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ABSTRACT Due to the long aperture, the high-resolution imaging for strip-map SAR with missing data
is a challenge, in which the range migration correction and phase error correction are challenging. In this
paper, a high-resolution imaging method of this type of data based on compressed sensing (CS) is proposed,
which divides the strip-map data into several sub-apertures restored by CS and recombined to the strip-map
data. The basis matrix and the measurement matrix for CS are deduced. The sub-aperture data is autofocused
by the Projection Approximation Subspace Tracking (PAST) algorithm to meet the sparse requirement for
the reconstructed image and the intact phase error data is restored by CS in order to combine the sub-
apertures. A high-resolution image of the restored data can be obtained by conventional imaging method
which performs range migration and autofocus.

INDEX TERMS Synthetic aperture radar, compressed sensing, PAST algorithm, missing data, high-
resolution imaging.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) can obtain high-resolution
images in day/night and all-weather, so it has been widely
used in both the military and the civil application. In practice,
the electromagnetic wave transmitted or received by radar is
vulnerable to interference, which often results in damaged
or missing echo pulses. If we set the damaged or missing
data to zero and image the echo data by conventional
imaging method, the image quality will degrade to some
extent [1], [2]. Therefore, it is significant to improve the
image quality of such data [3], [4], which has much practical
value in engineering application, for example, the helicopter
SAR echo with pulses interrupted by the rotor.

There are many methods to recover the missing data. The
first kind is interpolation [5], which can recover the missing
data by interpolating based on the good data in the neigh-
borhood of the missing data. But, when the spectrum of data
is aliasing or the number of the continuous missing data is
large, the result isn’t ideal. The second kind is linear pre-
diction and extrapolation [6]–[8]. However, this algorithm is
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sensitive to predictionmodel and signal to clutter ratio (SCR),
its recovery ability will exponentially decay when the miss-
ing data is large. The third kind is the spectrum estimation
(e.g. GAPES [1], [2], [9], [10] and MIAA [11] et al.). It is a
nonparametric spectrum estimation method with the advan-
tage of high robustness without affected by model parame-
ter. It has strong restoration ability for 1-D signal or small
illuminated scene. Nevertheless, it needs a lot of matrix
inversions and multiple iterations which is hard to implement
in 2-D SAR data of large size.

Compressed Sensing (CS) [12]–[14] is a novel signal
reconstruction algorithm. As long as the signal satisfies the
sparse condition at a certain domain, the time domain signal
can be sampled at a frequency far below the sampling fre-
quency demanded by the Nyquist Law. The original signal
is likely to be restored perfectly using compressed sensing
algorithms. When the CS theory is proposed, many scholars
study the imaging methods of sparse frequency [15], [16]
and azimuth sparse aperture [17]–[20]. In [21], a 2-D sparse
sampling method was proposed to reduce the computational
burden and the complexity of sparse matrix, which uses
sub-block processing in range. After obtaining the sub-
block images, the complete image was formed by image
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mosaicking. All the above mentioned imaging methods are
based on spotlight mode data, and the current hardware
can meet the computational requirements of reconstruction
because of the small data matrix in this mode. Literature [22]
studied the CS processing method of sparse aperture SAR
for strip-map mode, which was based on the R-D imaging
algorithm. This method just corrected the range walk without
range curvature correction and phase error compensation,
leading to degrade image resolution.

At present, the processing difficulties mainly include four
aspects for strip-map SAR with missing data. The first is the
large amount of data, which leads to the image reconstruc-
tion computational complexity far beyond current hardware
computational ability. The second is that the range migration
correction must be essentially considered because of the long
strip-map aperture, otherwise the image resolution will be
degraded. The third is the phase error compensation. The
pulse interval is non-uniform for the missing data, so the
pulses can’t be transformed into frequency domain, and the
performance of the conventional autofocusing algorithms
is limited to a certain extent. Because the SAR signal is
a 2-D frequencymodulated signal which can’t meet the sparse
requirements of CS theory as a result of its wide Fourier
spectrum. The fourth problem is that we can’t restore the
missing data directly in the frequency domain.

