SPECIAL SECTION ON ADVANCED SOFTWARE AND DATA ENGINEERING FOR

SECURE SOCIETIES

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 15, 2019, accepted September 1, 2019, date of publication October 11, 2019, date of current version March 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2946730

A Secure Data Infrastructure for Personal
Manufacturing Based on a Novel Key-Less,

Byte-Less Encryption Method

ANTON VEDESHIN"', JOHN MEHMET ULGAR DOGRU!, INNAR LIIV23,

SADOK BEN YAHIA2*, AND DIRK DRAHEIM"“3

13D Control Systems, Inc., San Francisco, 94129 CA, USA

2Department of Software Science, Tallinn University of Technology, 12618 Tallinn, Estonia
3Centre for Technology and Global Affairs, University of Oxford, Oxford 0X1 3UQ, U.K.
4leculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
SInformation Systems Group, Tallinn University of Technology, 12618 Tallinn, Estonia

Corresponding author: Anton Vedeshin (anton@3dprinteros.com)

This work was supported in part by the Astra6-1 project under Project 2014-2020.4/01.16-0032.

ABSTRACT We are witnessing the advent of personal manufacturing, where home users and small and
medium enterprises manufacture products locally, at the point and time of need. The impressively fast
adoption of these technologies indicates this approach to manufacturing can become a key enabler of the
real-time economy of the future. In this paper, we contribute a secure and dependable infrastructure and
architecture for that new paradigm. Our solution leverages physical limitations of the computational process
into a defense strategy that makes distributed file storage and transfer highly secure. The main idea is to
replace asymmetric or public-key encryption functions with an unkeyed, collision, second preimage, and
preimage resistant cryptographic hash function. Such a cryptosystem does not have an inverse function H-!.
We challenge each block hash against the full hash table to recreate the original message. To illustrate
the approach, we describe secured protocols that provide a number of desirable properties during both
data storage and streaming. Similar to proof-of-work blockchain consensus algorithms, we parameterized
the solution based on the amount of infrastructure available. Experiments show the proposed method can
recalculate hashes for a 3-dimensional live matrix of 256° at an average of 14 revisions per second, and one
revision every 5 minutes for a bigger matrix of 40963. The increase in cloud infrastructure cost is insignificant
compared to the level of protection offered.

INDEX TERMS Communication system security, computer aided manufacturing, content distribution
networks, data security, data storage systems, distributed computing, information security, intelligent man-

ufacturing systems, technology social factors, virtual manufacturing.

I. INTRODUCTION

We are witnessing the advent of personal manufacturing,
where home users, small and medium enterprises use devices
such as 3D printers, CNC mills, laser jets, and robotics
to manufacture products locally, at the point and time of
need. The impressively fast adoption of these technologies
strongly indicates that this novel approach to manufacturing
can become a key enabler for the real-time economy of
the future, i.e., a possible paradigm shift in manufacturing
toward personal manufacturing. In such a paradigm, people

The associate editor coordinating the review of this manuscript and

approving it for publication was Rail Lara-Cabrera

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

and organizations would not buy a ready-made product.
Instead, they would obtain raw material and produce products
using their own or locally accessible automated manufactur-
ing (AM) machinery.

With the growing popularity of AM, robotic process
automation (RPA), self-driving cars, automated medical
devices, video and hologram streaming and internet of
things (IoT) in general, the need to securely store and transfer
streamable file types such as machine instructions and man-
ufacturing files becomes more and more important.

Thus, the requirements for a modern secure distributed
file storage and transfer are changing, and efficient meth-
ods of secured cloud storage and streaming are becoming a

40039

https://orcid.org/0000-0003-4190-6119
https://orcid.org/0000-0003-3376-7489
https://orcid.org/0000-0002-7959-1936

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

compelling need. However, securing cloud file storage and
transfer is a challenging task [1]. The nature and properties of
modern files types impose certain constraints on how secure
distributed file storage and transfer methods should operate.

One such constraint is the need to repeatedly access
streamable files line by line or layer by layer without incon-
sistencies, delay, or compromising security through exposure
of the whole file at once. In this paper, we address this prob-
lem and introduce a possible solution based on an efficient
approach that utilizes technical limitations of the cloud and
leverages them into a security control and defense strategy.

The main idea is to replace an asymmetric or public-key
encryption functions with an unkeyed, collision, second
preimage, and preimage resistant cryptographic hash func-
tion. Such a cryptosystem does not have an inverse function
H', and no key to decrypt the hash and get message back
unless we pre-calculate a full hash table. We challenge each
block hash against the full hash table to recreate an original
message. To illustrate this approach, we have constructed
secured protocols that provide a number of desirable prop-
erties to secure machine codes at rest and during delivery to
stream consumption device.

The previous generation [2]-[4] of our solution has been
implemented and proven over several years as a mechanism to
securely deliver content to 3D printers from the cloud. Today,
the 3DPrinterOS cloud has more than 84000 users who
have generated over three million CAD designs and machine
codes. Users have produced more than 950 000 physical parts
on 28000 3D printers in 100 countries [2]; these values
double every six months [2]. The technology is licensed to
Bosch [3], Kodak [4], and other popular desktop 3D printer
manufacturers. The solution described in this paper com-
pletely reworks the first [S] and second generation [2]-[4] of
this secure content delivery mechanism and extends it to any
type of manufacturing machine or complex IoT device with
command, control, and telemetry.

The main contributions of this paper are: a) a novel,
key-less, byte-less encryption method, ready for application
to AM; b) an approach that leverages the physical limitations
of the computational process [6] into a defense strategy; c) a
threat model and security analysis of the proposed approach.

The main use case is the transfer of machine codes from
secured cloud storage to a network-connected manufacturing
machine. Other potential applications include streaming of
a) video; b) holographic video; c¢) voice communication;
d) medical data; e) business file data; f) telemetry, including
command and control data to and from self-driving cars.

The remainder of this paper is organized as follows.
In Section II, we introduce additional background and discuss
the topics addressed in this paper. In Section III, we ana-
lyze and discuss why existing cloud file storage and transfer
solutions such as digital rights management (DRM), video
streaming and 3D model streaming fail to address critical
constraints and security problems adequately. In Section IV,
we explore a relatively new paradigm of cloud security,
live matrix, proactive and passive cloud nodes, and our

40040

protocol. In Section V, we thoroughly describe the pro-
posed cloud application infrastructure and architecture; in
Section VI, we discuss strong and vulnerable points of such
an approach. In Section VII, we describe the setup used to
evaluate the proposed method by conducting experiments
with a local cloud of machines. Finally, Section VIII con-
cludes the paper by summarizing the results and indicating
issues to be addressed in future work.

Il. SETTING THE SCENE
This section prepares the reader for the proposed solution,
which is described starting in Section I'V.

A. STREAMING VERSUS CONVENTIONAL SECURE FILE
STORAGE/TRANSFER

1) ARGUMENT: IMPORTANCE OF MACHINE INSTRUCTIONS
Seventy years ago, in the so-called “‘paper age,” most prod-
ucts’ technical drawings were prepared on paper. Imagine an
attacker obtained pictures of the paper sketches of an inno-
vative product. In the best-case scenario, it took many years
to find or even build production technology, train engineers,
set up a factory and production lines to produce prototypes
and then a real product. In the worst case, there is no way
to build the product using copies of the sketches, as the
“secret sauce” required to build that product is somewhere
down the production line, inside the heads and hands of the
engineers working at a specific factory. A good example is
rocket fuel; even with all the sketches of rocket structure and
shape, people still need to identify and prepare fuel.

About thirty years ago, we entered the digital age, with
the use of computer-aided design (CAD), computer-aided
engineering (CAE), computer-aided manufacturing (CAM),
computer-aided process planning (CAPP), computer-aided
quality assurance (CAQ), production planning and control
(PPC), and enterprise resource planning (ERP) tools [7].
However, these tools were initially used primarily to cre-
ate a virtualization of a product to make measurements,
manage bill of materials (BOM), and provide simulations
to facilitate quicker changes to a product’s structure and
shape during prototype testing cycles. Much manual work
was still required, including post-processing and manual sur-
face finishing. People are accustomed to using very basic
solutions, like digital rights management (DRM), to secure
CAD/CAM/CAE designs.

In the past, if such a DRM-protected CAD/CAM/CAE
design was compromised, the barriers discussed above would
still slow the rate of the product’s production and distribution.
Compared to the “paper age’ example, with decades required
to produce the product, in the digital age, it might take only
six months to figure out the details, find production facilities,
and produce a marketable product.

In the personal manufacturing age, CAD/CAM/CAE
intended for AM already has the ‘““secret sauce” baked in.
In other words, the proprietary information required to pro-
duce the market-ready product is inside the file. If such a

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

design is compromised, the attacker can reach the market
with a production-quality product in just a few days, if not
hours. Designs intended for AM and 3D printing contain
all of the information needed to manufacture a real produc-
tion quality product according to exact specifications: make
and model of the manufacturing device, direction of layers
infill, tolerances, surface finish, materials, speeds, temper-
atures, durability and taking into account force distribution
and dispensation. With recent advances in AM technology,
it is possible to manufacture a real working part or a usable
product from a CAD/CAM/CAE design in just a few hours.

2) ARGUMENT: AN AM MACHINE IS A THIN CLIENT

The amount of information contained within modern
CAD/CAM/CAE files for AM creates a load on the whole
supporting infrastructure and requires substantial computing
power. There is no way to put a supercomputer into each AM
machine.

Over time, there has been a trend in AM to move as
much calculation to the cloud as possible due to the low cost
of cloud computing power. Initially, slicing for 3D printers
was performed on the workstation built into a 3D printer
(e.g., [8], [9]). Then, slicing software moved to engineers’
workstations [10]. Now, slicing has moved to the cloud [2],
with machine code streamed to the AM machine.

The next important step is to stream stepper motor pulses
from the cloud directly to the AM machine. Firmware is mov-
ing to the cloud. As with software and faster computing, this
move improves hardware operation, with incredible increases
in quality and speed. For instance, Okwudire et al. [11] sent
a low-level stepper motor commands from a server to sim-
plified firmware, which interpreted simple commands and
proxied them to the stepper motor drivers. They measured an
increase in printing quality and speed.

