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ABSTRACT Wireless sensor networks (WSNs) have been increasingly applied for environmental
monitoring in recent years. However, the sensor data drift is a serious issue affecting the reliability of
monitoring system. Based on the assumption that the neighboring nodes have correlated measurements, this
paper presents a novel algorithm using constrained extreme learning machine and Kalman filter (CELM-KF)
for tracking and calibrating drift of sensor data. CELM-KF has two phases: training phase and calibrating
phase. In the training phase, the wavelet denoising method is used for data preprocessing. Then the cluster
head trains the model of the constrained extreme learning machine (CELM) using the measurements of its
neighbors to obtain the prediction data of the target sensor. In the calibrating phase, we track and correct
the data drift of target sensor using Kalman filter. To evaluate the performance of CELM-KF, simulation
experiments on different datasets are conducted, and two parameters including decision coefficient and mean
square error (MSE) of CELM-KF are compared with those of existing algorithms. The simulation results
show that CELM-KF can successfully calibrate the sensor data drifts.

INDEX TERMS Wireless sensor network, drift calibration, extreme learning machine, Kalman filters,
environmental monitoring.

I. INTRODUCTION
Environmental monitoring is a typical application of wireless
sensor network (WSN) [1], [2]. AWSN node can be used in a
harsh environment to measure the environmental parameters
periodically, such as humidity, temperature, light and wind
speed [3]–[6]. In the field of environmental monitoring, sen-
sors are often deployed in unattended places for a long time,
which makes data drift become a serious issue affecting the
reliability of sensor data [7]–[10]. For example, Ni et al. [11]
found that the drift data of a soil CO2 sensor is 200% of the
real data, which is a serious problem for the final users who
need accurate data. Therefore, an automatic drift calibration
technique is critical for improve the data quality [12].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xuxun Liu .

The traditional calibration techniques include two main
categories: Non-blind and blind calibration. Non-blind cal-
ibration technique relies on the known reference informa-
tion [13]. A significant step of calibration technique is to
measure the response by applying a known stimulus to the
sensor network. Then the gain or offset can be obtained by
comparing the ground truth with the response. The refer-
ence information is generally high-fidelity measurement of
an observed quantity [14]–[16]. Another type of non-blind
calibration technique is based on a manual calibration of
a set of sensors, and other sensors are calibrated by those
calibrated manually [15]. The Non-blind calibration tech-
nique is suitable for the scenario of small-scale networks in
a specific space (such as indoor). However, it is not practical
in deployment of large-scale networks [16].

Usually, it’s almost impossible to measure the ground-truth
data of sensing region, so sensors can only be calibrated
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without ground-truth data. This calibration method is called
blind calibration [17]. Many previous blind calibration
approaches are based on the assumption that sensors are
deployed intensively, so that the measurements from neigh-
boring nodes are slightly correlated among each other [18].
Takruri et al. [19] utilize an interactingmultiplemodel (IMM)
to train the physical model of the surrounding sensors. Many
other works apply different prediction functions in the similar
framework, including support vector regression (SVR) [20]
and Kriging interpolation [21]. These methods exploit the
correlation of sensors, and Kalman filter is used to track the
drift. However, once the predicted data becomes inaccurate,
the erroneous prediction value will also be taken as the true
data. As a result, the accuracy of these approaches is limited
by the accumulative prediction error [22].

In this paper, we propose a blind calibration algorithm
(CELM-KF) using constrained extreme learning machine
and Kalman filter to track and calibrate sensor drift. Firstly,
we adopt wavelet denoising approach to improve the accu-
racy of calibration method. Then we utilize the constrained
extreme learning machine in each sensor to predict its read-
ing. Both the predicted values andmeasured values of sensors
are fed to the Kalman filter to detect and correct the drift of
sensor measurements.

The rest of this paper is organized as follows. We present
fundamental concepts and problem formulation in Section II.
Then the proposed CELM-KF algorithm is described in detail
in Section III. In Section IV, we present the simulation results
of CELM-KF using real-world datasets. Conclusions are
drawn in Section V.