To solve the above difficulties, this paper proposes a
reconstruction method based on CS for missing data. First,
the strip-map data is divided into several sub-apertures, which
significantly improves the computational efficiency. The sub-
aperture missing data is restored by CS and recombined to the
strip-map data. Second, each sub-aperture data is transformed
into the image domain by preprocessing and CS is utilized to
reconstruct the sub-image. After that, the original data can be
restored. Third, each sub-aperture data is autofocused before
reconstructing image in order to meet the sparse require-
ment of CS theory. Fourth, the compensatory phase error
signal is restored by CS in order to ensure the sub-aperture
recombining without ghost images. Finally, the range migra-
tion of the missing data is corrected, and a high-resolution
image is obtained by processing the restored data with the
conventional imaging method [23] and autofocus [24]. The
effectiveness and the practicability of the proposed method
are demonstrated by the measured data.

The organization of this paper is as follows: Section II ana-
lyzes the data recovery method based on CS. In Section III,
the autofocus method of sub-aperture is introduced.
In Section IV, the process of restoring the phase error data
using CS is researched. Section V presents the signal pro-
cessing flow of the algorithm. In Section VI, processing of
the measured data validates the effectiveness of the proposed
method. Finally, we make some conclusions in Section VII.

II. THE DATA RECOVERY METHOD BASED ON CS
A. ZERO PADDING AND MOTION COMPENSATION
For the missing data of strip-map SAR, we first fill the miss-
ing data by zero padding prior to the following processing.

For the moving platform, there often exists motion error,
which causes serious degradations in the final images [25],
so the trajectory deviations must be compensated before
imaging. The phase error due to the trajectory deviations
in x and y directions can be written as [26].

φ (t, θ) =
4π
λ
(−1x (t) sin (θ)+1y (t) cos (θ)) (1)

In (1), 1x (t) and 1y (t) are the trajectory deviations in x
and y directions respectively, and θ represents the incidence
angle, which is written as shown in (2)

θk = cos−1
(

H
R0 + k ·1R

)
(2)

where H represents the height of the plane above the topog-
raphy, R0 is the range to the reference point, and 1R is the
range bin size.

B. SUB-APERTURE SEGMENTATION
The pulse number of strip-map data is far beyond the data
recovery capacity of CS and the computational complexity
is far beyond current hardware computational ability, so it is
the next step to divide the strip-map data into several non-
overlapping sub-apertures which are processed by algorithms
of the spotlight mode. According to the data characteristics
of the strip-map and the spotlight [27], the sub-aperture data
segmentation scheme is shown in Fig. 1.

FIGURE 1. The sub-aperture segmentation of the original data.

where L is the pulse number of the whole aperture, the num-
ber of sub-apertures is J = L/W , W is the pulse number of
the sub-aperture, which range is normally as

(PRF)2
/
(2 · Ka) ≤ W ≤ (PRF)2

/
Ka (3)

In (3), PRF is the pulse repetition frequency, and Ka is the
azimuth chirp rate.

In the following section, in order to demonstrate the
advantage for the division of the aperture, the computational
complexity after sub-aperture segmentation and original data
is compared.

Suppose that S is an arbitrary k-sparse signal in CN and
the sparse measurement vector has M samples. The complex-
ity of OMP (the reconstruction algorithm in this paper) is
around O (kMN ) [13].

Assume that the azimuth pulse number of the sub-aperture
is N, the available pulse number is M(M<N), and the sub-
aperture is a k-sparse signal, so the original data has JN com-
ponents, the available pulse number is JM and the original
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aperture is a Jk-sparse signal. The total cost of sub-aperture
segmentation is O (JkMN ) and that of the original aperture
is O

(
J3kMN

)
.

C. SUB-APERTURE PREPROCESSING
For each sub-aperture, we can not directly restore the missing
data using CS, where preprocessing is needed. For each sub-
aperture, we perform reconstruction in the image domain.
The processing is as follows.

