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ABSTRACT This paper is concerned with the stability and Hopf bifurcation of fractional-order neural
networks with discrete and distributed delays. The novelty of this paper is to take into account the discrete
time delay and the distributed time delay for fractional-order systems. By introducing two virtual neurons
to the original network, a new four-neuron network only involving discrete delays is formed. The sum of
discrete delays is adopted as the bifurcation parameter to demonstrate the existence of Hopf bifurcation. It is
found that the critical value of bifurcation can be effectively manipulated by choosing appropriate system
parameters and order. Finally, numerical simulations are executed to substantiate the theoretical results and
describe the relationships between the parameters and the onset of bifurcation.

INDEX TERMS Stability, Hopf bifurcation, discrete delay, distributed delay, fractional-order neural
networks.

I. INTRODUCTION
As is known to all, the neuronal system is a complex nonlinear
dynamic system. And the neuron is considered the basic pro-
cessing unit that has simplicity and simulation. Neurons can
generate and transmit actions, encode and decode informa-
tion, and complete other neural signal processes through the
vibration and turbulence process in discharge activity. Once
the neuronal system is maladjusted, the physiological mech-
anism will be abnormal or even chaotic, eventually leading
to the emergence of neurological diseases [1]. For example,
epilepsy and Parkinson diseases are dynamic neurological
disorders. From the perspective of nonlinear dynamical sys-
tems, the nature of dynamic disease is related to bifurcations
caused by altering the regulatory parameters in the neuronal
system. Parkinson disease, for example, is formed by exces-
sive synchronization of the basal ganglia, leading to intensify
the local potential field oscillations, and the Hopf bifurcation
occurs simultaneously. Therefore, it is extremely important
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to seek the specific parameter intervals of bifurcation for the
treatment of dynamic diseases.

In the past decade, much investigation on neural net-
works(NNs) [2]–[6] has sprung up ever since its first sim-
plified model was put forward by Hopfield in [7]. It is now
firmly established that NNs can be applied into associa-
tive memory, pattern recognition and artificial intelligence.
In fact, double-neuron networks exhibit the dynamic behavior
in accord with the multi-neuron ones, which can be served as
prototypes so as to enhance understanding about the dynam-
ics of complex multi-neuron networks. Furthermore, because
the duplex structure consumes so little energy, the physio-
logical brain has been imitated by creating different types of
memory-based circuits [8], [9].

Combining the notion of Hopfield NNs in [7], Olien
and Bélair [10] investigated the dynamic behavior of a
two-neuron system with diverse discrete delays, which can
be described as follows{

p′1(t)=−p1(t)+v11f (p1(t−τ1))+v12f (p2(t−τ2)),
p′2(t)=−p2(t)+v21f (p1(t−τ1))+v22f (p2(t−τ2)).

(1)
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They analyzed different states with time delays, and revealed
that the time delay exerted significant influence on sys-
tem dynamics. Henceforth, more and more scholars set
out to construct artificial neural network models with
time delay so as to get close to biological neural net-
works. Hence, plenty of results about the dynamics of NNs
have been obtained [11]–[17]. For example, based on [10],
Li and Hu [14] considered the following two-neuron system
with discrete and diagonal distributed delays

p′1(t) = −p1(t)+ v11f
(∫ t
−∞

F(t − s)p1(s)ds
)

+ v12f (p2(t − τ )) ,
p′2(t) = −p2(t)+ v21f (p1(t − τ ))

+ v22f
(∫ t
−∞

F(t − s)p2(s)ds
)
.

(2)

The direction of Hopf bifurcation and stability of bifurcation
periodic solutions were given. Compared with system (2),
Karaoğlu et al. [15] proposed a more general neural net-
work system that has different discrete delays and activation
functions, but with only one distributed delay. Additionally,
several studies have developed low dimensional systems into
high dimensional ones concerning merely discrete delays
[16], [17]. However, these works only dealt with integer-order
models of neural networks.

With the development and applications of the fractional
calculus, researchers have come to realize that the superi-
ority of fractional-order derivatives. On the one hand, frac-
tional derivatives can describe the memory and hereditary
effect of different processes. On the other hand, the order
is variable, which means that fractional-order systems have
unlimited memory. Thus, fractional-order calculus have
been widely studied in diverse disciplines, including engi-
neering [18], [19], physics [20], [21], biology [22]–[24],
economics [25], [26], control [27], electromagnetism [28]
and so on. However, the fractional-order systems are more
complex than integer-order one in terms of properties and
analytical processes.

Recently, fractional calculus has been applied in various
fields, such as fractional-order genetic regulatory net-
works [29], fractional-order congestion control algorithms
[30], fractional-order predator-prey models [31], [32],
and fractional-order neural networks [33]–[43]. Combining
with fractional calculus, the fractional-order neural net-
works (FNNs) will better reflect the memory and genetic
characteristics. In [33] and [34], Kaslik and Sivasundaram
proposed fractional-order neural networks of Hopfield type
with different structures. What’s more, a variable-order frac-
tional operator was introduced into NNs in [35]. Also,
Song and Cao [36] investigated the FNNs and provided the
existence and uniqueness of the nontrivial solution. More-
over, the authors analyzed a category of complex-valued
FNNs with hub and ring structured, and presented the con-
ditions of Hopf bifurcation [37]. However, previous works
ignored the time delay [33]–[37]. Yang et al. [38] dis-
cussed the stability of FNNs without and with discrete
delay respectively, and established an LMI-based uniform

stability condition. Furthermore, Xu et al. [39] considered
a double-neuron FNNs with two discrete delays, discussed
four possible cases with delays, and finally revealed the
effects of different time delays on the stability of networks.
Chen et al. [40] discussed a category of FNNs, but only dealt
with discrete delay. It should be noted that only discrete delay
was considered in [38]–[40]. Different from previous studies,
we will take into account a fractional-order neural system
with distributed and discrete delays. As a consequence, our
neural system not only embodies the genetic and memory
characteristics of neural networks, but also reflects the imbal-
ance of delay during information transmission.