II. FUNDAMENTAL CONCEPTS AND ASSUMPTIONS
We consider a WSN with a large number of sensors divided
into multiple clusters. Specifically, there is one cluster head
and several cluster members within each cluster, and the
sensors are randomly distributed. The cluster members only
measure the environmental parameters such as temperature,
humidity, and atmospheric pressure. The cluster head is
responsible for fusing the measurements from the cluster
members, and forwards the data to the base station via multi-
hops or one hop [23]. A common topology structure of
clustered WSNs is shown in Fig. 1.

Affected by the hostile environment or the manufacture
process of sensors, the sensors may develop drift in their
reading, which reduces the quality of data [24]. In this section,
we give some definitions and assumptions about data drift.
Definition 1: Sensor drift is a slow, one-way and long-term

variation of the sensor readings due to their manufacturing
process or environment conditions [25]. The sensor drift can
be expressed as follow:

d = X − T −W (1)

where d is the sensor drift, X is the sensor measurements, T
is the ground truth and W is the Gaussian noise.
Definition 2: Any sensor within the sensing range of sensor

i is called a neighboring node of sensor i.

FIGURE 1. An example of the topology of clustered WSNs.

Definition 3: The change trend of different sensor readings
is consistent during the same period, which is called the
spatial correlation among the sensors [26].
Assumption 1: If sensor i and its neighboring nodes have

spatial correlation, we can use the measurements of the
neighbors to predict the measurements of sensor i:

_x i = f (neighbours_data) (2)

where _x i is the predicted measurement of sensor i, and the
function f (neighbors_ data) represents the spatial correlation
of the sensor measurements.
Assumption 2: The data drifts are different for different

sensors. Actually, the drift is generated randomly and is
strongly related to its internal structure and the environmental
condition.

In this paper, we choose MSE and decision coefficient R2

to evaluate the performance of drift calibration algorithms.
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Here,n is number of training samples, xc is measured data of
sensor i and _xc is the predicted value of sensor i.

III. CELM-KF CALIBRATION ALGORITHM
CELM-KF runs on the cluster heads that have stronger
computational capability than the cluster members. Firstly,
the measurements of target sensor i and its neighbors col-
lected during the initial deployment period are applied to
model the spatial correlation among the sensors in cluster
heads. Once the cluster head receives the new data, CELM-
KF is used for data prediction. Afterwards, the MSE value
between the predicted data and measured data is calculated.
If MSE is less than a given threshold, it indicates that there
is no drift in sensor i. Otherwise, it indicates that drift has
occurred, and CELM-KF need to calibrate the data with drift.
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FIGURE 2. Data drift calibration framework of CELM-KF.

Then the cluster head reports the calibrated data to the base
station.

The goal of CELM-KF is to accurately predict the
measurements of sensor i under the interference of random
error (noise) and systematic error (drift). CLEM-KF includes
two phases: training phase and the calibrating phase. During
the training phase, we utilize wavelet denoising method to
clean the noise of sensors’ datasets. Then the sensor measure-
ments collected during the initial deployment period (training
data set) are taken as the input of CELM to predict the
measurements of the target sensor. During the calibrating
phase, both the predicted measurements and the de-noised
measurements of sensor i are fed to the Kalman filter to track
and correct drift di. Figure 2 shows the data drift calibration
framework of CELM-KF.

A. DATA PREPROCESSING USING WAVELET DENOISING
The measurements of sensors are often corrupted by noise.
So it is necessary to eliminate the noise before calibrating
drift. We utilize wavelet threshold denoising method [29] to
improve the accuracy of calibration.

Firstly, the noisy data is decomposed, then we can get the
wavelet decomposition coefficients, including the low and
high frequency coefficients.

ψa,b(t) = |a|−
1
2 ψ(

t − b
a

)

W =
∫
yiψa,b(t)dt (5)

where ψ is the wavelet basis, a is the scale parameter, b is the
translation parameter and W is the wavelet coefficients. yi is
the measurements of sensor i with noise.

