor-
dinate system, the data set Y presents local manifold distri-
bution, and different clustering sets have similar density and
distribution characteristics. In the communication process,
the duration of the acknowledgment message sent by the
receiving station is less than the length of time that the trans-
mitting station transmits the information. Within the same
time, the number of signals sent by the receiving station
is monitored to be small, and the density of the receiving
station spectrum data in the cylindrical coordinates is small,
as shown in the Fig. 4. The difference in spectral monitoring
data density determines the columnar neighborhood formed
by ε and h based on the cluster set of the smaller density of the
receiving stations, and such columnar neighborhood is still
valid for dense data.

Let the spectrum signal set generated by a certain receiving
station be R ={θi,Pi, ti}, where i = 1, 2, · · · ,m. For a more
intuitive representation, the data set R is transformed into a
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three-dimensional cartesian coordinate system to obtain R′ =
{xi, yi, ti} by the formula (4).{

xi = Picosθi
yi = Pisinθi

(4)

The range occupied by the data set R′ in space is denoted
as VR. Let R′′ be a data set with the same dimensions and
experimental range as the data set R′, but subject to uniform
distribution. The average range occupied by each object in R′′

can be expressed as VR
m , where

VR = π max
1≤i,j≤m

1
4

[(
xi − xj

)2
+
(
yi − yj

)2]
·

( max
1≤i,j≤m

tq − min
1≤i,j≤m

tp) (5)

MinPts ·
VR
m
≤ 2hπε2 ≤ (MinPts+ 1) ·

VR
m

(6)

2hπε2 represents the range occupied by the cylindrical
(ε, h)-neighborhood, and MinPts · VRm represents the average
range corresponding toMinPts points in the neighborhood of
each object. Based on the givenMinPts, eq(6) determines the
relationship between h and ε and the range of the columnar
(ε, h)-neighborhood.

C. MATCH CLUSTERS TO DETERMINE communication
RELATIONSHIPS
The spectrum monitoring data is classified by the improved
OPTICS algorithm, and each cluster set represents the spec-
trum signal set generated by the station in one communica-
tion, as shown in Fig 4. Based on the stop-and -wait ARQ,
the communicating parties maintain the trans-mission and
acknowledgement of the data frames during the communi-
cation. Therefore, for two stations with communication rela-
tionship, the distribution of the generated spectrum signals is
similar in the time range, that is, the initial signal time and
the end time corresponding to the two cluster sets are similar.
Therefore, the communication relationship of signal sources
can be confirmed according to the distribution of time.

Time complexity analysis: The time complexity of the
OPTICS algorithm is O(n2), the time complexity of calcu-
lating the center position of the cluster set Ul is O(n), and the
time complexity of calculating the time range of the cluster
set Ul is O(n), and the time complexity of communication
relationship matching is O(n), so the time complexity of
algorithm 1 is O(n2).

V. THE NETWORK STRUCTURE MINING AND ANALYSIS
A. CONJECTURE OF COMMUNICATION
NETWORK STRUCTURE
Mining the communication network in the spectrum moni-
toring data is to classify the spectrum monitoring data by
clustering method. Then the relative position of the cluster
set in the cylindrical coordinate system is taken as the node
of the network. Finally, based on the communication relation-
ship between clustering sets, we connect nodes to build the
network and record the communication direction.

Algorithm 1 The Communication Relationship Discovery
Algorithm

Input: data set Y = {y1, y2, · · · , yj, · · · , yn}T , where yj ={
θj, dj, tj

}
.

ε,MinPts, h
Output: Signal spectrum set V corresponding to the

com-munication relationship
The centroid position (θ̄i, P̄i) of the source
Communication direction
Communication sequence

1: According to the distance defined by formula (2)
(3), use the OPTICS algorithm to cluster the data to
obtain the clustering set U = {U1,U2,U3, · · · ,Ul, · · ·}
of spectr-um signals

2: Calculate the centroid position (θ̄i, P̄i) of the cluster set
Ul projected to the polar coordinate system

3: Sort the objects of the cluster set Ul according to time,
and extract the initial time and end time of signals of the
cluster set Ul

4: Calculate the time range of the data in the cluster set Ul
5: Matching the cluster set Ul to discover the

communi-cation relationship of information interaction
6: if the initial time of Ul is close to that of Uj
7: if the end time of Ul is close to that of Uj
8: There is a communication relationship

between Ul and Uj.
9: Compare the number of data of Ul and Uj,

the number of receivers is small, while the
sender is large.

