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ABSTRACT Identifying geochemical patterns from backgrounds and generating associated mineralization
remains challenging due to the complex structure of mineral deposits. To learn how to identify geochemical
anomalies that are spatially associated with mineralization, we need in-depth knowledge of the dependence
process. Quantitative association rules (QARs) are applied to discover remarkable relations and dependencies
between attributes in a dataset, but it is difficult to generate relationships from geochemical data. In previous
studies, no methodology to find association rules is proposed to deal with geochemical data problem, and the
classical methods designed for Boolean and nominal attributes require previous discretization, which makes
the whole process limited in processing complex data. In this paper, we proposed a hybrid method of graph
clustering and quantitative association rules (GCQAR) as a new way of identifying significant geochemical
patterns. Graph Clustering (GC) is used as partitioning paradigm because of its ability to handle large-scale
datasets. The GC is based on modularity to effectively generate the groups of the graph, to avoid the over-
partitioning, and to cover all the rules. In each partition, a set of geochemical quantitative association rules is
produced. The results obtained in the experimental study performed on data collected in the field of Xiaoshan,
Henan province, China. Our GCQAR has significant benefits in terms of recognition geochemical patterns
compared to the traditional methods used in the field of geochemistry.

INDEX TERMS Recognition geochemical pattern, quantitative association rules, graph clustering,
modularity.

I. INTRODUCTION
In recent decades, research on processing and recognition of
geochemical anomalies that can be used in mineral explo-
ration has made important progress. It is essential to look
for the anomalies associated with mineral deposits [1], called
significant anomalies. The anomalies are often interpreted as
a basic sign of mineralization [1]. Besides, the distribution of
geochemical elements is heterogeneous, and usually occurs
at different temporal/spatial scales, and interconnects in var-
ious ways. Computational methods are necessary to extract
knowledge from geochemical elements [2] that could help
to identify hidden geochemical patterns related to mineral-
ization [1]. Association rule is a machine learning method,
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and one of the most frequently used approaches to find rela-
tionships between different attributes in a database. It was
first introduced in 1993 by Agrawal et al. [3], and the main
target was to discover frequent patterns [4]. Thereafter, a large
number of studies have been proposed to find quantitative
association rules (QARs) [5]–[9].

Discovering frequent patterns plays a fundamental role
to produce interesting relationships among quantitative data.
Once the frequent patterns have been found, it is simple to
generate association rules that satisfy both minimum support
and minimum confidence [10].

The QARs are grouped into various categories [11] accord-
ing to their computational techniques [12]–[16]. Commonly
used methods are clustering-based approach [15]. Many of
these clusters apply a domain partition technique and focus on
logical interval generation using the notion of dense regions.
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The difficulty of these methods lies in reaching optimal par-
titioning and might give rise to information loss. In addition,
clustering methods are not all scalable for high dimensional
cases and particularly considering that data can be highly
skewed and very sparse.

A basic issue of the traditional association rules is to find
frequent patterns in a database, this turns out to be even
more problematic in geochemical data problem, due to the
compositional nature [17], [18] of data, various dependencies
exist, and the large-scale datasets that surpass the processing
capability of the conventional system. In addition, geochem-
ical exploration is based on the treatment of a huge number
of variables from the relatively large area, and the elements
in real-world are more or less associated in terms of cer-
tain relationships. Hence, traditional association rules have
limitations in processing complex data. As far as we know,
no previous research has investigated to identify geochemical
pattern using association rules.

In order to properly address this issue, it is worthwhile to
discover hidden structures from geochemical data to manage
nonlinear and complex relationships before implementing
quantitative association rules, because geochemical data usu-
ally coexist in heterogeneous geologic systems and connect
with each other in difficult ways, so to identify appropriately
significant anomalies. Furthermore, the geochemical anoma-
lies generated are used as a direction of frequent patterns that
lead to discovering significant patterns and the form of the
rules. Geochemical patterns also have a sense of conditions
for the rules, which would eliminate the discovery of certain
redundant and uninteresting rules.

This work presents GCQAR, to discover significant pat-
terns associated with mineral deposits from massive amounts
of input data. The proposed method sequentially applies
graph clustering and quantitative association rules. The geo-
chemical anomalies identified are more meaningful in the
context ofmineralization, and had stronger spatial association
with the known deposits in the study area.

This work is organized as follows: Section 2 introduces
related works. The geochemical data and pre-processing are
provided in Sections 3, 4. Section 5 provides details of our
GCQAR method to generate quantitative association rules
from geochemical data problem. In Section 6, experiment
results and the comparison results with other approaches are
provided. In Section 7, through experiments, we summarize
the advantages and disadvantages of the GCQAR.