Afterwards, the wavelet coefficients are estimated.

W̄ =

{
sign(W )(W − λ) |W | ≥ λ
0 |W | < λ

(6)

Finally, the wavelet coefficients are used to reconstruct
signal with the inverse transformation of wavelet transform.

_

ψ(ω) =
∫
ψ(t)dt

Cω =
∫ ∣∣∣_ψ(ω)∣∣∣2

|ω|
dω

ȳi = C−1ω

∫∫
W̄ψa,b(t)dadb (7)

where
_

ψ(ω) is Fourier transform, and yi is the measurements
of sensor i after denoising.

B. MODELING AND ANALYSIS OF CELM
Given sensor i and its neighbor node set {1, 2, . . . , i − 1,
i+1,. . . ,m}, we use a model function to predict the measure-
ments of sensors [30]. Themeasurements collected during the
initial deployment period are taken as the training datasets,
which consists of TX= {xj,t : j = 1, 2, . . . , i−1, i+1, . . . ,m,
t = 1, 2, . . . , n } and TY = {xi,t : t = 1, 2, . . . , n}. Here, TX
and TY denote data series, and t represents the time instant
of sampling. All the data are normalized into [−1, 1]. The
training goal is to minimize the MSE between the predicted
value and measurement of sensor i.

For ELM, it is not necessary to dynamically update the
weights of each layer, and it can produce an unique global
optimal solution [31]. However, the input weights and biases
of ELM are randomly generated which leads to unstable
precision of regression [32].

We extend the ELM model to CELM by constraining the
weight vector parameter. Let t1 and t2 represent two time
instants respectively. Let Xi,t2 represents the minimum sam-
ple andXi,t1 represents any sample other thanXi,t2 in TY.Xj,t2
represents the sample of time instant t2 and Xj,t1 represents
the sample of time instant is t1 in TX. The weight w of the
input layer can be calculated by equations (8-14).

w = a(Xj,t1 − Xj,t2) (8)

Xw+ b = aX (Xj,t1 − Xj,t2)+ b (9)

Here, a is a normalized factor, b is the bias of the hidden layer.
We label samples Xj,t2 and Xj,t1, as −1 and 1 respectively.

aXj,t1(Xj,t1 − Xj,t2)+ b = 1 (10)

aXj,t2(Xj,t1 − Xj,t2)+ b = 1 (11)

We can obtain b and a by solving equations (9) and (10):

b =
(Xj,t2 + Xj,t1)(Xj,t2 − Xj,t1)∥∥Xj,t1 − Xj,t2∥∥2 (12)

a =
2∥∥Xj,t1 − Xj,t2∥∥2 (13)

Now we can get the weight w:

w =
2(Xj,t1 − Xj,t2)∥∥Xj,t1 − Xj,t2∥∥2 (14)
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With the parameter w and b, the measurement of sensor i
can be predicted.

C. DRIFT CALIBRATION USING KALMAN FILTER
Let di,t denote the smoothing drift of sensor i. Here t is the
time index. At each time instant t , sensor imeasures a reading,
and the ground truth is ri,t . To estimate the drift of sensor,
the mathematical model given in (15) is used.

di,t = di,t−1 + wi,t , wi,t ∼ N (0,Qi,t ) (15)

wherewi,t is Gaussian noise andQi,t is state noise covariance.
Equation (15) is a function that tracks the state of the

sensor, and can used to track the change of drift over time.
In target tracking, it is necessary to establish a measurement
equation for the estimation procedure [33]. Suppose that there
is a measuring instrument in reality, which can measure the
sensor drift, then there must be an error associated with the
measurements:

zi,t = di,t + vi,t , vi,t ∼ N (0,Ri,t ) (16)

Here, vi,t is Gaussian noise, and Ri,t is the covariance of
measurement noise.