10: Vk = {Ul,Uj} is the spectrum set
correspondding to the communication
relationship

11: end if
12: end if
13: Output spectrum signal sets corresponding to differ-ent

communication relationships in the cylindrical coordi-
nate system

In the process of building the communication network,
the nodes of the network must first be determined. The data
set Z = {z1, z2, · · · ,zj, · · · ,zn}T represents the direction and
power information of each spectral signal in the spectrum
monitoring data, where zj =

{
θj,Pj

}
. In the polar coordinate

system, data set Z describes the relative position information
of the spectral signals, and the data presents the clustering
distribution. The DBSCAN algorithm implements a division
of the data set Z = {C1,C2, · · · ,Cp, · · · ,Cm,D, where
p = 1, 2, 3, · · ·m. The data distribution of the cluster set
Cp represents the relative position of the source in the polar
coordinate system, and D is the set of abnormal points. The
centroid neighborhood of each cluster set Cp represents the
relative position of the source and acts as a node of the com-
munication network. The centroid position C̄p of the cluster
setCp = {cp1, cp2, · · · , cpi, · · · , cpk} (where cpi = (θpi,Ppi))
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is expressed as:

(θ̄p, P̄p) =
1
k

∑k

i=1
cpi (7)

In order to record and study the communication relation-
ship and gradual change process of the communication net-
work in different time periods, we divide the data set Y into
Y = {Y1,Y2, · · · ,Yi, · · ·} according to the time interval
tinterval . It should be emphasized that the seg-mentation of
data set Y is necessary. Only in this way can we intuitively
analyze the communication relationships, communication
sequences, network connectivity, paths, and communication
directions in different time periods. Based on Algorithm 1,
wemine the communication relationship of Yi, and record the
communication direction, communication sequence, and cal-
culate the relative position of the source in polar coordinates
(θ̄l, P̄l), where l = 1, 2, · · · · · · . In order to correctly match
the source relative position (θ̄l, P̄l) in Yi with the network
node (θ̄p, P̄p), we set the neighborhood range of C̄p:

Nr
(
(θ̄p, P̄p)

)
= {(θi,Pi)|d

[(
θ̄p, P̄p

)
, (θi,Pi)

]
≤ r} (8)

d
[(
θ̄p, P̄p

)
, (θi,Pi)

]
=

√
(Picosθi − P̄pcosθ̄p)2 + (Pisinθi − P̄psinθ̄p)2 (9)

If the relative position
(
θ̄l, P̄l

)
of the source in Yi is within

the neighborhood of C̄p, (θ̄l, P̄l) is considered to represent
the network node, and the nodes are connected according
to the communication relationship. Each Yi corresponds to
a communication network �i with a time range of tinterval ,
and �i records the communication within this time range.
The change of the communication network�i to�i+1 corre-
sponds to the change of the node communication relationship
and the evolution of the network with time. The communi-
cation network �i(i = 1, 2, 3, · · · · · · ) is superimpo-sed to
form the communication network� corresponding to the data
set Y.

It should be noted that when Y is divided according to the
time interval tinterval , continuous communication spectrum
monitoring data belonging to one class may be divided into
adjacent subsets Yj, j = i, i + 1, i + 2, · · · · · · . There-
fore, when �j is combined, it is necessary to treat the same
communication relationship continuously distributed in the
adjacent network �j as one, to ensure an accurate number of
communication relationships.

Time complexity analysis: the time complexity of
DBSCAN algorithm for data set Z clustering is O(n2),
the time complexity of computing network nodes is O(n),
and the time complexity of communication relation discovery
algorithm is O(n2). Therefore, the total time complexity of
algorithm 2 is O(n2). In the future work, targeted or dynamic
segmentation of the data set is an effective way to reduce the
cost of the algorithm.