II. RELATED WORKS
Various approaches have been proposed to identify geochem-
ical anomalies related to mineralization. Bölviken et al. [19]
introduced the application of Fractal/multi-fractal models to
quantify the spatial distribution of geochemical data. Later,
a variety of fractal/multi-fractal models have been developed,
such as the concentration-area (C-A) fractal model [20], [21],
the spectrum-area (S-A) multifractal model [22], and the
concentration-distance (C-D) fractal model [23], on the basis
of scaling characteristics of geochemical data. Multivariate

statistics such as principal component analysis (PCA) [24]
and factor analysis (FA) [25], etc., are used to extract the
multivariate geochemical data for mineral exploration. The
previous methods are based on certain idealized assumptions,
and their concern of only lower order, linear features makes
them fail to support the complex nature of geochemical
data.

A few works in literature are proposed to identify geo-
chemical anomalies based on machine learning. In the
research of supervised Learning, Abedi et al. [26] intro-
duced support vector machine (SVM) to explore the
Now Chun porphyry-Cu deposits, located in the Kerman
province of Iran. Logistic regression (LR) [27], [28] is
used to create a multivariate relationship between depen-
dent (e.g., deposits or non-deposits) and independent vari-
able (e.g., faults, geochemical anomaly) to estimate the
probability of a specific event related to mineraliza-
tion. Artificial Neural Networks [29]–[32] have shown
advantages over many other methods in geochemical
anomaly recognition. Chen et al. [30] employed a contin-
uous restricted Boltzmann machine (CRAM) to recog-
nize multivariate geochemical anomalies in the Baishan
district in northeastern China. Hinton et al. [33] used a
deep belief net (DBN) to identify multivariate geochemi-
cal anomalies. Carranza and Laborte [34] used random for-
est for data-driven modeling of mineral prospectivity with
small number of prospects and data with missing values,
in Abra (Philippines). A combination of m-branch smooth-
ing, C4.5 decision tree and weights-of-evidence techniques
was introduced by Chen et al. [35] for mineral prospectivity
mapping. In the research of unsupervised learning, a deep
autoencoder network was introduced by Xiong and Zuo [29]
to encode and reconstruct a geochemical sample population
with unknown complexmultivariate probability distributions.
Unsupervised clustering [36]–[40] mainly include k-means
clustering [41], fuzzy c-means clustering [41], [42]. These
clusters are implemented to describe the spatial distribution
of data and define the locations of anomalies. Fouedjio [43]
developed an agglomerative hierarchical clustering approach
that considers the spatial dependency between observations.
Self-organizingmap (SOM) [44], [45] is used to identify rela-
tionships and patterns inmultidimensional datasets. Although
studies have been conducted by many authors, this problem
is still insufficiently explored.

In other hand, the massive amount of data and applica-
tions have led to the development of numerous methods for
generation of association relationships. In literature, most of
the existing association rules are based on classical methods
proposed by Agrawal, Imielinski and Swami such as Apriori
[46]–[48], FP-Growth [49] and SETM [50]. These methods
are designed to work perfectly with Boolean, nominal values
and categorical. Apriori based on candidate creation, then
investigation while other methods such as FP-Growth, tries
to create a tree without candidate generation, and then finds
the frequent items by scanning on the tree. Later, extensive
studies were carried out to improve these methods and their
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applications [46], [51]. However, these methods are based
on the generation of a large number of rules suffering from
a problem of choosing a threshold and take more database
scan in order to calculate the frequency of itemset, which
leads to an increase in execution time and memory overhead.
Besides, the rules with numerical attributes cannot be discov-
ered by these methods. Though the number of contributions
that have been proposed to adapt these methods to deal
with QARs, they all require previous discretization, where
data are replaced by interval labels using data discretization
or concept hierarchies. However, such simple discretization
may lead to the generation of an enormous number of rules,
most of which end up being unrelated or uninteresting. Even
though minimum support thresholds help reduce the explo-
ration of a good number of uninteresting rules, but several of
them are still not interesting. Another large combination of
strategies based on evolutionary algorithms (EA) [52], [53]
that have been introduced to build a set of QARs. However,
these methods require high implementation of knowledge
exploration.

A new approach is therefore needed for the generation
of frequent patterns from geochemical data problem. In this
study, we have proposed a three-stage approach to this
problem:

1) Implement graph clustering (GC) to generate clusters
with significant frequent patterns (or geochemical pat-
terns) from a complex background.

2) Obtain a set of QARs (RuleSet) from frequent patterns
discovered in each cluster.

3) Evaluate the quality of the rules over the entire clusters
with the aim of selecting the remarkable rules that
present the best behavior between variables in the entire
dataset.

III. STUDY AREA
The geological map of the study area is provided by the Insti-
tute of Geology and Mineral Resources and Development of
Henan Bureau.