The radar transmits a Linear Frequency Modulated (LFM)
signal with chirp rate k , the 2-D echo signal reflected from
the targets is

S(t, τ )=σ · rect(
t
Ta

)rect(
τ − 2Ra

/
c

Tr
)

· exp
(
jπk

(
τ − 2Ra

/
c
)2)
·exp

(
−j

4π fc
c

Ra

)
(4)

where rect(·) represents the time window, which is a rectan-
gular function, t is the slow (azimuth) time, Ta is the azimuth
aperture time of sub-aperture, τ is the fast (range) time, c is
the light velocity, Tr is pulse duration, fc is carrier frequency,
Ra is the distance from the target to the antenna phase center,
and σ is the target reflection coefficient.
Performing range Fourier transform, matching filter and

motion compensating on Eq. (4), we can obtain [27], [28]

S(t, fτ ) = rect(
t
Ta

) · rect(
fτ
B
) · σ

· exp
(
−j

4π (fc + fτ )
c

(Ra − R0)
)

(5)

where R0 is the distance between the antenna phase center
and the sub-aperture imaging center, and B = KTr is the
bandwidth of the transmitted signal.

Performing range inverse Fourier transform on Eq. (5),
we can obtain

S(t, fτ ) = σ · B · rect(
t
Ta

)

· Sinc
{
B
[
τ −

2
c
(Ra (t)− R0)

]}
· exp

(
−j

4π fc
c

(Ra (t)− R0)
)

(6)

After range compression, we can reconstruct the image in
azimuth based on CS.

D. SUB-APERTURE RECONSTRUCTION BASED ON CS
If the radar echo reflection intensities of some patches are
much stronger than other patches in the imaging area, or the
targets occupy a tiny fraction of the whole imaging area,
we assume that the scene is sparse [17], [29].

Because we perform imaging in the azimuth frequency
domain, which meets the sparse requirement, this paper uti-
lizes the Fourier Basis as the Base Matrix.

Assume that the azimuth pulse number of the sub-aperture
is N and the available pulse number isM (M < N ), the miss-
ing pulse number is N −M . Firstly, we establish the azimuth

basis matrix ϕ = {ϕ0, ϕ1, . . . , ϕN−1}N×N :

ϕn = exp(−j2π · (n ·1fa −
PRF
2

) · n′ ·1ta)

(0 ≤ n′ ≤ N − 1) (7)

where ϕn is the column vector, 1fa = PRF
N is the azimuth

frequency interval, and 1ta = 1
PRF is the pulse repetition

interval.
TheM × N azimuth measurement matrix A is made up of

M lines from aN×N unit matrix. The location of theM lines
corresponds to the location of the available echo pulse. The
azimuth measurement vector of each range is expressed as:

Sa = Aϕθa (8)

In (8), θa is the azimuth sparse vector, namely the image
reconstructed in azimuth frequency domain for each range
unit. CS reconstruction can replace the Fourier transform
of Eq. (6).

Carrying out the reconstruction processing of each range
unit with the OMP algorithm iteratively, we get the recon-
structed image of each sub-aperture.

After performing azimuth inverse Fourier transform on the
reconstructed image, the range compressed data is obtained.
So far, the missing pulse data has been restored and the
azimuth data has been restored completely. Then range
Fourier transform is performed on the range compressed
data, and multiply the data with the following formula (9).
We can obtain the complete data of each sub-aperture after
performing range inverse Fourier transform.

Sref (t, fτ ) = exp(−jπ
f 2τ
k
) · exp

(
−j

4π (fc + fτ )
c

R0

)
(9)

E. SUB-APERTURE RECOMBINING
Because there is no overlap between the sub-apertures, the
integrated strip-map data can be directly obtained by recom-
bining all sub-apertures in sequential order.

III. SUB-APERTURE AUTOFOCUS
There often exist phase error, which leads to defocus in
azimuth, and fail to satisfy the sparse requirement of CS the-
ory. Even if the scene is sparse, it is impossible to reconstruct
the image. Therefore before reconstructing the sub-aperture
image based on CS, we should perform autofocus on each
sub-aperture data.