AM machines should have a thin client built in, not a
workstation [8], [9]. This thin client will interpret commands
and send back current status and metrics. If the AM does not
achieve a certain temperature or speed, the cloud needs to
know, to update its manufacturing execution system (MES)
and users about the delay. This approach will reduce costs
and eliminate the need for local software updates. Moreover,
the increase in calculation complexity possible in the cloud
enables faster, smoother operation of local AM machines.

To explain why, we must first outline the basic steps
that every contemporary AM machine firmware performs:
a) read machine code into memory; b) interpret machine code
into movements between coordinates; ¢) plan path through
coordinates; d) calculate accelerations and decelerations with
lookaheads taking into account inertia and potential forces;
e) project movements to the stepper motor axis; f) ensure the
motors and toolhead follow the programmed trajectory.

It is difficult to achieve excellent manufacturing quality
when performing such processing on microcontrollers. Most
firmwares perform only minimal prediction of the toolhead
path. As aresult, movement of the toolhead creates excessive
vibration and noise, and it sometimes hits the wall of the

VOLUME 8, 2020

machine. These phenomena cause drops in manufacturing
quality with any increment in manufacturing speed, despite
the machines’ excellent and frequently over-engineered hard-
ware. The problem hides in the microcontrollers, which spend
most of their computing time calculating trajectory. The less
computing time the microcontroller spends on planning, and
the more on operating the hardware, the better the manufac-
turing speed and quality.

To move the toolhead one millimeter, a stepper motor must
perform a certain number of steps. For example, a 0.9 degree
per step stepper motor performs a whole revolution in 25 full
steps [12]. Such a motor will produce torn movements and
generate substantial vibration. Moreover, the movements will
be slow because of the inability to accelerate and decel-
erate efficiently; if configured to operate at high speeds,
the machine will skip steps, resulting in missing manu-
facturing tolerances and overall lower product quality. The
same motor operated with so-called micro-stepping, set at
1/32 of a step, will move much more smoothly, but require
800 steps per revolution [12]. However, not every microcon-
troller can maintain this rate of feeding steps into the motor
driver. For context, an ATmega 16 MHz microcontroller with
Marlin firmware achieves fewer than 10 000 steps per second
(10 kHz) [13].

Moving path planning out of the firmware to a nearby
computer increases manufacturing speed and quality. This
was achieved by a team of researchers behind the Klipper
project [14]. The same ATmega 16 MHz microcontroller
described above, but operated with Klipper firmware [14],
achieves 151 000 steps per second (151 kHz). It also drives
the motors more smoothly, with fewer errors, and improved
manufacturing quality. In the Step Benchmarks table [14] we
can see that the same hardware can be 10x more efficient with
the right software and more computing power. To achieve
such improvements, we will ultimately stream encoded phys-
ical signal commands from the cloud to AM machines. The
method proposed in this paper is ready for these types of
applications.

3) ARGUMENT: LARGE FILE SIZES

To explain why AM machine codes should be streamed
versus downloaded and stored, we will use the example of
a very simple 3D design—an annular cylinder—created in
OpenSCAD software [15], [16].

The file for a given object will have a different size
depending on which stage of manufacturing it is prepared for,
and will involve different representations of the 3D object.
We have depicted data file sizes at different stages of digital
design for automated manufacturing in Fig. 1. As it shows,
file size increases exponentially when moving from a less sys-
tematically specified representation of the object to the more
specific representation needed to produce the production part.

In Step 1, the initial CAD design can be a few lines of
code to mathematically represent a part. In Step 2, the STL
file prepared for manufacturing is a set of triangles in space
representing a CAD file; in addition to the overall shape of the

40041

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

1 difference(){

2 cylinder(r=30,h=70,
center=true,$fn=500);
3 cylinder(h=70, r=10,

center=true,$fn=500);

4}

Step 1-CAD
(127 bytes, 4 lines)

Step 2 -STL
(678 KB, 28k lines)

g 690 0b11110011
33 G1 X4.768 Y1.497 E0.226 82;8882181
34 G1 X4.840 Y1.242 E0.249
35 G1 X4.895 Y1.004 E0.270 0b00111001
36 G1 X4.940 Y0.748 E0.293 001001001
37 G1 X4.971 Y0.501 E0.315 001000001

0b00011111
""" 0b00000001

4725524 M84

Step 3 — AM machine code
(141 MB, 4.7M lines)

Step 4 — four stepper motors command
sequence (5.63 GB, ~6B steps)

FIGURE 1. File size at different stages of digital design for automated manufacturing: From left: CAD design; an STL file prepared for manufacturing;
machine codes for a specific AM machine make and model; command sequence for AM machine stepper motors. File size exponentially increases from
the less systematically specified representation of the object to the more specific representation required to produce the physical part.

b) <)

Attack
vector —

a)

Data stater

Live matrix
Playbook

Ei ti . \
neryption E Expired states Attack _» \
W Attack //7"1"\\ l vector 2 / \ / \
vector 4 3
= ~ v [
, / Attack A Qs) Y Data state r+1 ‘ r+4 r+n
) vector i Y sus } |
[#3 ; S ——
Partial data TRSRL FESSIESS -
‘ Data \ 8 extracted / /
e at different
S = states Upcommg data state changes

FIGURE 2. Representations of a) data encrypted with a static key; b) three attack vectors on static key encryption; c) dynamic key encryption with
constantly changing data states—the state changes more quickly than the time required to physically extract the data.

object it contains information on manufacturing tolerances,
the higher is precision the bigger is the file size. The lower
the tolerances, the bigger the file size. In Step 3, machine
code is produced from that file; this code is specific to a
certain AM machine make and model. In addition to the shape
of the object, it contains information about each individual
layer the 3D printer will build to create the object. Each
layer requires a certain number of movements of the toolhead.
Each movement has an associated speed and information
about the amount and speed of material extrusion. In Step 4,
the command sequence for stepper motors file represents all
of the signals that go to the stepper motor driver to execute
the machine code. It includes calculations of acceleration and
deceleration, takes into account inertia, timing, and many
other factors. This is the exact recipe for how the part is
produced. Changes in this last stage of preparation will affect
the tolerances, quality, and speed of manufacture.

4) ARGUMENT: THE WHOLE FILE IS NOT NEEDED AT ONCE

In a past experiment [17], we found that a CAD file of a
computed tomography (CT) scan of the human brain required
about 2 GB, the corresponding medium-quality AM machine
codes 6 GB, and print time for the full-size brain was 96 h.
For a high-quality 3D print of the human brain, the machine
code would be 36 GB, requiring approximately two weeks
of manufacturing time on a 3D printer. The 3D printer did
not need the entire file at once, as the manufacturing process

40042

takes time, and it was possible to transfer the file in smaller
segments.

B. PHYSICAL LIMITATION OF COMPUTATIONAL
PROCESSES

This is a basic example explaining how the physical limitation
of computational process and different types of bottlenecks
can be turned into a defense strategy in the cloud.

Let’s use an analogy from the physical world. Let distilled
water represent data we want to protect. A bottle of distilled
water is put on a table, see Fig. 2 a). One approach to obtain
the water without opening a lock on the bottle is to drill a
small hole to let the water leak out (Fig. 2 b). Our storage solu-
tion could be compared with constantly changing bottles, and
a robot which pours water from one bottle to another, adding
and removing chemicals using different chains of chemical
reactions to protect the water (Fig. 2 c). In this scenario,
the water that is actually poured is, for example, sometimes
a different acid, sometimes a different alkali. An attacker can
still start drilling a hole in the bottle, but the bottle is still and
steady only for a minute before the robotic arm starts to pour
it to a different glass and add some other chemicals to change
the state of the liquid. Only robot knows how many chemical
transformations and in what sequence would lead back to the
original distilled water.

If an attacker starts to drill holes into the bottles to steal
the liquid, that attack requires time. If drilling a hole takes

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

5 minutes, and the bottle is only available in steady condition
for 1 minute, then this is a clear bottleneck—a physical
limitation. Now imagine a hacker used a faster way to drill a
hole. It still takes time and there is a physical limitation—the
diameter of the hole (in our approach, the network connection
between the nodes and between the hacked node and secured
cloud node). Now, the attacker starts to get a liquid. But
if it takes, say, an hour to obtain all liquid from the bottle
it will do the attacker no good—this exact bottle holds the
liquid for only 1 minute—before the bottle is changed and the
physical composition of the liquid is changed. The attacker
has obtained some small amount of an unknown liquid, with
no information about how to turn it back into its original form.
By drilling subsequent holes and getting smaller amount of
liquids at different stages of the chemical chain or recipe,
the attacker will end up with a mysterious mixture with a
complex chemical composition. The attacker will not know
how to turn this mixture back into its original form. The
attacker may have substantial time and computational power
to analyze the liquid and to use brute force to get the original
mixture. But this is near-impossible, as at some later time
even the robot will not know what happened in the past; it
does not have enough storage to keep versions of all of the
obsolete recipes and chemical reactions. The faster the robot
performs its manipulations, the harder it is to access the bottle
for a reasonable amount of time, to drill holes or pump out the
contents of the bottle.

Now, how does the solution described above translate to
a computer problem? The metaphor described above with
robotic arms and chemicals in bottles explains that it is hard to
steal information that is constantly moving and transforming.
This is the physical limitation. We compare our metaphoric
example with what our solution does in Fig. 2:

1) A bottle with water and a lock on the lid to data store
with data at rest, encrypted with a key (Fig. 2 a).

2) A drill bit, a key-ring with different master keys and lock
picks, and a hacksaw attacking the locked bottle with
water to encrypted data at rest and the use of various
attack vectors to get to the data at rest (Fig. 2 b). This
comparison represents an encrypted file in storage. Once
an attacker gets a copy of the storage or the file, cracking
it is only a matter of time.

3) Robotic arm to live matrix (Fig. 2 c). Our solution shuf-
fles the data faster than an attacker can download it from
the cloud, due to the physical limitations of computer
systems, for example, the network interface.