The investigation area is located in the southern mar-
gin of north China Platform and in the middle section of
the Huaxiong Tailong Group (Fig. 1). It is an important
metallogenic belt of the Yuxi Gold Mine. The stratigraphic
zone of the investigation area belongs to the western Henan
section of the north China stratigraphic zone, and is spanning
the Xiong’er Mountain Community and the Dianchi-Cheng
Mountain Community.

The study area has a typical double-layer structure. The
first layer consists of the crystalline basement, which is the
Taihua metamorphic complex group. The second layer is
the caprock, which is distributed from the bottom to the top,
namely, Lushan group, Xiong’er group, Guandaokou group,
Fuyang group, Luojing group, Sinian, Cambrian, Cretaceous,
Paleogene, Neogene, and Quaternary. The Taihua complex is
exposed in the core of the Lushan fault, and is surrounded
by the broad-angled Xiong’er group. The Quaternary system

forms the loess area in the southeastern and northwestern
fault basins, and the remaining strata are scattered. The meta-
morphic rocks in the inspection area are developed with
an exposed area of 340km2, and constitute of the crys-
talline basement of the Lushan fault, which is an important
gold-bearing geological body in the area. The metamorphic
rocks are composed of six major types of rocks, including
slightly metamorphic rock, amphibolites, quartzite, schist,
felsic rock, and gneissic granite. Furthermore, the exposed
area of the intrusive rocks is about 260km2, which more
than 90% are Neoarchean metamorphic granitoid, and are
concentrated in the crystalline basement of the Lushan faulted
area. The gabbro, diabase, granite porphyry, indosinian syen-
ite porphyry and late Yanshanian granite porphyry in the
Mesoproterozoic bear period are scattered in the caprock
zone. The middle Proterozoic Xiong’er volcanic rocks spread
throughout the region, accounting for the total of the inves-
tigation area. The type of these rocks consist of volcanic
lava and volcanic clastic rock. Lava rock can be divided into
calc-alkaline series and alkali-calcium series according to
alkalinity.

The fracture structures in the survey area are very
developed and divided into four groups according to their
distribution direction, namely: northeast (NE), northwest
(NW), east-west (EW), and north-south (NS). There are
more than 20 large-scale fractional zones, with the trend
is about 60◦, tend to northwest (NW), southeast (SE), and
the inclination is generally between 60◦ ∼ 80◦. The north-
westward fracture is relatively developed and concentrated
in belt production. A considerable part of this fracture is
the ore-controlling structure of gold, silver, copper, lead,
tungsten, barite and other minerals. The east-west fracture
zones are generally of a huge scale, and there are many other
normal fractures. Besides, two north-south fracture zones are
developed in the area, Zhuyuangou-Yuwang fracture zone
in the west and Dagugou-Taowangcun fracture zone in the
east.

The Neoarchean granitic greenstone terrane and the mid-
dle Proterozoic Xiong’er group continental volcanic activity
provide a source of gold for the group of gold deposits. The
multi-stage tectonic-magmatic thermal events provide condi-
tions for the group of gold deposits. In addition, copper lead,
silver, tungsten polymetallic and non-metallic minerals based
on barite have also formed a number of mineral deposits
in the investigation area, so the metallogenic conditions are
superior. The characteristics of geochemical elements in the
study area are a comprehensive reflection of the geochem-
ical fields in the Xiaoqinling gold ore field, the Xiong’er
mountain gold and molybdenum polymetallic metallogenic
belt. The distribution of the geochemical elements is uni-
form or uneven, while the majority of the elements are not
highly differentiated. Only W is a strongly differentiated
type.

The study area is divided into different regions, and two
regions with different geological structures were selected for
this study.
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FIGURE 1. Geological and mineral ressources of Xiaoshan, Henan province, China (scale 1:10000).

Gaobeigou area is located in the north of Chang-
shui Township, Luoning Province. The known deposits
in this region are W-Ni-Zn-Mo-Au, with the presence
of large and small W deposit in the middle of the
area.

Gushanling area is located in Chenjiayuan Village and
DashitunVillage in the south of Gongqian Township, Shaanxi
Province, where the known deposit is Cu.

Within the study area, 12 elements were collected from
soil sampling for further analysis, including Ag, As, Au, Bi,
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FIGURE 2. General scheme of GCQAR.

Co, Cu, Mo, Ni, Pb, Sb, W, Zn, with a total of 28270 sample
points.