Because the missing data is sparse in azimuth, if we
transform the missing data into frequency domain by setting
the damaged or missing data to zero, the obtained images
are greatly defocused. The performance of PGA [30] and
ROPE [31] algorithms will not be ideal. The EMMLE
algorithm [32] can get better focusing performance with-
out a window, but it is a computational expensive task and
also limits the engineering application. This paper selects
the PAST algorithm [33] to estimate the phase error of
the sub-aperture, which avoids the procedures of covari-
ance matrix estimation and eigenvector decomposition of the
EMMLE algorithm.
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Literature [33] introduces the PAST algorithm of full data
in details. For the missing data, we need to do some improve-
ment on PAST algorithm, the processing is as follows.
Step 1: Remove the data of zero padding position and cal-

culate the corresponding eigenvector of the largest eigenvalue
by the PAST algorithm.
Step 2: Extract the phase part (phase error) of the

eigenvector according to formula (10).

Errorphase =
VectorMax
|VectorMax |

(10)

where Errorphase is the phase error, VectorMax presents the
corresponding eigenvector of the largest eigenvalue.
Step 3: Compensate the phase error of the missing data

according to formula (11).

Dataafter = Databefore · conj(Errorphase) (11)

In (11), Databefore and Dataafter are the sub-aperture data
before and after autofocus, and conj(·) represents taking the
conjugate of the content in bracket.
Step 4: Get an initial image by inserting zeroes and per-

forming Fourier transform for the azimuth missing data. Per-
form inverse Fourier transform after moving the strongest
scattering point to the Doppler zero point for each range gate.
Step 5: Transform the image back into the data domain,

and remove the data of zero padding position.
Step 6: Extract the corresponding eigenvector of the largest

eigenvalue by the PAST algorithm and extract the phase part
of the eigenvector and compensate the phase error of the
missing data.
Step 7: Repeat the third to the sixth step, until it meets the

end condition of the iteration.
After performing the above steps, the phase error is com-

pensated. The accuracy of reconstructed image based on
CS is guaranteed.

IV. PHASE ERROR SIGNAL RECOVERY
When the sub-aperture is autofocused, there is unknown
linear phase [24]. It will cause ghost images for the strip-
map data to recombine directly the recovered sub-aperture
data after autofocus. Therefore before combining the sub-
aperture data, it is necessary to recover the phase error signal
compensated by autofocus, in order to ensure the accuracy
and integrity.

The phase error signal of the original missing data is non-
continuous, as shown in Fig. 2.

From Fig. 2, the phase error is non-continuous because of
the non-continuous for the missing pulse position in raw data.

We have recovered the missing data entirely by CS, so the
non-continuous phase error signal can not be used to compen-
sate the continuous data. This paper proposes a method which
recovers the phase error signal by CS to turn non-continuous
phase error signal into continuous signal. The process is as
follows.

First, we perform Fourier transform on the same range
gate signals before and after PAST autofocus for each

FIGURE 2. The phase error signal of the missing data.

FIGURE 3. The frequency domain signal of the phase error.

FIGURE 4. The CS recovery phase error signal.

sub-aperture, then conjugate multiplication will be applied
to the signal. The phase error signal of missing data will be
obtained. It is shown in (12)

2 = fft(S1) · conj(fft(S2)) (12)

where S1 and S2 are the corresponding signals before and after
autofocus of the same range gate respectively, fft(·) represents
performing Fourier transform on the content in bracket.
2 still is a sparse signal in frequency domain, as shown

in Fig. 3.
The phase error signal is reconstructed sparsely in the fre-

quency domain with the basis matrix ϕ and the measurement
matrix A introduced in section II.D.

2 = Aϕφ (13)

where, φ is the frequency domain sparse vector of 2. After
sparsely reconstructing with the OMP algorithm, we perform
inverse Fourier transform for φ. The complete phase error
signal can be obtained, as shown in Fig. 4.

To compare the Fig. 2 and 4, we find that the phase error
signal is changed from non-continuous to continuous after
CS recovery.

V. ALGORITHM FLOW
The algorithm flow of the high-resolution imaging method
presented in this paper is shown in Fig. 5.
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FIGURE 5. Algorithm processing flowchart.