4) Bottle with added chemicals to the data state in our
solution (Fig. 2 c). The data state is static for a short
amount of time, then it is changed. Within this short time
period, it is hard to successfully extract the full file. The
attacker ends up with partial data extracted at different
states.

5) Broken bottles to expired data states (Fig. 2 c). If the data
state is expired and not yet removed from the computer
memory, it can no longer be used for retrieval of the data;
thus, attacking it does not help crack the data store.

VOLUME 8, 2020

6) Drill bit to attack vector (Fig. 2 c). Any attack vector
requires some amount of time to extract data. Before an
attacker can extract the data, its state becomes obsolete,
and the attack must be started from the beginning. Any
attack through a computer system will face a physical
limitation if the secured storage uses these physical
limitations as a defense mechanism.

7) The bottle with the next chemical solution where the
robotic arm pours the current chemical solution to cur-
rent data state » and next data state r + 1 (Fig. 2 c).

8) Queue of bottles with different chemical solutions
according to a recipe to upcoming data states r 4+ 2, r +
3,r+4,...,r+naccording to the playbook (Fig. 2 c).

C. PUBLIC/PRIVATE KEY ENCRYPTION

Why not simply use public/private key encryption to protect
manufacturing files? This approach is unfortunately prone to
attacks in a manner similar to DRM. If a manufacturing file
is encrypted with a static key, and the file is transferred and
collected by the attacker, then decrypting it is only a matter
of time.

One approach could use software like network security
research tool Fiddler [18]. Fiddler can receive encrypted traf-
fic using public-key, e.g., HTTPS traffic. When installed on
a machine, it collects all dynamic public/private keys for all
communication to/from that computer. It is relatively trivial to
use an approach like this to collect dynamic keys and decrypt
the files being transferred, without even compromising the
software receiving the file. To compromise our solution, Fid-
dler would need to understand the in-memory live matrix data
structure, understand how it is being calculated, and only then
potentially perform an attack. This is a much more compli-
cated scenario to execute compared to public-key encrypted
file transferred over HTTPS.

lIl. RELATED WORK

In this section, we present work that we consider to be close
to the requirements described above and categorize relevant
papers into six subcategories for a more systematic discus-
sion. We start with some general considerations of cloud
security, and then go more deeply into specific solutions,
like point-to-point and point-to-multipoint secured commu-
nication, cloud secured storage, DRM, video streaming, and
3D streaming.

A. CLOUD SECURITY RISKS, REQUIREMENTS,

AND MITIGATION

In [19], Brunette et al. provide a comprehensive analy-
sis of possible issues in cloud security and how to miti-
gate them. They present a solid approach to assess existing
cloud applications and provide a requirement base for the
design of secure cloud solutions. That work provides notable
recommendations. However, from our perspective, a next
level—an integral solution—is necessary. For the sake of an
ultimate security solution for cloud storage and file transfer,

40043

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

we need a change in philosophy, and a new paradigm—Iive
matrix—which we describe in Section I'V-C.

B. POINT-TO-POINT AND POINT-TO-MULTIPOINT
SECURED COMMUNICATION

We examined related research on peer-to-peer, point-to-point
and point-to-multipoint communication. First, most such
solutions tend to use lower layers of the OSI model, mostly
layer 3, the network layer. This positively affects the speed
and throughput of the communication. At the same time it
makes most of the protocols proprietary and exotic, which
may make them hard to widely implement for AM machines.
In contrast, the solution we propose in this paper is network
layer and protocol agnostic, as the only information that
is transferred is cryptographic hashes. Our solution would
benefit from using a lower layer of OSI model, and streaming
hashes over a lower level of the OSI model is a topic worthy
of future research and experiments.

Second, the main efforts in the literature are focused
on resolution of peers and finding and re-routing if a
peer is disconnected. These mechanisms can compliment
the solution described in this paper. Many approaches to
point-to-point and point-to-multipoint communication secu-
rity employ basic private/public key encryption, which does
not prevent the exposure of intellectual property.

Mastorakis [20] and Mastorakis et al. [21] discuss peer-
to-peer file sharing application designs and implementations
that run on top of Named Data Networking (NDN). The
security aspect is in the nature of the NDN architecture;
however, this suggests cryptographically signing every packet
in the network. NDN uses a distribution of data encryption
keys as encrypted NDN data. Because it implements security
at the protocol level, NDN offers good protection against
negligence, in contrast to TCP/IP, where applications are
responsible for security. Although NDN is considered to be
the future of Internet [22], it is still at the stage of work in
progress, and not yet ready for full production grade imple-
mentation.

C. CLOUD SECURED FILE STORAGE AND STREAMING
In their cryptographic protocol [23], Jaatun et al. present an
approach that is similar to ours. They segment files among the
redundant array of independent net-storages in the computing
cloud. The main thrust of their solution is the distribution
of data across different cloud providers. Thus, the individual
data deposits do not expose enough information about the
owner and the file to make them vulnerable. In addition,
in order to return the file to the user, the data must be reassem-
bled. In our approach, we similarly distribute file parts to
many machines in the cloud; however, we do not set a specific
constraint on the form and number of cloud providers; our
approach can utilize physical computing machines, virtual
machines, Docker containers from one or several providers,
etc.

Miller et al. [24] propose several robust security schemes
for distributed file systems. They use segmentation of files

40044

into file blocks, and file block encryption with asymmet-
ric keys. Similar to [24], we split a file into segments and
encrypt each segment with its own key. But we go beyond
this, and propose a continuous re-encryption of file seg-
ments, with constantly changing keys. Moreover, we may
constantly re-encrypt the symmetric keys that data segments
are encrypted with. In our approach, re-encryption happens
constantly on all cloud nodes at a preset file, computational,
or cost limit.

In [25], Giuseppe et al. describe improved proxy
re-encryption schemes for keys and apply them to secured
distributed storage. We apply a similar approach in our solu-
tion, but to file segments, and not just keys. Furthermore,
we re-encrypt continuously, regardless of reads and writes
to storage. Cloud computing infrastructure prices drop each
year; thus, such a re-encryption approach is feasible for use
with millions of files.

D. DIGITAL RIGHTS MANAGEMENT

There are many practical DRM-like approaches that are
widely used in cloud storage and transfer. These include
ECFS [26], and others mentioned in the same paper. In DRM,
a file is usually encrypted using a symmetric or asymmetric
key or a key combination before it is stored or transferred.
In order to access the file, the data consumer needs the key.
When an attacker obtains the key by, for example, buying
the protected content once, brute force, social engineering,
etc., then the file can be used or redistributed infinitely.
DRM methods are usually lightweight and can be functional
without any need for intensive cloud computing power. From
our perspective, DRM methods are too vulnerable by their
nature (Sec. II-C).

E. VIDEO STREAMING

Numerous existing streaming approaches [27]-[31] work
efficiently and consistently for video and music. Even though
some of the protocols have consistency checks, they are not
expected to deliver every single byte; insignificant data loss
or delay caused by network problems is expected. However,
this could be an issue for sensitive data, like CAD designs.
For example, in the case of streaming designs to automatic
manufacturing machines such as 3D printers or CNC mills,
data transfer should be consistent and lossless: loss of a single
byte while streaming is unacceptable, as this can lead to a
AM machine malfunction or a defective product. At the same
time, the streaming should be highly secured, which is not
usually a requirement for media streaming protocols. In this
paper, we show how to securely stream encrypted file seg-
ments directly from a highly secure distributed file storage.

F. 3D MODEL STREAMING

In [32], Lin et al. describe a method to encode 3D models

into a JPEG stream in order to transfer 3D designs. However,

the solution is not comprehensive and has clear limitations.
In prior research [33], we theoretically described live

matrix as a paradigm applied to secured 3D content delivery.

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

Our prior work is purely theoretical, and so lacks technical
details and a real implementation of the method. This paper’s
contribution is to extend the initial idea with the neces-
sary details for implementation and to technically broaden
it to any type of secure file storage and transfer. Further-
more, we describe a threat model and conduct a thorough
security analysis. It is worth mentioning that we eliminate
the transcoding of files for streaming introduced in a prior
work [5], [34].

In previous work [5], [34], we have explained in detail
the necessity for secured streaming of 3D files and discussed
methods to enforce 3D file copyrights. Our previous approach
targeted a small niche case to secure 3D design transfer to
3D printers. That solution is very machine code-centric and
lacks a tight coupling with the secured storage. Furthermore,
it is vulnerable at the point of extracting a 3D design from the
storage and re-encoding it for streaming. In the current paper,
we propose a much more secure and consistent end-to-end
method to store and stream files—regardless of file type—
and without the need to re-encode the file for streaming.

IV. PROPOSED APPROACH

Relying on the principles and paradigms described below,
we describe a working solution for highly secure distributed
file storage and transfer.

A. ABSTRACT SOLUTION
For the cryptosystem [35]

Dy(Ee(m)) = m M

where E is an encryption function, e is an encryption key, D is
a decryption function, d is a decryption key, and m is a mes-
sage, if d = e, then we have symmetric encryption. However,
if d does not equal e, we have a public-key or asymmetric-key
cryptosystem. The main feature of this cryptosystem is that
only knowledge of the static decryption key is required to
decrypt the message.

For unkeyed cryptographic hash function A, which is col-
lision, second preimage, and preimage resistant [35]

H(m)=h @

there is no such inverse function !, and no key d, e to
decrypt the hash % and get message m back:

H'(h) e o. 3)

In other words, a key for a hash does not exist.

Then, the only way to retrieve the original message is to
hash all possible combinations and compare the hashes one
by one. For example, if we know that the original message
is five symbols from the ASCII table [36], given a strong
cryptographic hash function [37] the only way to obtain the
original message is to look the hash up in the table—the
so-called brute force method [38]. To achieve this, we would
need to create a hash table with »5¢P5, a trillion elements,
and then look up the original message by the hash. This

VOLUME 8, 2020

makes a brute force attack impractical, requiring substantial
computational power.