IV. DATA PREPROCESSING
Data preprocessing is often problem-dependent, and should
be carefully employed since the input data significantly influ-
ence the results of many algorithms. It is suggested to prepare
data in particular ways before implementing any methods.
In addition, geochemical data listed as compositions and rep-
resented as vectors with a constant sum constraint, typically
summing to 100%. This poses a difficulty when looking for
statistical correlation in compositional data because values
are relative, rather than absolute n−1 and can lead to spurious
results [54], [55]. The log-ratio transformation [56] is a solu-
tion to the constraints of closed data. An isometric log-ratio
transformation (ilr) [57]–[59] was employed to open the raw
geochemical data prior to data analysis. The ilr transforma-
tion is presented as

ilri =
√

rs
r + s

log
g(y+)
g(y−)

(1)

where g(·) is the geometric mean of the argument, y+ is the
group with r parts marked with+1 and y− the group of s parts
marked with −1.

After transformation, standardisation of feature values is
required to provide relative measures of scale and a z-score
[60] standardisation was selected for this purpose.

z =
x − µ
σ

(2)

Here x is the transformed data, µ is the mean and σ is the
standard deviation.

Later, to avoid high values of interestingmeasures [10] that
lead to misleading results, all the inputs are transformed into
[0,1] by using

X∗ =
X − Xmin

Xmax − Xmin
(3)

where X* is the normalized value, X is the inputted value,
Xmax and Xmin are the maximum and minimum values of X,
respectively.

V. PROPOSED METHOD
A. GCQAR
The proposed method sequentially implements graph clus-
tering and quantitative association rules to geochemical data
problem; Fig. 2 describes the conceptual scheme. Graph
clustering is first applied to identify geochemical data from
complex background (Fig. 3). After GC method, detailed
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FIGURE 3. The framework of the Graph clustering, used to generate
frequent pattern.

features in each cluster are examined based on the concept
of quantitative association rules (Figs. 4-6), which allow the
generation of unknown interrelations present in the clus-
ters being studied. A result of this process can provide a
useful coarse-grained representation of the data [61]. It can
improve our understanding of the distribution of geochemical

patterns and the interactions between the elements. Further-
more, it helps us to learn deeper structures of geochemical
data and predict the future behavior of the elements. Details
of the graph clustering and quantitative association rules used
in this study are illustrated in the following subsections.

1) GRAPH CLUSTERING
Graph clustering [61], [62] is a field in cluster analysis that
looks for groups of similar vertices (i.e., nodes) in a graph.
Graph clustering represents data as vertices connected to one
another by edges with a set of properties. It plays a basic
role to model meaningful systems in different disciplines
[68]. The ultimate goal of graph clustering is to partition
vertices into several subgraphs, where the vertices are highly
cohesive inside but sparsely to other subgraphs. There exist a
number of approaches aim at discovering natural divisions of
the graph, based on different measures of similarity. A more
comprehensive description can be found in [63]–[67].

In the present study, we use modularity optimisation
method [68], since it is suitable for handling large datasets.
The groups can be quantified in terms of quality functions
that give the best split.

Suppose geochemical dataset is a graph, contains n ver-
tices. Each point sample is a node, and edges represent inter-
actions among them. Given a sparse graph G(V,E) which
consists of the node set V, the edge set E. The graph can be
divided into two groups using a membership variable s. Let
vertex v belongs to group 1 if sv = 1 and sv = −1 if it belongs
to group 2, for a specific partition of the data into two groups.
The number of edges between vertices v and u beMvu, which
will generally be 0 if there is no edge between vertices v and
u or 1 if there is an edge between the two. The modularity Q

FIGURE 4. The process to mine QARs over the nonoverlapping splits.
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FIGURE 5. Adjacency matrix of a finite graph, the elements of the matrix
indicate whether pairs of vertices are adjacent or not in the graph.

is defined as

Q =
1
4m

∑
vu

(Mvu −
kvku
2m

)svsu (4)

If edges are randomly placed between vertices v and u, then
the expected number of edges is kvku

2m , where kv and ku are
the degrees of the vertices, m = 1

2

∑
v kv is the total number

of edges in the graph, where 2m =
∑

v kv =
∑

vuMvu and
the modularity Q is given by the sum of Mvu −

kvku
2m through

all pairs of vertices v, u that fall in the same group. The
whole procedure is repeated to subdivide the graph until every
remaining subgraph is indivisible, and no further improve-
ment in the modularity is possible. In this study, we focus on
unweighted graphs.

The main process of Graph clustering algorithm used in
this work is described as (Fig. 3):

Input: A graph G(V,E)

Require: unweighted graphs.

1) Each vertex belongs to a single group.
2) Consider each group pair, and assess the modularity

score Q that could be achieved by joining them.
3) Join the two clusters that have positive, large values of

the modularity (1Q) [68].
4) Repeat the steps 2 and 3 till only one group remains.
5) Return the splits that allowed obtaining the highest

modularity score.