Algorithm 2 Conjecture of Communication Network struc-
ture
Input: data set Y = {y1, y2, · · · , yj, · · · , yn}T , where

yj = {θj,Pj, tj}
ε1,MinPts1
tinterval
ε2,Minpts2, h, r

Output: network node coordinates (θ̄p, P̄p)
Communication network �
Communication order

1: Project the data set Y on the polar coordinate system plane
to obtain a data set Z = {z1, z2, · · · ,zj, · · · ,zn}T ,
where zj =

{
θj,Pj

}
.

2: Cluster the data set Z with the DBSCAN algorithm in polar
coordinates, ε = ε1, MinPts = MinPts1. The cluster
set is Z = {C1,C2, · · ·Cp, · · ·,Cm,D}

3: Calculate the centroid coordinates (θ̄p, P̄p) of Cp as a
network node according to formula (7)

4: According to the time interval tinterval , the data set Y is
divided to obtain Y = {Y1,Y2, · · · ,Yi, · · · ,Yn}

5: for i = 1 : n
6: According to algorithm 1, MinPts = MinPts2,
ε = ε2, obtain the communication relationship,
communication direction, communication order
from Yi, centroid position (θ̄q, P̄q) of Uq in the
polar coordinate system, q = 1, 2, · · · · · ·.

7: Match
(
θ̄q, P̄q

)
with the network node (θ̄p, P̄p) according

to formula (8)(9)
8: According to the communication relationship, connect the

network nodes and get the communication network �i
9: end for
10: Combine �i to get the communication network �
11: Visual representation in the polar coordinate system

FIGURE 7. Location distribution of stations and monitoring equipment.

B. COMMUNICATION NETWORK STRUCTURE ANALYSIS
For the communication network mined from the spectrum
monitoring data, this paper analyzes the nodes and structure
of the network according to the characteristics of the network.
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FIGURE 8. The time distribution of radio communication.

Referring to the basic idea of PageRank [32] algorithm, for
network nodes, if a node is connected with other nodes, this
node is very important in the network, that is, the PageRank
value of the node will be relatively high. If a node with a
high PageRank value is connected to one of the other nodes,
the PageRank value of the node to which it is connected
will increase accordingly [32]. Therefore, the analysis of the
network structure needs to consider the statistical laws of
nodes and edges.

Assume that the communication network mined from
spectrum monitoring data is G = {V,E}, where V = {v1,
v2, · · · · · ·} represents the source node, E = {(e1, p1),
(e2, p2), · · · ,(ei, pi), · · ·} represents the communication rela-
tionship among nodes, ei represents the edge, and pi rep-
resents the number of connections. In addition, we define
d+(vi) to indicate times the source is the sender, d−(vi)
to indicate times the source is the receiver, and d (vi)
to indicate times the source participates in the commu-
nication. By analyzing the statistical characteristics of
the number of nodes participating in the communication,
the hierarchical positions of different nodes in the network are
investigated.

In military communication networks, information is usu-
ally transmitted step by step, and communication nodes
of different levels have different communication behavior
characteristics. On the other hand, each node within the
sub-network has a close relationship with other nodes, and
communication between sub-networks may be carried out
through higher-level communication. Although the nodes
inside the network are all interoperable, the actual com-
munication range and permissions of the nodes at different
levels are different. For example, in amilitary communication
network, each node is interconnected, but the communication
range of the class radio stations in the communication net-
work is limited by a company, and the information flowing
to a higher level usually needs to be transmitted upwards step
by step. Similarly, the command is issued step by step.

Network connectivity can be used to analyze the network
structure. The path characterizes the direction of information
transfer and the time sequence of communication between
nodes, as well as the depth of the network. Analysis of the

FIGURE 9. The communication network.

network communication path can identify critical paths, key
nodes, and regional sub-network.

VI. SIMULATION EXPERIMENT
A. SCENE SETTING AND DATA COLLECTION
In the region of 30km in width and 30km in depth, 10 radio
stations were randomly set as the experimental information
sources, among which station D and J carried out fixed-
frequency communication, and other stations carried out
frequency-hopping communication. The spectrum range of
radio communication is 30-90MHz, the scanning bandwidth
of monitoring equipment is 20MHz, and the scanning rate is
80GHz/s. Fig. 7 shows the distribution of radio stations and
monitoring equipment, where blue dots representing radio
stations and red dots representing monitoring equipment.