Our solution is based on the complexity of retrieving the
original message by its hash. To make the methods work,
the task of our solution is to keep the complexity of the poten-
tial message set within a certain threshold, so just enough
computing power is available to perform the calculations
required.

The solution relies on a logic similar to that behind RSA
SecurID tokens [39]. In that case, the same function with the
same cryptographic seed is running on both the RSA server
and the token (a small piece of hardware with a battery) in
a user’s pocket. In order to log in to the system, the user
must enter a username, password and the code from the RSA
token. The code on the RSA token expires every minute,
and a new code is generated and is shown on the screen.
A minute later, when the code expires, there is no way to reuse
the code. In the proposed solution, we do something similar,
but by recalculating a hash table and parts of the file on a
regular basis—for example, every minute. After a minute,
another hash table is calculated to accommodate file parts;
the previous hash table expires and is deleted from memory.
The process iterates over and over again.

In an abstract way, the solution works like this:

1) A is the (finite) set of symbols from ASCII table;

2) § is the (finite) set of file segments;

3) Each file segment s is set to a fixed length of m bytes;

4) tis a time variable and k is cryptographic salt.

5) G is the (finite) set of permutations of A set members
with sample size m, so that AP, € G.

6) Sender and receiver side: for each member g of a set
G, together with time ¢ and salt k, we calculate a corre-
sponding hash hg, ¢ x using hash function H. The hash is
stored in a hash table 7} along with the original member
8.

H(g, t,k)=hgx — geT.)

7) Sender and receiver side: when time ¢ is incremented,
table T expires at the moment ¢ = ¢ + At; Step 6 is
repeated, and a new table T is calculated, so

Ty € @; Ty # Tipa (5)

8) Sender side: for each member s of a set S we look up
a corresponding hash hg ¢k in table T using function L
and send the hash to the receiving device. At this point
we call hash hg ¢k a hint. This hint does not contain any
actual bytes from set S, and there is no key as such to
decrypt the hint (see Eq. 3):

L(s, Tt) = hs tx- (6)

9) Receiver side: When the hint arrives, the receiver chal-
lenges it. The receiver performs a lookup against the
local version of table T using function L. If such an

element is found, L returns a file segment s; otherwise,
the value is undefined:

L(hint, T)) = f; L(hint, Ty) € . (7

40045

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

10) The successfully received file is a set of hints positively
challenged against the hash tables Tt, Ti41, - . ., Tt4n-

In step 6, on the AM machine side, the same hash table
with the same potential elements of set G should be generated
in advance, taking into account exactly the same timing and
salt (like RSA SecurID tokens have the same time-based
function running on the server and the hardware token).

In step 9, when a hint arrives on the AM machine side,
we look it up in the current hash table, and retrieve (or do not
retrieve) the corresponding file segment. We recreate a file
from successfully found segments. This is not a decryption
function in terms of 1, as there is no key as such in terms of
that equation, and actual static bytes are not transferred in its
terms:

T: # d; Hint # ¢ (8)
= L(hint, Ty) = f # Dyq(c) = m 9)
= L(L(s, Tt), Tt) = f # Da(Ec(m)) = m (10)

In the case of TLS/SSL, the actual encrypted bytes of the
file are transferred. In our solution, only hints, which expire,
are transferred. It is not possible to get a real byte of the file
based on that Aint a minute later. This is similar to the way in
which an expired RSA SecurID code cannot be used.

In the next three sub-subsections we will explain important
considerations about our approach.

1) SENDER AND RECEIVER SYNCHRONIZATION

Our approach is agnostic to synchronization method. Time ¢
could be logical or physical time; in our experiments, we use
physical time (UTC). Distributed machines can synchronize
time against time servers. A minor change in time would
not usually put the sender and receiver out of sync, unless
the difference is larger than the live matrix state expiration
time. For high latency networks or situations when time is
slightly out of sync the live matrix expiration time could
be increased so there is always a previous live matrix state
available. At the same moment, there are two live matrices
available—the current one and a previous one.

Dependency on time could be removed completely if
we synchronize against other sources. Future accessible
synchronization methods, might include natural phenomena
like geomagnetic micropulsations [40], [41], seismic activ-
ity, gravity, blockchain block number, shared prior quantum
entanglement [42], [43], and others.

2) COMPUTATIONAL AND BANDWIDTH OVERHEAD
Overall, cipher text has a positive difference in length
between encrypted text and plain text.

Our solution has a bigger positive overhead com-
pared to well-known stream ciphers [44]-[50], block
ciphers [51]-[54] and plain text in terms of computation and
bandwidth.

Commonly, in stream ciphers [55] the cipher text length
has an insignificant positive overhead compared to plain text.
A key is used to generate a stream, which is then combined

40046

with the plain text to get the cipher text using an XOR
operation. This does not significantly affect the amount of
information transferred nor computation needed, as XOR is
computationally inexpensive.

In block ciphers [56], padding is frequently added to
plain text to make it equal to the block size, increasing the
bandwidth overhead. Block ciphers also have computational
overhead to encrypt each block compared to plain text.

Our solution has a parametric trade-off between computa-
tional complexity and security. By increasing the live matrix
recalculation frequency, we increase the security level as well
as the calculation complexity.

Our solution bandwidth overhead depends on the selected
live matrix size and cryptographic hash function. The closer
the number of bytes m to the output number of bytes of
the hash function, the lower the bandwidth overhead. The
recommended hash function output length should be close to
the m, but not smaller than m. Overhead can be calculated as:

overhead = length(hs;x) — length(m) (11
so that
length(hsx) > length(m). (12)

The computational overhead of our approach is lower
than that of block ciphers, and depending on the stream
cipher algorithm, can be even smaller than stream ciphers.
Hash function calculation is less expensive than AES
and DES [57], [58]. Another possibility, which is highly
application-dependent (e.g., not very practical for IoT and
self-driving cars), is to scale hash calculation using a GPU
and ASIC implementation of hash functions [59], [60]. How-
ever, block and stream encryption is difficult to implement
using a GPU and ASIC-based approach.

3) CRYPTOGRAPHIC SALT

Salt k is not static. It changes with time, and could be an
access code for a one-time manufacturing license, a PIN code,
or part of a private key. Further, parameters other than k affect
the setup; even if k is compromised, an attacker would still
need to figure out the algorithmic setup and parameters.

B. PHYSICAL LIMITATIONS OF THE COMPUTATIONAL
PROCESS

Total security does not exist. Breaking into any system is
just a matter of the time and money required to exploit its
weaknesses. Indeed, cloud computing itself processes huge
amounts of data in parallel, a capability that can be used
against attacks. However, the storage, network and comput-
ing power of the cloud have physical limits to writing and
readings files, transferring files over the network, calculat-
ing hashes, and encrypting or decrypting information. The
philosophy behind our solution is to set an attacker versus
a computing cloud and leverage the physical limitations of
the computational process [6] as security controls. Simi-
lar to proof-of-work blockchain consensus algorithms [61],

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

we parameterize the solution based on the amount of avail-
able infrastructure. The more computational power used,
the harder and more expensive it becomes to carry out an
attack.

Henceforth, we consider a hacker as a human individ-
ual, a group of hackers with special tools, or an automated
script or bot with sufficient computing power. A hacker can
never know all parameters and exact details of our secured
cloud implementation, and it will take a considerable amount
of time to find and exploit these weaknesses. This could
be mitigated with detective cybersecurity strategies. If the
hacker is equipped with comparable computing power, then
the physical limitations of the computational process come
into play.

There is physical latency at all levels of hardware and
software during computational processes. In order to reduce
latency, computer L1 and L2 cache memory is located very
close to the processor [62]. The more distant some resource
is from the processor, the higher the latency. For example,
a network interface is usually a main bottleneck for dis-
tributed systems [63]. The operating system limit of open
ports and I/O descriptors in Linux can be a bottleneck [64].
Our approach is to use these limitations and bottlenecks and
turn them into a defense strategy.

C. LIVE MATRIX

Live matrix is a multidimensional data structure in which
the data is constantly changing state. The state may even
change millions of times per time frame, Af,, depending on
the computing resources allocated. We refer to a different
state during a certain time frame Aty, Afp, ..., At,, as to the
revision ry, 2, ..., ry. The data in a live matrix are recalcu-
lated between revisions. The state of data in such a structure
ideally changes more frequently and faster than the time it
takes to extract the data from that structure. The period Af,
during which live matrix is changing its state is much smaller
than the period of time 7, needed to extract and store a single
revision r; of the matrix, as this would be a constantly moving
target (Fig. 3). The data in the matrix are only consistent
within one revision and become obsolete between revisions;
thus, timing is crucial. The whole live matrix structure or
any extracted file segments represent an inconsistent revision
Fincons and quickly become obsolete.

FIGURE 3. Live matrix state changes and inconsistent revision ri,cons-

VOLUME 8, 2020

The matrix keeps multiple file segments, which reside in
many locations of the matrix structure. These are encrypted
and/or hashed using standard algorithms, e.g, AES256,
3DES, SHA-2, SHA-3, and located in the matrix at a certain
index.

Taking into account the nature of the data to be hashed,
i.e., the instructions for controlling the manufacturing
machine, self-driving car, IoT or any other data, a special-
purpose hash function can be designed. Matrix vectors that
are not accommodated by useful data can be populated with
fake data—random data that resemble the original file.

Distributed cloud storage can consist of one or multiple
nodes «, B, y, etc. Each node may consist of one or multiple
multidimensional matrices aj1 ...dmun, 1,1 ---bmn, -- -, €tC.
(e.g., Fig. 4). The density of each matrix can be set from 0% to
100%. For example, if the density is 10%, then only this ratio
of values are filled in with the real segments of files. The rest
of the values are synthetically generated data or information
very similar to the actual data.

Node a Node B

=
Il
(= 1m}
Node | ... | Node
& [:}
==

Node
4

FIGURE 4. Secured distributed cloud storage.