Actually, there is no instrument that can directly measure
the sensor drift. In this case, the ideal drift is equal to the
measured value minus the actual value:

di,t = ri,t − Ti,t (17)

Then we use _x i,t as a estimation of Ti,t .

di,t = ri,t −
_x i,t (18)

Equation (15) and (16) form a Kalman Filter tracking set of
equations. This modified KF algorithm runs in each sensor to
estimate its drift with an iterative procedure, which is shown
in Algorithm 1.

In Algorithm 1, n is the number of measurements of sensor
i. At time t , the drift estimation d_pre and the covariance
estimationp_pre are predicted based on the drift estimation
and the covariance estimation at time t-1. Then update the
Kalman filter gain K and the covariance estimation at time
t . After the algorithm is completed iteratively, we can obtain
the predicted data x̄i,t of sensor i.

x̄i,t = ri,t − di,t (19)

IV. EVALUATION
To evaluate the performance of CELM-KF algorithm, several
experiments were carried out on real sensor network datasets
in LUCE and JNSN systems. We compare the experimental
results of CELM-KF with SVR-KF [20] and SSP-KF [34].

A. DATASETS
The LUCE dataset comes from a WSN deployed in EPFL
[35]. The network consists of 97 sensors grouped in 10 clus-
ters according to their spatial proximity. They recorded
ambient temperature, surface temperature, relative humidity,

Algorithm 1 Drift Calibration Algorithm
input: Real measurement Zt ; Process variance Qt ; Initial

drift d0
Measurement variance Rt ; Initial covariance P0;
Initial drift value: d

Calculate:
1: for t = 1 to n do
2: d_ pre = dt−1;
3: P_ pre = Pt−1 + Qt ;
4: K = P_ pre/ (P_ pre+Rt );
5: dt = d_ pre +K∗(Zt – d_ pre );
6: Pt = −(1− K )∗P_ pre;
7: Xt−1 = Zt−1 − dt−1
8: end for
Output: estimated drift: Xt

solar radiation, soil moisture and wind direction at 31 seconds
intervals during the period from 1st October 2006 to 9th May
2007.

We selected three clusters from LUCE system. The sensor
IDs in the first dataset LUCE_1 were 10,14,15,17,18,19.
The sensor IDs in the second dataset LUCE_2 were
21,23,24,25,26,27,28. The sensor IDs in the third dataset
LUCE_3 were 81,82,85,86,87, 89. All datasets were col-
lected from 5th October 2006 to 13th October, 2006.
The JNSN dataset comes from a WSN deployed in the

campus of Jiangnan University (refer to Figure 3). This net-
work consists of 31 sensors including one sink, and recorded
ambient temperature, relative humidity, solar radiation at
10 minutes intervals during the period starting from 25th

April 2018 to 11th July 2018.
We selected two clusters from JNSN system. The sensor

IDs in the fourth dataset JNSN_1were 1,2,3,5,6,7. The sensor
IDs in the fifth dataset JNSN_2 were 8,9,12,13,14,16. All
datasets were collected from 15th May, 2018 to 11th July,
2018.

The data from LUCE_1, LUCE_2, LUCE_3, JNSN_1 and
JNSN_2 are resampled at 70 seconds intervals, 48 seconds
intervals, 35 seconds intervals, 16 minutes intervals, 27 min-
utes intervals, respectively. In LUCE_1, LUCE_2 and
LUCE_3, we used the data from the first 4 days as the training
datasets, and the data from the next 4 days as testing dataset in
the calibrating phase. In JNSN_1 and JNSN_2, we used the
data from the first 29 days as the training datasets, and the
data from the next 28 days as testing dataset. It is noted that
all the datasets in our experiments consist of only temperature
data, and the details of datasets are shown in Table 1.

B. EXPERIMENTAL RESULTS OF WAVELET DENOISING
Since the original datasets have no significant Gaussian noise,
we introduced different white Gaussian noise in datasets. The
MSE index is used to evaluate the denoising performance.
For example, we introduced noise to 2300 samples of sensor
10 from dataset 1 and the noise variance is 0.8. We can
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FIGURE 3. Sensors deployment of JNSN system.