Based on the radio and monitoring equipment set in
the Fig. 7, we simulated the communication between the
radio stations, monitored the spectrum signals through the
monitoring equipment, and then mined the communication
relationship and communication network from the spectrum
monitoring data. Finally, we analyzed the structure of the
communication network. In the communication model of the
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TABLE 1. The communication sequence.

simulation experiment, information is transmitted from the
upper node to the terminal step by step, and the terminal
generates feedback. In the communication of each pair of sta-
tions, we reduced the communication time to accom-modate
communication among more stations in the monitoring
data. The communication relationship and communication
sequence of communication individuals are shown in Table 1.
Fig. 8 shows the sequence of radio communication in Table 1
in time, where different colors represent the communication
between different radio stations, ‘‘1’’ represents the sending
state of radio station, and ‘‘2’’ represents the receiving state
of radio station.

Based on the geographic location of communication
nodes (stations) and the simulated communication between
them, the actual communication network model is shown
in Fig. 9.

TABLE 2. The monitoring data characteristics of electromagnetic
spectrum.

B. SPECTRUM MONITORING DATA DESCRIPTION
After preprocessing the spectrum monitoring data, we obtain
the data set X for communication behavior research,
which contains the following characteristics: signal center
frequen-cy point, signal power, signal monitoring time and
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FIGURE 10. Distribution of relative positions of sources in the polar coordinate system.

FIGURE 11. The process of mining the communication network structure of Y1.

signal direction. Table 2 shows the format of the spectrum
monitoring data set X.

C. ANALYSIS OF EXPERIMENT RESULT
For the data set Y = {y1, y2, · · · , yj, · · · , yn}T , where yj =
{θj, dj, tj}, we set tinterval = 8 s and divide the spectral data Y

of 56s into 7 segments, namely Y = {Y1,Y2, · · · ,Yi, · · ·},
i = 1, 2, 3, · · · , 7. According to Algorithm 2, this paper
mine the structure of communication network from spectrum
monitoring data. Fig. 10(a) shows the projection of data set
Y on polar coordinates, that is, the relative position of source
is marked by signal power and direction in polar coordinates.
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FIGURE 12. The segmented netork structure corresponding to Yi. The dots marked with color indicate communication stations, and
the straight lines with arrow indicate the communication direction. Nodes and connections form a communication network
snapshot of Yi. For example, in (a), the communication nodes are v1, v2, v3, v4, v5, v6, v7, v8, v9, and the communication paths are
v1-v5, v4-v5, v5-v6, v3-v2-v7, V8-v9.
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Cluster sets of different colors represent the distribution of
signals generated by different sources. Fig. 10(b) shows the
relative positions of the centroid neighborhoods of the respec-
tive cluster sets of Fig. 10(a), which are used as nodes of the
network.

We take Y1 to demonstrate the communication network
structure mining. Fig. 11 shows the mining process of com-
munication relationship and communication network struc-
ture of Y1. Fig. 11 (a) shows the clustering results of the data
set Y1 in the column coordinates composed of signal power,
signal direction and signal monitoring time, where different
colors represent different clustering sets, that is, clustering
sets of different colors correspond to spectrum signal sets
generated by different radio stations in the communication
process. Since the spectrum signals generated by radio sta-
tions with a communication relation-ship are very similar
in time, we match the clustering setaccording to the time
range of the cluster sets to determine the communication
relationship (corresponding to the communication relation-
ship between radio stations). Fig. 11(b) shows the matching
result of the cluster set in Fig. 11(a), and the cluster sets with
a communication relation are labeled with the same color.
Fig. 11 (a) (b) show the discovery process of the commu-
nication relation of Y1. In the section IV, we described in
detail the communication relationship method, in which the
data clustering method is the improved OPTICS algorithm.