VI. THE MEASURED DATA PROCESSING RESULTS
AND ANALYSIS
The paper firstly takes the measured data of a certain type
of helicopter airborne SAR as an example in order to ana-
lyze the imaging results of the proposed algorithm. The
major radar parameters are as follows: radar carrier frequency
fc = 10GHz, signal band width B = 1GHz, range sampling
rate fs = 1.2GHz, pulse width τ = 15µs, and pulse repetition
frequency PRF = 2000Hz. The pulse number of the entire
aperture is 16,384, and the pulse number of the sub-aperture
is 2048. As this type of helicopter radar is located at the top of
the helicopter rotor, it is subject to rotor blocking effect, and
the received echoes are disturbed, which results in missing
echo data.

The original missing radar echo data of the helicopter
SAR is shown in Fig. 6.

FIGURE 6. Original missing echo data.

FIGURE 7. Power summations of each pulse.

FIGURE 8. Sub-aperture image reconstructed using CS.

In Fig. 6, there are dark stripes. In order to demonstrate the
dark stripes of the interfered data distinctly, the zoomed in
original data of the above marked areas is shown. It is found
from Fig. 6 that the power of the interfered data is lower than
that of the undisturbed data. The dark stripes in the strips are
the interfered pulses. The power summations of each pulse
are shown in Fig. 7.

It can be seen from Fig. 7 that the disturbed pulse power is
significantly weaker than the available pulse. The positions
of the disturbed pulses can be distinguished according to the
difference of the power, which is below the threshold. The
threshold is defined as

Thre =
PowerMax + PowerMin

2
(14)

In (14), Thre presents the value of the threshold, PowerMax is
the max value of the power summations, PowerMin is the min
value.

The sub-aperture image reconstructed using CS from Fig. 6
is shown in Fig. 8.

The sub-aperture data recovered using CS is shown
in Fig. 9.

It can be seen from Fig. 9 that there is no damaged pulse
data in the sub-aperture data, and all the data are recovered.
The strip-map data can be obtained by recombining the sub-
aperture data, which is shown in Fig.10.

It can be seen through the comparison of Figs. 10 and 6
that the original missing data has been fully recovered.
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FIGURE 9. Recovered sub-aperture data using CS.

FIGURE 10. Recovered full aperture data.

FIGURE 11. Imaging results of the strip-map data: (a) Image of the
original missing data, (b) Image of the interpolation recovered data,
(c) Image of GAPES recovered data and (d) Image of the proposed
method in this paper.

The imaging results of the original missing data, interpola-
tion recovery data, GAPES recovered data and the proposed
method are shown in Fig.11.

FIGURE 12. The zoomed in images of the marked areas: (a) Image of the
original missing data, (b) Image of the interpolation recovered data,(c)
Image of GAPES recovered data and (d) Image of the proposed method in
this paper.

Fig. 11 (a) shows the image of the original missing data.
Fig. 11 (b) shows the image of the interpolation recovery
data with Sinc interpolation. Fig. 11 (c) shows the image of
the GAPES recovery data using the 100 pulses in the neigh-
borhood of the missing data. Fig. 11 (d) shows the image of
the missing pulse data recovered with the proposed method.
In the following section, through the zoomed in images of
the above marked areas, comparison is made among these
methods.

By comparing the four images in Figs. 11 and 12, it can be
seen that, due to the loss of the pulse data, the image quality of
the original data degrades significantly. The ghost images are
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TABLE 1. Image entropy value.

very apparent. Although the interpolation method somewhat
improves the result, the obtained image is smeared with
the ghost images. Due to the fact that the GAPES recovery
method adopts the 100 pulses in the neighborhood of the
missing data to recover the missing data, its computational
quantity is acceptable. However, the spectral width of the
100 pulses is far narrower than that of the entire aperture,
the GAPES recovered data does not include all of the spec-
tral information of the missing data. Although the imaging
quality is improved, the ghost images are still present. The
proposed method overcomes the ghost images of the original
the missing data, improves the image quality, and achieves a
high-resolution image with excellent focusing.

In the following section, in order to show the performance
of the proposed algorithm, the image quality is quantitatively
evaluated by the image entropy values.