Output: The final partitions (disjoint modules).
In the initial work published in [68], it was described that

the method was used to identify community compositions,
and to reveal the structural features of networks. In the present
study, we are specifically interested in the delineation of
geochemical anomaly from complex background, and then
the result obtained is used as frequent patterns.

GC method can find arbitrary shaped clusters, since
geochemical data are not often spherical. Besides, we used
modularity to identify disjoint groups that will generally
lead to better results than the overlapping clusters. To keep
particular features within the clusters for further analysis, and
to avoid the generation of redundant rules [69].

2) QARs
Although the process of graph clustering creates groups in
which geochemical patterns are brought into some degree of
similarity in terms of the quality function known as modular-
ity [68], the relation between the elements remains unclear.
In addition, knowing the degree of association among the
elements in the graph is also important to analyse their behav-
iors. In this section, our interest goes towards finding signif-
icant interrelation among nodes and explaining variations in

FIGURE 6. Flowchart of how the support of QARs is calculated.
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TABLE 1. Summarized statistics of the chemical elements distributed in the soil sampling.

geochemical datasets, because understanding the interaction
between elements through the obtained clusters, and explor-
ing associated mineralization is worthwhile in geochemistry.
The question now is how can we measure the interrelation
between two given elements on a graph accordingly?

In order to address the question outlined here, we need to
develop a new method to quantify the interrelation between
the elements.

In this section, we introduce quantitative association rules
to find useful information among the vertices. The QAR
problem [5] is to identify all interesting rules of the form
A → B where A is the antecedent and B is the consequent
of the rule, A,B ⊆ I and A ∩ B = ∅. I represents itemset,
A and B represent the set of items.

The learning phase of QARs used in this work consists of
the following steps (Fig. 4):

• Obtain a set of QARs for each cluster, in which the input
dataset is divided. The antecedent and consequent of the
rules are arbitrarily selected. Besides, the length of the
rules is always fixed to the number of nodes in each
partition (Fig. 5(a)).

• Evaluate the quality of the rules over the entire splits,
using the concept of support and confidence [70].
We focus on the following rule:
If two elements are strongly related in the total splits,
their relationship may lead to significant patterns
(mineralization).

• Obtain the local support (L.Sup) of each rule in ruleset.
The rule in each partition that does not satisfy a mini-
mum threshold is removed (Fig. 6).

• Lately, the ruleset from each cluster is collected. Then,
the local results generated (i.e., the local supports of
ruleset) are merged to compute the global final result
(global support of ruleset (G.Sup)) (Fig. 6).

However, the vertices lack additional attributes and there is
nothing in the nodes themselves that allows the computation
of a relationship. Besides, a path from one vertex to another
one is a sequence of edges (Fig. 5(b)). Considering this infor-
mation, we define local support (L.Sup) as the probability to
find a sequence of internal edges ‘‘e’’ between each pair of
vertices (i.e., elements) A and B in the same cluster.

L.Sup(A→ B) =

∑
e∈Eel

e(A,B)

1
(5)

And the global support (G.Sup) represents the ratio of the
number of internal edges between two elements to the number
of clusters (NC).

G.Sup(A→ B) =

∑NC
i=1 L.Sup(A→ B)

NC
(6)

And confidence is defined as follows:

confidence(A→ B) =
∑

e∈Eel
e(A,B)

G.Sup(A) (7)
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FIGURE 7. Histogram (a) for original data (b) transformed data, of Gaobiegou area.

where

G.Sup(A) =
L.Sup(A)
NC

(8)

And

L.Sup(A) =
|A|
1

(9)

where Eel contains the internal edges ‘‘e’’ belong to the lth
cluster, and global support(A) is the ratio of the probability
distribution of |A| to the number of clusters (NC).
In other hand, in graph clustering the number of edges

exceeds the number of nodes, thus to avoid high values
of support and confidence, for each vertex, one edge is
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FIGURE 8. Histogram (a) for original data (b) transformed data, of Gushenling area.

calculated (the edge that starts from the antecedent of the rule
(Fig. 5(b))), instead of considering all of them.

In addition, an edge between two given nodes can be
defined with the adjacency matrix M, where its elements
MA,B = 1 when there is an edge from vertex A to vertex B,

andMA,B = 0 when there is no edge (Fig. 5(b)). In this paper,
the edges from a vertex to itself (loops) are ignored.

The resulting QARs are presented as follows:
If the confidence is more than 50%, the relation is very sig-

nificant and the edges between the two elements are effective.
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FIGURE 9. The visualization of (a) graph clustering generated by modularity maximization algorithm, and (b) partitions produced by danon
algorithm, modularity maximization algorithm and spectral clustering for Gaobiegou area.