TABLE 1. Experimental datasets.

observe that the denoising data curve (black color) is basically
close to the initial data curve (red color) in figure 4. TheMSE
between the initial data and the denoising data in figure 4 is
only 0.076. The result shows that wavelet denoising method
has good effect on noise suppression.

C. COMPARISON RESULTS OF TRAINING TIME
To verify the advantages of CELM in training time,
we selected 1000, 3000, 5000, 7000, 9000, 11000 samples in
the dataset III. We use different samples for SSP, SVR, ELM
and CELM to train model, respectively. The experimental
results are shown in Table 2.

It can be seen from Table 2 that SSP has the shortest
training time when the number of samples is 1000. How-
ever, as the number of samples increases, the training time
increases exponentially. The reason is that SSP needs to per-
form singular value decomposition on the training data. Com-
pared with ELM and SVR, CELM has the shortest training
time. Actually, with the increase of the number of samples,

FIGURE 4. Experimental results of wavelet denoising.

TABLE 2. Comparison results of training time among four algorithms.

the more support vectors of SVR need to train, resulting in
the longer training times. CELM speeds up the calculation
of output weights and thus it takes less training time than
ELM.

D. COMPARISON OF MODEL FITTING DEGREE
In the training phase of CELM-KF, the measurements of
sensor i and its neighbors are taken as the input of CELM.
Then the predicted data and measured data of sensor i are fed
into the Kalman filter to estimate the drift. Therefore, the key
of blind calibration algorithm is to select the mathematical
model with the highest model fitting degree.

We randomly selected one sensor’s data from the five
datasets in Table 1 to compare the model fitting degree of
CELM-KF with other algorithms. We repeated five exper-
iments and compared the average results of different algo-
rithms.

Table 3 shows that the MSE of CELM is lower than SVR,
SSP and ELM. The determination coefficient R2 of CELM is
higher than SVR, SSP and ELM.

E. DRIFT TRACKING AND CALIBRATION
Different exponential drift are added to the original dataset
of each sensor, starting randomly after the first 20 samples of
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TABLE 3. Comparison results of Model fitting degree among four algorithms.

FIGURE 5. Drift calibration of sensor 23 in dataset II.

test dataset, which means that, each sensor develops drift at
different time, the magnitude of drift is different, and the drift
is independent. The measurements of sensor 23 in dataset II
and sensor 16 in dataset V are used for this experiment.

Besides the drift, the measurement noise is introduced to
the datasets of different sensors to evaluate the effect of noise
calibrating of CELM-KF. In our experiments, we set Kalman
filter parameters Q = 0.1 and R = 0.01.

Figure 5(a) and Figure 6(a) show the calibration results
of CELM-KF of sensor 23 in dataset II and sensor 16 in
dataset V, respectively. Figure 5(b) and Figure 6(b) present

FIGURE 6. Drift calibration of sensor 16 in dataset V.

the error between themeasurements without drift and the cali-
bratedmeasurements of sensor 23 and sensor 16, respectively.
From Fig.5 and Fig.6, we can observe that the calibrated
curve is very close to that without drift.

Table 4 and Table 5 show the calibration results of CELM-
KF on datasets I andV. It can be seen that, for all the sensors in
both datasets, the average ofMSE values are less than 0.4, and
the average of R2 values are more than 96%. This experiment
results demonstrate that CELM-KF can effectively calibrate
the sensor drift and measurement noise.
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TABLE 4. Drift calibration performance based on dataset I.

TABLE 5. Drift calibration performance based on dataset V.

V. CONCLUSION
In this paper, we proposed a blind calibration algorithm
CELM-KF for calibrating sensor drift. CELM models the
spatial correlation among neighboring nodes and then predict
the future measurements. The predicted measurements are
fed to the Kalman filter to track and calibrate the drift in the
sensor readings. The simulation results show that CELM-KF
has obvious advantages over the existing similar algorithms
in terms of training time, model fitting degree and calibration
accuracy. In the future, we will implement CELM-KF on the
sensor nodes of JNSN system for practical application.
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