To build a communication network structure, we need
identify nodes and edges. We projected the data in Fig. 11 (b)
into the polar coordinate system to obtain the distribution
of spectral data in the polar coordinate system, as shown
in Fig.11 (c).Then we calculated each centroid of the cluster
set of Fig. 11 (c) and matched them with the coordinates of
the nodes in Fig. 10(b).The matched nodes are labeled with
the same color in Fig. 11 (d). Finally, we connected nodes
of the same color according to the communication relation,
so as to form the construction network topology structure
of Y1, as shown in Fig. 11 (d). The arrow indicates the
communication direction.

Fig. 12 shows the different communication network struc-
ture corresponding to subsets of data set Y. Finally, we merge
all the network structure snapshots to form the network struc-
ture of Y, as shown in Fig. 13.

D. NETWORK STRUCTURE ANALYSIS
As shown in Fig. 13, in the monitoring range, v8 and v9 are
stations that communicate independently, and do not commu-
nicate with other nodes, which can be regarded as network F;
and other nodes constitute network G. From the comparison
of the various figures in Fig. 12, it can be found that the
network G is mainly divided into three paths:

Path 1: v0↔v3↔v4↔v5 ↔ v1
Path 2: v0↔v3↔v4 ↔ v6→v5
Path 3: v0↔v3↔v2 ↔ v7
In network G, information transfer starts from node v0, and

then passes through v3 to other nodes. As nodes v1, v4, v5, v6
communicate closely, they constitute the sub-network G1,

FIGURE 13. The communication network structure.

where v4 is the core node of sub-network G1. v2 and v7
constitute subnetwork G2. v3 is the key node connected with
two subnets.v0 is the initial node of communication, and
v1 and v7 are the terminal nodes of communication. From
the statistical analysis of the nodes, d (v3) = 6,d (v4) =
6,d (v5) = 5,d (v2) = 4, these nodes can be regarded as
important nodes for network communication.

In summary, the level of the network G can be divided
into 4 layers. v0 is the beginning of communication, which
can be regarded as the highest node in communication; v3
is the connection point of sub-networks G1 and G2, which
is the intermediate node of information exchange, as the
second-level node; v4 and v2 are regarded as the core nodes of
the sub-network, which are used to organize the communica-
tion inside the sub-network and serve as the third-level nodes.
As terminal nodes, v1, v5, v6 and v7 are the fourth-level nodes
of the network.

VII. CONCLUSION
As a medium carrying communication information, the phys-
ical characteristics of the spectrum signal itself and the sta-
tistical laws of certain features also potentially reflect the
communication behavior of the communication individual
and the intelligence information related to the communi-
cation content. Therefore, the in-depth research and analysis
of massive spectrum is of great significance. In order to avoid
the difficulty and cost of cracking the signal content, this
paper mines and analyzes the communication behavior of the
communication individual from the physical charac-teristics
of the spectrum monitoring signal and the statistical laws of
these characteristics.

This paper first discusses the characteristics of spec-
trum monitoring data, and then obtains the frequency, sig-
nal power, signal bandwidth, signal monitoring time, signal
direction and other characteristics of the signal from the
spectrum monitoring data to uniquely identify the spectrum
signal. Then we study the distribution characteristics and
statistical laws of the spectrum signals in the cylindrical
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coordinate system composed of signal power, signal monitor-
ing time and signal power. Through the spectrum monitoring
signal mining method proposed in this paper, the commu-
nication relationship and communication network between
communication individuals are extracted from the spectrum
monitoring data. The experimental results show that the
method has good adaptability to the massive spectrum moni-
toring signals, and can mine the communi-cation relationship
between the source nodes from the spectrum monitoring
data, and infer the communication network structure. Finally,
we realize the research of individual communication behavior
through the statistical analysis of network structure and node
communication quantity.

The research of this paper realizes the mining of the com-
munication relationship between the sources and the com-
munication network structure from the spectrum monitoring
data. Through the analysis of network connectivity, com-
munication direction, communication times, communication
order and other characteristics, we obtain the hierarchical
structure of the network, the hierarchical position of different
communication individuals in the network, and realize the
analysis of communication behavior of communication indi-
viduals in themonitoring area. The researchmethod proposed
in this paper provides a new method for the analysis of
spectrummonitoring data, and it can realize the acquisition of
hidden intelligence in military communication, investigation
and other related fields, and has practical application value.
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