Algorithm 1 Support of the Ruleset
Input
Ruleset a set of rules discovered;
e(rule) ∈ E a sequence of internal edges between the
antecedent and the consequence of rule;
Require: Global support in NC ' 1 ' 100%;
Output: Local support of Ruleset;
Global support of Ruleset;
1. For each rule ∈ Ruleset do
2. Compute local support of each rule (rule,e(rule)).
3. end for
4. if Local support of each rule > 10 then
5. Compute global support of each rule.
6. end if

If the confidence is more than 39%, the relation is signifi-
cant and the edges are mostly effective.

If the confidence is more than 10% the relation is low and
the edges are ineffective.

VI. EXPERIMENTAL ANALYSIS
In our experiments, we implement GCQAR to regional
geochemical pattern recognition for W-Zn-Mo-Ni-Au from
896 soil samples and Cu-Zn-Co-Pb-Ni-Ag from 1136 soil
samples, of Gaobiegou and Gushenling area, respectively.
In Xiaoshan, Henan province, China.

In this section, we will compare GC based on modu-
larity optimization method [68] to the spectral partition-
ing that is used to generate overlapping groups (Luxburg)
[71], Danon’s greedy community detection agglomerative
method (Martelot and Hankin) [72], and K-means (Serra and
Tagliaferri) [73] that is widely used as partition method in

Algorithm 2 Confidence of the Ruleset
Input
Ruleset a set of rules discovered;
Local support of rule;
Local support of antecedent of rule;
Require: Confidence in NC ' 1 ' 100%;
1. For each rule ∈ Ruleset do
2. Compute Confidence of rule.
3. end for

geochemistry, so to demonstrate the features and operation of
the proposed method for knowledge discovery in geochem-
istry.

The results were coded by lithology, using MAPGIS soft-
ware package [74]. The experimental environments include
an Intel Core i7-8550U 4.0-GHz CPU and 8 GB RAM.

A. STATISTICAL ANALYSIS
The statistical methods have performed in the description
of the critical geochemical patterns [55]. The statistics have
applied in as being descriptive such as mean, maximum,
minimum, etc., for analyzing twelve elements (Tab. 1).

The elements concentrations are not normally distributed
for Gaobiegou and Gushenling area (Figs.7, 8(a)).

Figs. 7, 8(b) show the histogram of the data after ilr-
transformation. It can be seen that the distribution of the data
has changed significantly.

B. GRAPH CLUSTERING RESULTS
The visualization of the graph clustering results is
shown in Figs. 9-16 for Gaobiegou and Gushenling data,
respectively.
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FIGURE 10. The partitions of the geochemical anomaly generated by (a) spectral clustering algorithm, (b) modularity maximization algorithm, and
Geochemical anomaly maps obtained by (c) spectral clustering algorithm, (d) modularity maximization algorithm, for Gaobiegou area.

Figs.9, 13 present the clusters generated by modularity
maximization algorithm, and the final separation is achieved
at parameter = 0.5, appears in the x-axis.
Danon algorithm and modularity maximization algorithm

can automatically discover the optimal number of clusters,
and their results are very close. The spectral clustering algo-
rithm requires providing the maximum number of clusters.

Figs. 10, 14 (a,b) present the clusters of the geochemi-
cal anomaly generated by spectral clustering and modularity
maximization algorithm for Gaobiegou and Gushenling area,
respectively. The x-axis values describe the id of each node,
and the y-axis values describe the number of clusters.

1) RESULTS USING DATA OF GAOBIEGOU AREA
In Gaobiegou area (Fig. 10d), the geochemical anoma-
lies are typically detected at stratigraphy, which presents

a set of metamorphic sedimentary clastic rocks, divided
into two lithologic sections, and fit well into Tungsten
deposit. In Fig. 10b the anomalies are characterised by
large size, high intensity obvious concentration center and
show a ring shape at W deposit, which must be given
more focus. Both of spectral clustering (Fig. 10c) and
k-means (Fig. 11a) method can identify the anomalies in
different locations, with different shapes, but show low
intensity.

Fig. 12 shows the distribution of four clusters separately of
Gaobiegou area presented in Fig. 10d.

In cluster 1, the geochemical anomalies are mainly
detected at the center of the investigation area, and appear
with a ring shape, and cover well W deposit. The anoma-
lies are also spread along the faults and related to faulting
activities.
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FIGURE 11. Geochemical anomaly maps obtained by (a) k-means clustering (k=6), and (b) modularity maximization
algorithm.

FIGURE 12. Geochemical anomaly maps, (a) cluster 1 (b) cluster 2 (c) cluster 3, and (d) cluster 4, obtained by
modularity maximization algorithm, for Gaobiegou area.