When the file is streamed from one location to another,
the receiving location should also run a live matrix initialized
with the matching encryption seed (based on time or other
factors), and with a matching algorithmic setup. The stream
comprises hashes of the file segment parts, hints. The actual
information transferred in the stream is not the encrypted file
parts, and there is no key to decrypt the streamed hints (unless
not constantly changing its state matrix is considered a key).
As soon as actual bytes of the file are no longer transferred,
there is no key as such, and there is no function to decrypt
hints (only to perform a look-up against the /ive matrix on
the receiving end). We call this key-less, byte-less information
transfer (Fig. 5).

When information is transferred to or from a non-cloud
device (usually a data stream-consuming device with limited
computing power, like a laptop, a manufacturing machine,
a smart car, etc.) there is no physical possibility to keep more
than a couple of revisions of live matrices on that side. It is
thus impossible for such a device to decrypt the stream even
thirty seconds later. This makes it impossible to “replay’’ the
stream if an attacker records a fragment or even the whole
stream.

D. PROACTIVE AND PASSIVE CLOUD NODES

A proactive cloud node is a cloud node or group of nodes
that is autonomous to a certain extent. Proactive nodes do
not expose any inbound TCP/UDP ports or APIs over a

40047

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

Cloud server 1

Cloud server 2 or stream consuming device

original file /‘ /‘/

At, /] At,

]
T
[o | = (]]

gocoh

LT '—i
il

Il
il
EIDI'.'JI::I]]]

(]

hy s 8 b
e Ty, [|y, [,

IO [s

by

s hyes
secured Stream eee RS (S by,
hys hyes . T

FIGURE 5. Key-less, byte-less secured streaming.

Command and control node
(passive)

Keys and playbook node
(proactive)

File segments node

Metadata,
(proactive)

/ e \
1l

Distribution node
(passive)

FIGURE 6. Types of nodes.

local or public network. Proactive nodes are the initiators
of any communication between proactive and passive cloud
nodes. Passive nodes cannot initiate the communication with
proactive nodes; they need to wait for a request from one of
the proactive nodes. Passive nodes only reply over the local
network to requests incoming from proactive nodes.

Proactive nodes are used to store file segment data, users’
public keys, file segments, encryption keys, and streaming
playbooks. Passive nodes store metadata and run jobs, e.g.,
stream data outside the cloud, or deliver data at the right
time at the right place, like a manufacturing machine or a
self-driving car. The differentiation between proactive and
passive cloud node types supports an important principle
of segmentation in data security. Moreover, proactive cloud
nodes rely on detective controls mechanisms [65] to ana-
lyze activity, events, logs, history of node communication,
etc. Proactive cloud nodes can implement basic through the
most sophisticated detective control methods using artifi-
cial intelligence, honeypotting, intrusion detection systems,
etc. [66], [67].

E. PROTOCOL
A simplified protocol is presented in Fig. 7, 8, 9 and 10. All
communication between cloud nodes is encrypted, although

40048

this is not explicitly shown in the figures for the sake of
clarity. Fig. 7 describes file upload by the user and secure
storage of that file in the cloud. Fig. 8 and 9 describe storage
maintenance over time and live matrix recalculation, respec-
tively. There are two options to achieve the recalculation
of storage: Fig. 8 depicts the use of a newly created set of
keys, while Fig. 9 depicts utilization of the homomorphic
properties of encryption methods. In the latter case, each file
segment is recalculated by performing a homomorphic oper-
ation on a file segment. Thus, no additional key generation
and exchange is necessary. The secured streaming protocol is
depicted in Fig. 10.

V. IMPLEMENTATION
The highly secure distributed file storage and transfer solution
setup (Fig. 6) consists of four types of nodes:

a) The command and control node is responsible for stor-
ing command and control metadata. For example, when-
ever it is time to run a periodic job to re-encrypt file
segments with a different set of keys, the file segments
node and keys and playbook node communicate through
this node

b) The file segments node keeps the file segments in live
matrices, performs a scheduled or on-demand recalcula-
tion of hashes or re-encryption of file segments, analyzes
the behavior of the command and control node and
distribution nodes, and makes corresponding decisions,
for example, to support a streaming session initiated by
the distribution node. Moreover, this node has controls
that measure the speed of data consumption and com-
pare it with realistic consumption rates. If the rate at
which data are requested or consumed by the distribution
node is faster than expected, an alarm state is triggered
for a certain streaming session, or perhaps all sessions,
depending on the setup and protection level desired

¢) The keys and playbook node is responsible for secure
storage of keys and playbooks. Playbooks describe the
sequence of segments in the file segments node. Without
the right key, it is impossible to decrypt the file segment;

VOLUME 8, 2020

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

User Distribution node Command and control node

generate
public/private keypair

Keys and playbook node File segments node

upload file, send user's public key)

- --- --- - - flo. vid.encrypted with yser's publickey .|
E check for new files
....... fle_uid, file size, user's publiokey_ ___ gy,
store file_uid and user's public key to local keystore Z)
- check for new files
Y
file_uid, file size, user's public key »
>
store file_uid and user's public key to local keystore Z
check for new files)
g fle-vid. fle size, users publiokey
store file_uid and user's
public key to local keystore:
> request file by file_uid
Y

reply with the file -
»>

securely dispose of the file :

check storage settings to calculate into how many segments n
the file should be split and how many fake file segments m to generate

L

reguest n number of keys

<
«
(check for new keys requests

generate n pairs of public/private keys :
< send n public keys

check for requested keys status

<
<«

securely dispose of keys :

»
}

splitfile file_uid into n segments, encrypt each segment with its own key
generate m fake segments similar to the original file segments
create a playbook for file_uid

distribute n encrypted file segments and m fake segments across live matrix according to the playbook

it

send over a playbook

<
<«

(check for new playbooks

store playbook Z

.. Playbook received and stored (ACK),
<

securely dispose of the playbook :

check for playbook ACK

A

ACK received »

User Distribution node Command and control node

FIGURE 7. Protocol for storing a file in secured cloud storage.

conversely, without the right playbook, it is virtually
impossible to locate and extract the desired data from
storage. Depending on the setup, the keys and playbook
node can deliver the right keys at the right time to the
right place (e.g., to an AM machine which has already
received a secured stream from the distribution node has
recreated the file segments from hints using a locally
running live matrix, and now needs to decrypt the data
from file segments to produce the part). In the alarm
state, this node stops the streaming process and stops
issuing keys

d) The distribution node runs content distribution jobs to
transfer files to external sources, like other secured
clouds or AM machines or self-driving cars. This node
isolates different streaming jobs, optimizes streaming
speed based on data transfer rate, and performs data
delivery checks in the stream. It also participates in

VOLUME 8, 2020

Keys and playbook node

>»
securely dispose of the playbook Z

File segments node

the authorization scheme for external cloud and stream
consumption devices.
The setup can be extended, so each node type is a sub-cloud
of multiple machines implementing distributed live matrices
(Fig. 4).

VI. SECURITY EVALUATION

Our threat modeling and security analysis is based on several
well-defined threat frameworks from Behl and Behl [68],
[69], Behl [70], and Saripalli and Walters et al. [71]. The
latter provides the list of “Threat events compromising cloud
security” [71], which our distributed storage and transfer
solution is intended to address. These are: a) Isolation failure:
failure to effectively separate storage, memory, and rout-
ing causes isolation failure; b) Malicious insider at cloud
provider: a cloud provider’s employee maliciously alters or
corrupts customer data; ¢) Intercepting data in transit: failure

40049

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

File segments node

read key change settings
from storage settings

U

Command and control node

Keys and playbook node

request n keys for scheduled keys change)

check for requested keys

(check for keys request

emmmecemm—-ooonkeysneeded . »

generate new n pairs of public/private keys Z

(send n public keys, n old private keys, playbook

securely dispose of keys :

[for each file segment in old playbook]

lookup encrypted file segment from live matrix
decrypt segment with old private key

encrypt segment with a new public key

create new playbook for file_uid

distribute new n encrypted
file segments using playbook

distribute m fake segments across live matrix

send a new playbook

(check for a new playbook

e ememmen-ootetumanewplaybook |0 »

store a new playbook :

(new playbook received and stored (ACK)

securely dispose of the new playbook :

check for new playbook ACK

(ACK received

securely dispose of a new playbook

0

File segments node

Command and control node

Keys and playbook node

FIGURE 8. Protocol for storage maintenance and live matrix recalculation with key change.

in cryptographic techniques leads to data sniffing, spoofing
and man-in-the-middle attacks during transit; d) Data Leak-
age on Up/Down: interception of data between the customer
and the cloud provider leads to leakage of data to third parties;
e) Loss of encryption keys: exposure of customer’s secret keys
to malicious parties.

We have evaluated the relevant threats and created a threat
model, summarized, along with the corresponding mitigation,
in Table 1. We have derived the most important attack vectors
from our threat model and provide an analysis.

If an attacker is able to pose as an authorized user, he still
cannot download the data unless he digitally signs and sub-
mits a transaction to stream data to a data consumer.

There is no single point of compromise. If an attacker is
able to access one of the node types, he still won’t be able

40050

to extract data. An attacker needs to get access to at least
two different types of node to decrypt the data. File segment
nodes, keys nodes, and playbook nodes are proactive and do
not expose any TCP ports. Thus, there is no way for the
attacker to log in to these nodes unless they get access to a
virtual machine or physical hardware and scan memory to get
the contents from the running application.

If an attacker is able to obtain a playbook file, it is still only
one instance. The attacker will not have access to every mod-
ified instance of the playbook. Without continuous updates,
the attacker will not have access to the data.