The entropy of the 2-D SAR image is defined as follows:

E (P) = −
Na−1∑
i=0

Nr−1∑
j=0

P (i, j) · ln(P (i, j)) (15)

where Na is the azimuth number of the image, Nr is the range
number of the image, and P (i, j) is the scattering intensity
density of the image, which is defined as:

P (i, j) =
|S (i, j)|2

Q(S)
(16)

where Q(S) is the total energy of the image, which is defined
as

Q(S) =
Na−1∑
i=0

Nr−1∑
j=0

|S (i, j)|2 (17)

where S (i, j) is the reflection intensity of each point in the
image.

Regarding the imaging result of the same data, the clearer
the image is, the smaller the corresponding entropy value is,
and the more blurred the image is, the greater the entropy
value is. The entropy values of the four whole images
in Fig.11 are shown in Table 1.

To compare of the entropy values of the four images,
we can find that the entropy value of the SAR image obtained

TABLE 2. The contrast of the four images.

by the proposed algorithm is significantly smaller than those
of the other three images, thus it is proved that the proposed
algorithm greatly enhances the imaging quality of the strip-
map missing data.

For further quantifying the comparison results, another
evaluation indicator is applied i.e., the contrast of image.

The contrast of the 2-D SAR image is defined as follows:

Q(S) =
Na−1∑
i=0

Nr−1∑
j=0

|δ (i, j)|2pδ (i, j) (18)

where

δ (i, j) = ||S (i, j)| − |Sr (i, j)|| (19)

where S (i, j) and Sr (i, j) is the reflection intensity of each
point and the four points around it, pδ (i, j) is the distribution
probability which gray difference between adjacent pixels
is δ (i, j).
The contrasts of the four whole images in Fig.11 are shown

in Table 2.
From the table 2, the excellent performance of the proposed

method is further demonstrated.
In order to further validate our method, we provided the

performance of another group measured data with stronger
targets.

The major parameters of the radar are as follows: radar
carrier frequency fc = 10GHz, signal band width B =
300MHz, range sampling rate fs = 400MHz, pulse width
τ = 7.5µs, and pulse repetition frequency PRF = 500Hz.
The pulse number of the entire aperture is 8192, and the pulse
number of sub-aperture is 1024.

The imaging results of the four methods are shown
in Fig. 13.

The entropy values of the four whole images in Fig. 13 are
shown in Table 3.

The contrasts of the four whole images in Fig. 13 are shown
in Table 4.

The results of Fig. 13, Table 3 and Table 4 demonstrate the
excellent performance of the proposed method against other
three methods with stronger targets. Fig. 13 shows that the
proposed method has better image quality compared with the
other three methods.

VOLUME 8, 2020 5967



H. Duan et al.: High-Resolution Imaging Method for Strip-Map SAR With Missing Data

FIGURE 13. Imaging results of the strip-map data: (a1) Image of the original missing data, (a2)The zoomed in images of the marked areas,
(a3)The 3-D amplitude maps of the marked areas, (b1) Image of the interpolation recovered data, (b2)The zoomed in images of the marked
areas, (b3)The 3-D amplitude maps of the marked areas, (c1) Image of GAPES recovered data, (c2)The zoomed in images of the marked areas,
(c3)The 3-D amplitude maps of the marked areas, (d1) Image of the method proposed in this paper, (d2)The zoomed in images of the marked
areas, (d3)The 3-D amplitude maps of the marked areas.

TABLE 3. Image entropy value.

VII. CONCLUSION
This paper proposes a high-resolution imaging method for
strip-map SAR with missing data based on compressed sens-
ing. First, the strip-map missing data is divided into several
sub-apertures in order to reduce the data amount and the
computational complexity, then the intact sub-aperture data
is recovered with CS. The full strip-map data are obtained by

TABLE 4. The contrasts of the four images.

combining the sub-aperture data. Through the sparse PAST
algorithm, autofocus is performed on each sub-aperture, thus
ensuring the sparse requirement of the reconstructed image.
Themissing phase error signal is recovered using CS, in order
to ensure the correctness of the sub-apertures combining. The
results of the measured data indicate that the method detailed
in this paper ensures the correctness of the data recovery and
resolves the ghost images for strip-map SAR with missing
data. The entropy value and the contrast of the image from the
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proposed method are markedly better than those of the other
three imaging results, which proves that the proposed method
enhances the imaging quality of the strip-map missing data,
and also proves that the proposed method is feasible and
effective.
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