In clusters 2 and 4, the geochemical anomalies are pri-
marily identified at Yangsigou Rock Group. This is a set
of metamorphic sedimentary clastic rocks, divided into

two lithologic sections. The lithology of the lower rock
section is black cloud and shallow granulite. It contains
dolomitic shallow-grained rocks with dolomite schist and
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FIGURE 13. The visualization of (a) graph clustering generated by modularity maximization algorithm, and (b) partitions
produced by danon algorithm, modularity maximization algorithm and spectral clustering, for Gushenling area.

FIGURE 14. The partitions of the geochemical anomaly generated by (a) spectral clustering algorithm, (b) modularity
maximization algorithm, and Geochemical anomaly maps obtained by (c) spectral clustering algorithm, (d) modularity
maximization algorithm, for Gushanling area.

black cloud granulite. Rocks generally contain magnetite
and garnet. The lithology of the upper rock section is
black cloud granulite, black cloud sloping granulite, shallow

granulite, dolomite quartz schist, magnetite, local garnet,
graphite, etc. The sections are characterised by metamorphic
minerals where Zn, Au mineralization occur. In addition,
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FIGURE 15. Geochemical anomaly maps obtained by (a) k-means clustering (k=6), and (b) modularity maximization algorithm.

the enrichment element W is relatively higher in these
rocks.

In cluster 3, the geochemical anomalies are generally
recognised at Xushan Group, and are slightly distributed
at Yangsigou Rock Group. The Xushan Group is a set of
medium-acid volcanic lava, which is mainly characterized by
surface overflow, good layering, and forming a clear stacking
layer. There are two lithological sections from bottom to
middle. The lower section is gray-green andesite, andesite
shale. The middle section is mainly the andesite porphyrite of
the Great porphyry, where deposits of Au, Ni, Mo, and Zn are
hosted. The elements W and Zn are higher in these sections.
Besides, the anomalies are detected at the green amphibolite
metamorphic domains of Fuping period, mainly the slanted
amphibolite.

2) RESULTS USING DATA OF GUSHENLING AREA
In Gushenling area (Fig. 14d), the geochemical anoma-
lies are typically detected at magmatic rock, where vol-
canic activity provides a source of deposits. In addition,
the anomalies are spread along the rivers, and are charac-
terised by high intensity and obvious concentration center.
In Fig. 14c the anomalies detected by spectral clustering are
obvious, but show low intensity at the same locations. How-
ever, the anomalies identified by k-means method (Fig. 15a)
are generally detected at the west side of the investigation
area.

Fig. 16 shows the distribution of four clusters separately of
Gushenling area presented in Fig. 14d.

In cluster 1, the geochemical anomalies are typically
detected at magmatic rock of Xushan group, where the lithol-
ogy is divided into two sections. The first (middle) section
is mainly the porphyrites of the Great porphyry. The second
(Upper) section is andesites and almond-shaped andesites.
The porphyry is the primary cause for the presence of mineral
deposits such as Cu, Zn, and Pb. The anomalies fit will the
Cu deposit. Besides, the anomalies are distributed along the
rivers, which provide a source of mineral deposits.

In cluster 2, the geochemical anomalies are generally dis-
tributed along faults, and are related to faulting activities of
the investigation area. Furthermore, the fault occasionally
opens to allow pulses of high-pressure fluid to be released
toward the top, which is particularly rich in the elements of
interest, and is important in hosting mineralization. In addi-
tion, the geochemical anomalies fit well the Cu deposit.

In clusters 3 and 4, the geochemical anomalies are dis-
tributed at the magmatic rocks, which in general contain
mineral deposit.

C. QUANTITATIVE ASSOCIATION RULES
In this section, we implement quantitative association rules
to reveal important details within each cluster, as illustrated
in the support and confidence (section. 5). The minimum
support was fixed according to the proportion of each cluster.
Regarding the reliability and the number of the rules gen-
erated, the minimum value for the support and confidence
measures was set to be 0.1 and 0.4, respectively.

The results obtained by QARs are shown in Tables 2, 3.
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FIGURE 16. Geochemical anomaly maps, (a) cluster 1 (b) cluster 2 (c) cluster 3, and (d) cluster 4, obtained by modularity maximization algorithm,
for Gushenling area.

Figs. 17, 18 show the local support of the elements in each
cluster. The QARs proposed built a set of rules that cover
different areas of the problem, which allow us to understand
the anomalies generated.

In Gaobiegou area, the concentration of Tungsten (W) and
Gold (Au) is high in four clusters. Meanwhile, Molybdenum
(Mo), Nickel (Ni) and Zinc (Zn) are concentrated in three
clusters.

As can be observed in Table 2 and Fig. 17, very signifi-
cant association between W-Au, and Au-Ni with confidence
of 0.67 and 0.55, respectively.