Even if an attacker captures the data stream during a
streaming session, it rapidly becomes obsolete very soon,
unless the attacker obtained a seed to start and run live
matrix. During a single streaming session, the data are from

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

File segments node

read key change settings
from storage settings '

request a new playbook

Command and control node

Keys and playbook node

check for updated playbook

(check for playbook request

generate n element homomorphic operation sequence Z
update playbook with homomorphic operation sequence :

(send updated playbook

securely dispose of updated playbook Z

lookup encrypted file segments
from live matrix

[for each file segment in old playbook]

perform homomorphic operation sequence
on encrypted file segment '

update the live matrix with
new value of encrypted file segment

securely dispose of a new playbook

confirm live matrix recalculation for filefuid)

File segments node

Command and control node

(check for live matrix recalculation confirmation

confirmed)
securely dispose of old playbook :

Keys and playbook node

FIGURE 9. Protocol for storage maintenance and live matrix recalculation with homomorphic encryption.

different live matrix revisions, so in order to decrypt the
data, corresponding live matrix states should be obtained.
This can be done by compromising the server side or the
data consumer side. This is still difficult; for instance, if the
attacker gains access to the data consumer side, then he needs
to be present from the very beginning of the stream and
record the low-level machine code as it is transmitted. The
solution depends on the exact data consumer implementation.
For example, in the case of holographic video streaming,
3D printing, and other types of AM, data that are already
consumed must be disposed of just after consumption. Addi-
tionally, if the attacker obtains one full unencrypted sequence
of machine code, then this sequence could be used on exact
make and model of the manufacturing machine, which makes
it harder to distribute and violate the copyright.

In our previous research [5], [33], [34], we assumed that
data—once taken from some kind of secured storage—are
decrypted and then encrypted with a different method for
delivery to the data consumer. Then, the distribution node can
also be a point of attack. In that case, the attacker can obtain

VOLUME 8, 2020

a file or a stream on the server during re-encryption between
storage and streaming. However, in the current approach,
there is no need for transcoding the data.

In TLS file transfer, a certain key is used to encrypt data;
if an attacker obtains the key, he can decrypt the file. Such
keys are often reused by the services, or changed infrequently,
making them vulnerable to collision and brute-forcing over
time. In our solution, the complexity to brute-force the keys
increases exponentially: the file is split into thousands of
segments and the /ive matrix is constantly recalculated.

If an attacker obtains access to the data consumption
device, he can receive file parts over a long period of time.
There is no way to get all the files from the storage. Conse-
quently, during one session, only one file can be obtained,
and over a comparably long period of time. For example,
producing a part using automated manufacturing can take
days, and movies can last for hours. For an attacker acting
this way, it would be inefficient time-wise to extract data from
secured storage; this would not allow getting all the data from
the secured cloud storage.

40051

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

User Command and control node Stream consuming device

send signed transaction to start

sireaming session for fle_uid 3

Distribution node File segments node Keys and playbook node

send signed user's approval to receive file file_uid >
< check for new streaming session transaction
streaming session transaction for file_uid. >
€2t signed users approval for e uid
retum signed users approvalfor fle,ud___y,
validate user's approval signature with user's public key >z
PR (7 users approval signature 1s vand]
< store user's approval for file_uid
<

generate live matrix seed

@S¢ live matrix seed and streaming settings
<

i

initialize live matrix, start changing states according to streaming settings Z

T 1S67S approval signatare 1ot vand]

report an attack for streaming session and file_uid, stop the streaming process

<
<
< check for new streaming session and user's approvals
<
streaming session transaction for file_uid and user's approval »
>
validate streaming session transaction and
user's approval signatures with user's public key
alt ¥ signatures are valid]
< request playbook for file_uid
<
T ot vaid]
< report an attack for streaming session and file_uid, stop the streaming process
<
< check for new streaming session and user's approvals
<
streaming session transaction for file_uid and user's approval -
>
validate streaming session transaction and
user's approval signatures with user's public key
alt ¥ signatures are valid]
< check for streaming playbook request
<
streaming playbook, >
>
T Rof valiel
g report an attack for streaming session and file_uid, stop the streaming process
<
< check for playbook for file_uid
<

playbook for file_uid

>
>

BT Tover ail file segments for file_uid]

extract encrypted file segment from live matrix using playbook)

send encrypted file segment with parametric dela

<
<
< request file segment hash
<

return file segment hash 3

>
compare hash with playbook :

[hash is valid]

send a private key for file segment

A

T Rot valiel

report an attack for streaming session and file_uid

<
<

< report an attack for streaming session and file_uid

<

Generate hints for file segment using live matrix :

send file segment hints

lookup hints using live matrix, reconstruct file segment
decrypt file segment using private key

consume file segment

it

User Command and control node Stream consuming device

FIGURE 10. Protocol for secured streaming.

If an attacker starts to request more file parts within a
shorter time-frame than a certain threshold, then the distribu-
tion node stops providing data. If such an attack is performed
on a consuming device or a data channel, stopping the stream
makes it impossible to get the rest of the file.

If an attacker carries out an attack on the secured cloud
or a stream to a data consumer, secure cloud nodes collect
the data and compare the metrics with those in configuration
files. All abnormal activities, events, and logs can trigger
an alarm state. A hacker would need to carry out a com-
prehensive analysis for a considerable period to figure out
which changes in communication would cause an alarm
state. By that time, the hacker would likely be detected, and
mitigation procedures executed.

40052

Distribution node File segments node Keys and playbook node

VIl. PERFORMANCE EVALUATION

In our lab-level implementation, we used the distributed
database Cassandra [72] to implement live matrices,
the Apache Spark near real-time distributed scale data pro-
cessing [73] with the Java programming language to imple-
ment operations over matrices, and Apache Kafka [74] to
maintain a queue of service requests and streaming jobs.

We stored file segments in column families of four
bytes each, encrypted with public keys, in Cassandra. For
public/private key generation, we used elliptic curve type
secp256k1 [75]. We used the last 20 bytes of the public key
to uniquely index encrypted file segments in the Cassandra
column families. We used Apache Spark to re-encrypt the file
segments and recalculate new indexes in Cassandra every two

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

TABLE 1. Threat model.

Threat

Cloud multi-
tenancy

Mitigation

The end user does not have direct access to the data;
he can only issue a start streaming command signed
with his private key. There is no way to co-locate new
malicious data with a victim’s assets.

Elasticity File segments are encrypted at rest and shuffled across
the matrix; without a valid playbook, there is no way
to extract the data. Moreover, after scheduled
maintenance and recalculation of /ive matrix, the old
playbook is discarded and a new playbook generated,

so old data quickly become obsolete.

Availability Although this particular method and its

of implementation does not currently provide
information comprehensive data backup options, it is intended for
secured data distribution. The data owner should store
a copy on offline media.

Cloud The solution is intended to run on cloud infrastructure
management such as AWS, Azure, or GCE, and this threat is

layer mitigated by the cloud provider.

Information All transactions by the user to delete or transfer data

integrity and
privacy

from the secured cloud should be signed by a private
key; then, nodes will independently verify the digital
signature with the public key of the user. If the
signature is not valid, no transfer is performed.

Cloud secure
federation

The user uses a public-private key-pair to manage his
resources at different locations. To perform streaming
of the file to the data consumer, the user must sign a
streaming transaction and send it to the secured cloud.
A user can sign another transaction and send it to the
data consumer, so the consumer can prove his
eligibility to receive a secured data stream.

minutes, then provided the updated version of the playbook
to the keys and playbook node. For hashing, we used the
Keccak-256 [37] hash function.

We used a local cloud of four bare-metal physical machines
to run the software. Two machines (one for the file seg-
ments node and one for the distribution node) each had an
8x GPU AMD Radeon RX580 chipset with 8 GB GDDRS,
i7 CPU, 16 GB RAM, and 128 GB SSD. The other two
machines, used for the command and control node and the
keys and playbook node, respectively, had an Intel Celeron
processor, 4 GB RAM, and 32 GB SSD. We set the GPUs
in a computing mode and flashed them with a modified
firmware for higher hash rates. On average, each GPU was
able to produce 31.5 Mhash/s; a few outstanding GPUs per-
formed at 28.5 Mhash/s. We achieved an average hash-rate
of 248 Mhash/s total on each of the machines equipped with
8x GPUs.

First, we tested secured streaming between two cloud
machines. We performed secured streaming of the 20 MB
file in the local network from the file segment node to the
distribution node. We were able to recalculate hashes for the
three-dimensional live matrix of 256° at an average of 14 revi-
sions per second. In another test, we were able to re-calculate
a bigger matrix of 4096> with an average of one revision
every 5 minutes. Second, we carried out the test between a
cloud node and a data consumer node. For this test, we needed
one more machine. The external stream receiving side was

VOLUME 8, 2020

TABLE 2. Proposed method performance (base rates 100 Mhash per h =
$0.05, 1 GB = $0.087) for a 20 MB file size.

Experiment Matrix | State change | A traffic | A cost
size frequency (GB) &)

cloud-to-cloud 2563 14 per s 1.67 0.1457
cloud-to-cloud 4096° | lper5min | 0.85 0.0751
cloud-to-stream 2563 1 pers 1.67 0.1437
consuming device

cloud-to-stream 40963 1 per 64 min | 0.85 0.0711
consuming device

a laptop with an i7 processor, 8 GB RAM, and 256 GB
SSD, GPU AMD Radeon RX570 chipset with 2 GB RAM,
intended to emulate a single user consuming the stream. The
GPU of this machine was able to produce 18 MHash/s. For
this test, we needed to use only one GPU on the distribu-
tion node, with timing matching the calculation speed of the
receiving machine. We were able to recalculate hashes for the
three-dimensional live matrix of 256° states at an average rate
of one per second. In another test, we performed a streaming
session on the bigger live matrix of 40963, and we were able
to calculate a new state on average every 64 minutes. The
results are reflected in Table 2.

We performed additional tests with different file sizes:
41 MB, 119 MB, 583 MB, and 1.1 GB. The results showed a
linear dependency for overhead traffic and overhead server
costs. In future research, we will seek to reduce overhead
traffic.

The tests showed that overhead increases with smaller
matrix sizes. This is a result of change in the matrix size to
hash function output ratio in bytes. We recommend the use
of proven SHA cryptographic functions, even if this creates
a bigger overhead. If minimizing bandwidth is important,
then hash functions with a smaller length output should be
selected.

We also confirmed that the cloud can adapt to the com-
puting power capacity available on the consumer’s end and
produce a stream that could be consumed with less comput-
ing power. With the increase in computing power needed to
calculate live matrix revisions, the power needed by a hacker
to try to decode the stream would increase exponentially.
Our results show that catching such a stream would be an
ever-moving target. Even in the case of success, the informa-
tion would become obsolete very quickly, making it hard to
carry out any analysis to decrypt the file being transferred.