The strong association between W-Au can be explained by
the fact that the tungsten occurs in vein deposits associated
with granites along with gold, and can also be associated
with various lithologies. There are, however, other possible
explanations related to the geological process [75].
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FIGURE 17. The visualization of (a) adjacency matrix of the graph clustering generated by modularity maximization algorithm, and (b) the
internal edges related W with Ni, Zn, Mo and Au in four clusters, and (c) the internal edges related to Mo with W, Zn, Ni, and Au in four
clusters, and (d) the internal edges related to Au with W, Zn, Ni, and Mo in four clusters, for Gaobiegou area.

TABLE 2. Support and confidence measures to evaluate geochemical
rules.

Significant associations for Mo-Ni, W-Mo, and Au-Mo
with confidence of 0.50, 0.50 and 0.41, while the association
of Mo with Zn is a little lower with confidence of 0.37.

Hence, the anomaly values divided into three categories :
the high anomaly (> 0.50), moderate anomaly (0.50-0.39),
and low anomaly (≥ 0.10) (Fig. 19). The high anomaly
area occupies 3.4% of the total area, the moderate anomaly
occupies 39.1% of the total area.

TABLE 3. Support and confidence measures to evaluate geochemical
rules.

In Gushenling area, the concentration of Silver (Ag)
and Lead (Pb) is high in four clusters, Copper (Cu) and
Cobalt (Co) are concentrated in three clusters. Meanwhile,
Nickel (Ni) and Zinc (Zn) are only concentrated in two
clusters.

As can be observed in Table 3 and Fig. 18, very significant
association between Ag-Pb with confidence of 0.7. These
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FIGURE 18. The visualization of (a) adjacency matrix of the graph clustering generated by modularity maximization
algorithm, and (b) the internal edges related Cu with Pb, Ag, Co, Zn and Ni in four clusters, and (c) the internal edges related
to Pb with Ag, Cu, Co, Zn and Ni in four clusters, and (d) the internal edges related to Ag with Pb, Cu, Co, Zn and Ni in four
clusters, for Gushenling area.

FIGURE 19. Geochemical anomaly map generated by QARs, for
Gaobiegou area.

elements are typically geochemically coherent, and their
strong association probably indicates similar characteristics
in the hydrothermal mineralization process and probably
come from the same geological process.

FIGURE 20. Geochemical anomaly map generated by QARs, for
Gushenling area.

A significant association exists between Cu-Pb with confi-
dence of 0.62. This strong association suggests their presence
genetically related to the volcanic and/or subvolcanic quartz
porphyry.
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Very significant to significant associations for Ag with
Ni (0.41), Ag with Cu (0.42), Cu with Co (0.42), and Cu with
Ni (0.41). Meanwhile, the association of Ag with Zn is a little
lower with confidence of 0.25. This can be explanted by low
concentration of the Zn samples in the study area.

Thus, the anomaly values divided into three categories : the
high anomaly (> 0.50), moderate anomaly (0.50-0.39), and
low anomaly (≥ 0.10) (Fig. 20). In Gushanling area, the high
anomaly area occupies 2.4% of the total area, the moderate
anomaly occupies 40.1% of the total area.

From the results, superior results are achieved with
GCQAR than a result that is generated by k-means and
spectral clustering. Therefore, our results cast a new light
on learning the normal element behavior and highlighting
anomalies related to it in geochemical data problem.

VII. CONCLUSION AND FUTURE DIRECTIONS
In this study, GCQARmethod was implemented to recognize
geochemical anomalies. The proposed method sequentially
applies graph clustering and quantitative association rules.
The results of this work lead to the following conclusions:

The hybrid methodology combining graph clustering and
QAR is a useful method for recognizing geochemical anoma-
lies. Graph clustering is used to segment data into meaningful
groups, and QAR is performed to learn the normal behavior
of the elements and to highlight anomalies related to them.

The GCQAR has significant benefits in terms of recog-
nition of significant geochemical patterns compared to the
traditional methods used in the field of geochemistry.

The GCQAR can be used to not only delineate geochemi-
cal anomaly zones, but also to improve our understanding of
mineralization. It can be a very suitablemethod for examining
nonlinear and complex relationships caused by a variety of
geological processes. Thus, theGCQAR is a potential method
to be considered for use in geochemistry problem.

It can find high-dimensional clustering and provide the
most suitable intervals of values belonging to the rules with-
out implementing a discretization process. Moreover, it helps
find reduced sets of significant rules from large dataset. This
study will bridge a knowledge gap in terms of recognizing
geochemical patterns formed over various lithology. Despite
the success demonstrated, a significant limitation of GC
(modularity maximization algorithm) is time consuming.

More broadly, the research is also needed to determine neg-
ative quantitative association rules. In future work, we plan
to use association rules to isolate the overlapping groups
by analysing the relation between the external edges, and
considering negative quantitative association rules.
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