VIil. CONCLUSION

In this paper, we described and evaluated an approach that
leverages the physical limitations of the computational pro-
cess into a defense strategy to make cloud file storage and
transfer highly secure. The method was designed to fulfill
multiple important requirements for the use cases we dis-
cussed. The data transfer is lossless, so this method will
work not only for delivering machine code to manufactur-
ing machines, but for many other applications, including
audio and video streaming. The most notable features of our

40053

IEEE Access

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

approach are: a) The solution is tightly coupled with secured
storage, so there is no need for re-encryption in order to
stream to remote data consumers, like other clouds or AM
machines; b) By its nature, this solution keeps the data in
partitions, and streaming also implies partition tolerance on
file transfer. The data are segmented, and there are security
controls based on the physical limitations of the computa-
tional process—it is not physically possible to extract and
consume all the data within a reasonable time-frame; c) If
multiple machines are used for each type of node, then there
is no single point of failure in case of intrusion or fault; d) It
may be used for peer-to-peer information transfer, though
this requires the live matrix engine be installed on the peer
machines participating in the information transfer; e) The
solution can send bi-directional streams; on the receiving
side, live matrix could be used for the reverse stream, for
example, to transmit telemetry or interactive feedback.

In future work, we will concentrate on data storage fault
tolerance mechanisms and intelligent adaptiveness to avail-
able computing power and network bandwidth.

REFERENCES

[1] S.Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-
grained data access control in cloud computing,” in Proc. IEEE Infocom,
Mar. 2010, pp. 1-9.

[2] 3D Printeros Cloud World Statistics. Accessed: May 31, 2019. [Online].
Available: https://cloud.3dprinteros.com/dashboard/#world-statistics

[3] M. Molitch-Hou. (Jan. 2017). Dremel and 3D Printeros Partner for 3D
Printing in the Cloud. Engineering. com. [Online]. Available: https://
www.engineering.com/3DPrinting/3DPrintingArticles/ArticleID/14021/
Dremel-and-3DPrinterOS-Partner-for-3D-Printing-in-the-Cloud.aspx

[4] S. Saunders. (May 2018). Thanks to New Partnership, 3D Printeros Soft-
ware Will now Power Kodak Portrait 3D Printers. 3DPrint.com. [Online].
Available: https://3dprint.com/214798/3dprinteros-kodak-portrait/

[5] K. Isbjornssund and A. Vedeshin, ‘““Secure streaming method in a numeri-
cally controlled manufacturing system, and a secure numerically controlled
manufacturing system,” U.S. Patent 2014 111 587 A3, Dec. 3, 2015.

[6] R. Landauer, ‘“Fundamental physical limitations of the computational
process,” Ann. New York Acad. Sci., vol. 426, no. 1, pp. 161-170, 1984.

[71 S.Kalpakjian, Manufacturing Engineering and Technology. London, U.K.:
Pearson Education India, 2001.

[8] SIm2802.0. Accessed: Jul. 15,2019. [Online]. Available: https://www.slm-

solutions.com/en/products/ machines/slmr280-20/

Stratasys Objet1000 Plus. Accessed: Jul. 15, 2019. [Online]. Available:

https://www.stratasys.com/3d-printers/objet1000-plus

[10] Materialise Magics. Accessed: Jul. 15, 2019. [Online]. Available:
https://www.materialise.com/en/software/magics

[11] C.E. Okwudire, S. Huggi, S. Supe, C. Huang, and B. Zeng, “Low-level
control of 3D printers from the cloud: A step toward 3D printer control as
a service,” Inventions, vol. 3, no. 3, p. 56, Aug. 2018.

[12] Prusa Stepper Motor Calculator. Steps Per Millimeter - Belt Driven
Systems. Accessed: Jul. 16, 2019. [Online]. Available: https://blog.
prusaprinters.org/calculator/

[13] Achievable Step Rates. Accessed: Jul. 16, 2019. [Online]. Available:
https://reprap.org/wiki/Step_rates

[14] Klipper 3D. Accessed: Jul. 16, 2019. [Online]. Available: https:/
www.klipper3d.org/Features.html

[15] Y. Nilsiam and J. M. Pearce, ‘“Free and open source 3-D model customizer
for Websites to democratize design with OpenSCAD,” Designs, vol. 1,
no. 1, p. 5, Jul. 2017.

[16] M. Kintel and C. Wolf, “OpenSCAD,” GNU General Public License,
Tech. Rep., 2014. [Online]. Available: http:/files.openscad.org/mm.pdf

[17] A.-M. Nergi, (May 2013). Eestis Pusti Pandud Innovatsiooniakadeemia
Liigub Edasi Euroopasse. [Online]. Available: https://arileht.delfi.ee/
news/uudised/eestis-pusti-pandud-innovatsiooniakadeemia-liigub-edasi-
euroopasse?id=67036706

[9

40054

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]
(391

[40]

(41]

(42]

(43]

(44]

Telerik Fiddler. Accessed: Jul. 17, 2019 [Online]. Available: https://
www.telerik.com/fiddler

G. Brunette, Security Guidance for Critical Areas of Focus in Cloud
Computing v2. 1. Seattle, Washington, DC, USA: Cloud Security Alliance,
2009, pp. 1-76.

S. Mastorakis, “Peer-to-peer data sharing in named data networking,”
Ph.D. dissertation, Dept. Comput. Sci., UCLA, Los Angeles, CA, USA,
2019.

S. Mastorakis, A. Afanasyev, Y. Yu, and L. Zhang, “nTorrent: Peer-to-peer
file sharing in named data networking,” in Proc. 26th Int. Conf. Comput.
Commun. Netw. (ICCCN), Jul. 2017, pp. 1-10.

L. Zhang, A. Afanasyeyv, J. Burke, V. Jacobson, K. C. Clafty, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 6673, Jul. 2014.
M. G. Jaatun, G. Zhao, and S. Alapnes, “A cryptographic protocol for
communication in a redundant array of independent net-storages,” in Proc.
IEEE 3rd Int. Conf. Cloud Comput. Technol. Sci., Dec. 2011, pp. 172-179.
E. Miller, D. Long, W. Freeman, and B. Reed, *“Strong security for dis-
tributed file systems,” in Proc. IEEE Int. Perform., Comput., Commun.
Conf., Apr. 2001, pp. 34—40.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-
encryption schemes with applications to secure distributed storage,” ACM
Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 1-30, 2006.

C. Rong and W.-C. Kim, “Effective storage security in incompletely
trusted environment,” in Proc. 21st Int. Conf. Adv. Inf. Netw. Appl. Work-
shops (AINAW), May 2007, pp. 432-437.

V. Manasa and M. Vikram, “A secured adaptive mobile video streaming
and efficient social video sharing in the clouds,” Int. J. Comput. Sci. Inf.
Technol. (IJCSIT), vol. 5, no. 4, pp. 5153-5156, 2014.

M. Bucicoiu, M. Ghideu, and N. Tépus, “Secure cloud video streaming
using tokens,” in Proc. RoEduNet Conf. 13th Ed., Netw. Educ. Res. Joint
Event RENAM 8th Conf., Sep. 2014, pp. 1-6.

Z. Chen, H. Yin, C. Lin, and L. Ai, “3D-wavelet based secure and scalable
media streaming in a centralcontrolled P2P framework,” in Proc. 21st Int.
Conf. Adv. Inf. Netw. Appl. (AINA), May 2007, pp. 708-715.

S.-H. Liu, H.-Y. Yu, J.-Y. Wu, J.-J. Chen, J.-L. Liu, and D.-H. Shiue,
“A secured video streaming system,” in Proc. Int. Conf. Syst. Sci. Eng.,
Jul. 2010, pp. 625-630.

S. J. Wee and J. G. Apostolopoulos, “Secure scalable video streaming
for wireless networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., vol. 4, May 2001, pp. 2049-2052.

N.-H. Lin, T.-H. Huang, and B.-Y. Chen, “3D model streaming based on
JPEG 2000,” IEEE Trans. Consum. Electron., vol. 53, no. 1, pp. 182-190,
Feb. 2007.

P-M. Sepp, A. Vedeshin, and P. Dutt, “Intellectual property protection
of 3D printing using secured streaming,” in The Future of Law and
eTechnologies. New York, NY, USA: Springer, 2016, pp. 81-109.

K. Isbjornssund and A. Vedeshin, ‘“Method and system for enforcing 3D
restricted rights in a rapid manufacturing and prototyping environment,”
E.P. Patent 2701 090 A1, Feb. 27 2014.

E. W. Tischhauser, ““Mathematical aspects of symmetric-key cryptogra-
phy,” Ph.D. dissertation, Dept. Elect. Eng. (ESAT), Katholieke Universiteit
Leuven, Leuven, Belgium, 2012.

V. G. Cerf, “ASCII format for network interchange,” The Internet Engi-
neering Task Force, Wilmington, DE, USA, Tech. Rep. RFC 20, 1969.
[Online]. Available: https://www.rfc-editor.org/info/rfc0020

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge
function family main document,” Submission NIST (Round 2), vol. 3,
no. 30, pp. 1-78, Apr. 2009.

B. Schneier, “Attack trees,” Dr. Dobb’s J., vol. 24, no. 12, pp. 21-29, 1999.
A. Biryukov, J. Lano, and B. Preneel, “Cryptanalysis of the alleged securID
hash function,” in Proc. Int. Workshop Sel. Areas Cryptogr. New York,
NY, USA: Springer, 2003, pp. 130-144.

J. A. Jacobs, Geomagnetic Micropulsations, vol. 1. Berlin, Germany:
Springer, 2012,

R. A. Fowler, B. J. Kotick, and R. D. Elliott, “Polarization analysis of
natural and artificially induced geomagnetic micropulsations,” J. Geophys.
Res., vol. 72, no. 11, pp. 2871-2883, Jun. 1967.

R.Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams, ““Quantum clock
synchronization based on shared prior entanglement,” Phys. Rev. Lett.,
vol. 85, no. 9, p. 2010, Aug. 2000.

M. Xu, D. A. Tieri, E. Fine, J. K. Thompson, and M. J. Holland, “Syn-
chronization of two ensembles of atoms,” Phys. Rev. Lett., vol. 113, no. 15,
Oct. 2014, Art. no. 154101.

C. De Canniere, “Trivium: A stream cipher construction inspired by block
cipher design principles,” in Proc. Int. Conf. Inf. Secur. New York, NY,
USA: Springer, 2006, pp. 171-186.

VOLUME 8, 2020

A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

IEEE Access

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

P. Ekdahl and T. Johansson, ““A new version of the stream cipher SNOW,”
in Proc. Int. Workshop Sel. Areas Cryptogr. New York, NY, USA: Springer,
2002, pp. 47-61.

J.D. Golic, “Cryptanalysis of alleged As stream cipher,” in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. New York, NY, USA: Springer, 1997,
pp. 239-255.

M. Hell, T. Johansson, and W. Meier, “Grain: A stream cipher for con-
strained environments,” Int. J. Wireless Mobile Comput., vol. 2, no. 1,
pp. 86-93, 2007.

R. Anderson and C. Manifavas, ‘“Chameleon—A new kind of stream
cipher,” in Proc. Int. Workshop Fast Softw. Encryption Berlin, Germany:
Springer, 1997, pp. 107-113.

M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and
O. Scavenius, “Rabbit: A new high-performance stream cipher,” in Proc.
Int. Workshop Fast Softw. Encryption Berlin, Germany: Springer, 2003,
pp. 307-329.

C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and
H. Sibert, “Sosemanuk, a fast software-oriented stream cipher,” in New
Stream Cipher Designs. New York, NY, USA: Springer, 2008, pp. 98-118.
A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-
lightweight block cipher,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. Berlin, Germany: Springer, 2007, pp. 450-466.

J. Daemen, L. Knudsen, and V. Rijmen, “The block cipher square,” in
Proc. Int. Workshop Fast Softw. Encryption New York, NY, USA: Springer,
1997, pp. 149-165.

J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block
cipher,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.
Cham, Switzerland: Springer, 2011, pp. 326-341.

B. Schneier, “Description of a new variable-length key, 64-bit block cipher
(Blowfish),” in Proc. Int. Workshop Fast Softw. Encryption. New York, NY,
USA: Springer, 1993, pp. 191-204.

R. A. Rueppel, “Stream ciphers,” in Analysis and Design of Stream
Ciphers. New York, NY, USA: Springer, 1986, pp. 5-16.

P. Mahajan and A. Sachdeva, “A study of encryption algorithms aes, des
and rsa for security,” Global J. Comput. Sci. Technol., vol. 13, no. 15,
pp. 14-22, Dec. 2013.

P. Trakadas, T. Zahariadis, H. C. Leligou, S. Voliotis, and K. Papadopoulos,
“Analyzing energy and time overhead of security mechanisms in wireless
sensor networks,” in Proc. 15th Int. Conf. Syst., Signals Image Process.,
Jun. 2008, pp. 137-140.

C. Xenakis, N. Laoutaris, L. Merakos, and I. Stavrakakis, “A generic
characterization of the overheads imposed by IPsec and associated cryp-
tographic algorithms,” Comput. Netw., vol. 50, no. 17, pp. 3225-3241,
Dec. 2006.

P.-L. Cayrel, G. Hoffmann, and M. Schneider, “GPU implementation of
the Keccak hash function family,” in Proc. Int. Conf. Inf. Secur. Assurance.
Cham, Switzerland: Springer, 2011, pp. 33-42.

L. Dadda, M. Macchetti, and J. Owen, “The design of a high speed ASIC
unit for the hash function SHA-256 (384, 512),” in Proc. Conf. Design,
Autom. Test Eur., vol. 3, Feb. 2004, Art. no. 030070.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Cap-
kun, “On the security and performance of proof of work blockchains,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 3-16.
J. R. Goodman, “Using cache memory to reduce processor-memory traf-
fic,” ACM SIGARCH Comput. Archit. News, vol. 11, no. 3, pp. 124-131,
Jun. 1983.

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-the-art
and research challenges,” J. Internet Services Appl., vol. 1, no. 1, pp. 7-18,
May 2010.

D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O Ports
to Process Management. Newton, MA, USA: O’Reilly Media, 2005.

R. K. Ko, B. S. Lee, and S. Pearson, “Towards achieving accountability,
auditability and trust in cloud computing,” in Proc. Int. Conf. Adv. Comput.
Commun. New York, NY, USA: Springer, 2011, pp. 432—444.

B. Nagpal, N. Singh, N. Chauhan, and P. Sharma, “CATCH: Comparison
and analysis of tools covering honeypots,” in Proc. Int. Conf. Adv. Comput.
Eng. Appl., Mar. 2015, pp. 783-786.

A. S. Sohal, R. Sandhu, S. K. Sood, and V. Chang, “A cybersecurity
framework to identify malicious edge device in fog computing and cloud-
of-things environments,” Comput. Secur., vol. 74, pp. 340-354, May 2018.
A. Behl and K. Behl, “An analysis of cloud computing security issues,” in
Proc. World Congr. Inf. Commun. Technol., Nov. 2012, pp. 109-114.

A. Behl and K. Behl, “Security paradigms for cloud computing,” in
Proc. 4th Int. Conf. Comput. Intell., Commun. Syst. Netw., Jul. 2012,
pp. 200-205.

VOLUME 8, 2020

[70]

(71]

(72]

(73]

[74]
[75]

A. Behl, “Emerging security challenges in cloud computing: An insight to
cloud security challenges and their mitigation,” in Proc. World Congr. Inf.
Commun. Technol., Dec. 2011, pp. 217-222.

P. Saripalli and B. Walters, “QUIRC: A quantitative impact and risk
assessment framework for cloud security,” in Proc. IEEE 3rd Int. Conf.
Cloud Comput., Jul. 2010, pp. 280-288.

A. Lakshman and P. Malik, “Cassandra: A decentralized structured stor-
age system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35-40,
Apr. 2010.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez,
S. Shenker, and I. Stoica, “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56-65, 2016.

N. Garg, Apache Kafka. Birmingham, U.K.: Packt Publishing Ltd, 2013.
J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and
E. Wustrow, “Elliptic curve cryptography in practice,” in Proc. Int. Conf.
Financial Cryptogr. Data Secur. New York, NY, USA: Springer, 2014,
pp. 157-175.

ANTON VEDESHIN received the M.Sc. degree
in computer science from the Tallinn University
of Technology (TalTech). He has developing soft-
ware since the age of 11. He worked on Mitsubishi
electrical car data mining project. He is currently a
member of the National Doctoral School in Infor-
mation and Communication Technologies. He is
also a Lecturer of cloud computing course with the
Tallinn University of Technology. He is also the

R CTO of 3DPrinterOS, working on industry appli-

cations with F500 enterprises. The technology stack includes programming
languages, such as Java, GoLang, Python, PHP, and C++, Cloud tech-
nologies, such as Hadoop, Aerospike, Spark, Storm, Mahout, RapidMiner,
Cassandra, Hbase, Solr, Vagrant, Docker: Mesos, Swarm, Kubernetes,
Flocker, and Weave, blockchain, such as Ethereum, Hyperledger Fabric, and
Corda R3, Ansible, Nagios, Redis, HAProxy, Nginx, and PaaS/IaaS, such as
Amazon AWS, Microsoft Azure, and Google Cloud. His research interests
include cloud computing, 3D printing, cyber security, blockchain, and data
mining.

JOHN MEHMET ULGAR DOGRU is currently
the co-founder and the CEO of 3DPrinterOS.
He is an experienced start-up Founder and
a former Lead Engineer at Dell, where he
designed zero-time automated manufacturing sys-
tems. He has 20 years of experience in auto-
mated manufacturing and software development,
IP security, and streamlining workflows.

INNAR LIIV was a Cyber Studies Visiting
Research Fellow with the University of Oxford,
from 2016 to 2017, a Visiting Scholar with
Stanford University, in 2015, and a Postdoctoral
Visiting Researcher with the Georgia Institute of
Technology, in 2009. He is currently an Associate
Professor of data science with the Tallinn Uni-
versity of Technology and a Research Associate
with the Centre for Technology and Global Affairs,
Oxford University. He also belongs to the Future

of Public e-Governance expert group at the Foresight Centre of the Par-
liament of Estonia. His research interests include e-government and data
science, social network analysis, computational social science, information
visualization, and big data technology transfer to industrial and governmental
applications.

40055

IEEEACCGSS A. Vedeshin et al.: Secure Data Infrastructure for Personal Manufacturing Based on a Novel Key-Less, Byte-Less Encryption Method

SADOK BEN YAHIA received the Habilitation to
Lead Researches in Computer Sciences from the
University of Montpellier, in April 2009.

He has been a Professor with the Tallinn Univer-
sity of Technology (TalTech), since January 2019,
and the University of Tunis El Manar, since
September 2001. His research interests mainly
include combinatorial aspects in big data and their
applications to different fields, e.g., data mining,
combinatorial analytics (e.g., maximum clique
problem and minimal transversals), and smart cities (e.g., information aggre-
gation & dissemination and traffic prediction). He has supervised 30 Ph.D.
computer science students and more than 50 master’s students. A selected
list of his publications is shown at a glance through his DBLP website:
http://dblp.uni-trier.de/pers/hd/y/Yahia:Sadok_Ben.

Dr. Yahia is currently a member of the Steering Committee of the Interna-
tional Conference on Concept Lattices and their Applications (CLA) as well
as the International French Spoken Conference on Knowledge Extractions
and Management.

40056

DIRK DRAHEIM received the Ph.D. degree
from Freie Universitit Berlin and the Habilita-
tion degree from Universitdt Mannheim, Germany.
He is currently a Full Professor of information
systems and the Head of the Information Systems
Group, Tallinn University of Technology, Estonia.
The Information Systems Group conducts research
in large and ultra-large-scale IT systems. He is
also an Initiator and a Leader of numerous digital
transformation initiatives.

VOLUME 8, 2020