This paper’s main highlights can be listed as follows:
(1) Since fractional derivatives characterize the mem-

ory fetures more accurately, we have developed the
integer-order neural network model with mixed delays into
the fractional-order case to match for the practical biological
neural networks more appropriately.

(2) Although there have been some results on the dynamics
of stability and bifurcation for delayed fractional-order neural
networks, only discrete delays are considered. If distributed
delays are added, the imbalance of delays should be discussed
in transmitting information. In this paper, both discrete delays
and distributed delays are taken into account at the same time
in fractional-order neural networks.

(3) By the coordinate transformation, we can convert the
original neural network with mixed delays into an equiva-
lent system involving only discrete delays, which eliminates
the distributed delay terms. However, the two-dimensional
system with order α becomes a four-dimensional system
with two different orders, which makes the derivation more
interesting.

(4) The influences of mixed delays and order on dynam-
ical behaviors of fractional-order neural networks have
been investigated. It is found that the critical value can
be effectively manipulated by adopting appropriate system
parameters and order.

The paper is arranged as follows: In Section II, several pre-
liminaries are put forward. In Section III, the fractional-order
double-neuron model is presented. In Section IV, we arrive
at the sufficient conditions of Hopf bifurcation. The validity
of theoretical results are verified by simulation in Section V.
Finally, Section VI summarizes the paper and indicates the
future research.

II. PRELIMINARIES
In this section, the definition of the Caputo derivative and the
stability of n-dimensional linear fractional differential system
are introduced.

There are various definitions of fractional derivatives,
of which the commonly adopted are the Riemann-Liouville
definition, the Grünwald-Letnikov definition and the Caputo
definition. The definition of Caputo derivatives has the supe-
riority in not limiting the initial conditions and making
fractional-order systems simpler after the Laplace transform.
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Thus, a lot of papers adopt the Caputo fractional derivative
[32], [36], [38], [44], [45].
Definition 1 ( [46]): The Caputo fractional derivative is

defined by

C
0D

φ
t f (t) =

1
0(n− φ)

∫ t

0
(t − τ )n−φ−1f (n)(τ ) dτ. (3)

where φ ≥ 0, φ < n ≤ φ + 1, n ∈ Z+ and the Gamma
function 0(s) =

∫
∞

0 ts−1e−tdt . φ denotes the value of the
fractional order and φ ∈ (0, 1].

The n-dimensional linear fractional differential system is

C
0D

φ1
t p1(t)
C
0D

φ1
t t

= v11p1(t)+ v12p2(t)+ · · · + v1npn(t),

C
0D

φ2
t p2(t)
C
0D

φ2
t t

= v21p1(t)+ v22p2(t)+ · · · + v2npn(t),

· · ·

C
0D

φn
t pn(t)
C
0D

φn
t t

= vn1p1(t)+ vn2p2(t)+ · · · + vnnpn(t), (4)

where the order φi are rational numbers and φi ∈ (0, 1], for
i = 1, 2, . . . , n.

The characteristic equation of model (4) is as follows

det


sφ1 − v11 −v12 · · · −v1n
−v21 sφ2 − v22 · · · −v2n
...

... · · ·
...

−vn1 −vn2 · · · sφn − vnn

=0. (5)

Let Q be the lowest common multiple of qi of φi, where
φi =

σi
qi
, σi, qi ∈ N+, (σi, qi) = 1, for i = 1, 2, · · · , n.

Lemma 1 ( [47]): Only when all the roots $ s of the
equation

det


$Qφ1−v11 −v12 · · · −v1n
−v21 $Qφ2 − v22 · · · −v2n
...

... · · ·
...

−vn1 −vn2 · · · $Qφn −vnn

 = 0,

(6)

satisfy |arg($ )| > π
2Q , the zero solution of system (4) is

locally asymptotically stable.
Remark 1: The stability mentioned in this paper is the

asymptotic stability.

III. THE MATHEMATICAL MODE
In order to better describe the dynamic system, we make
appropriate improvements based on previous research. More
specifically speaking, a double-neuron network with mixed
delays is put forward as follows:

C
0D

α
t p1(t) = −p1(t)+ v11f

(∫ t
−∞
F(t−s)p1(s)ds

)
+ v12f (p2(t − τ2)) ,

C
0D

α
t p2(t) = −p2(t)+ v21f (p1(t − τ1))

+ v22f
(∫ t
−∞
F(t−s)p2(s)ds

)
,

(7)

FIGURE 1. Architecture of system (8).

where pi (i = 1, 2) represents the state of the ith neuron at
time t and vij (i = 1, 2 and j = 1, 2) denotes real constants.
The order α is a rational number. Moreover, the delay kernel
function F(·) is said to be non-negative when

∫
∞

0 F(s)ds = 1.
F(·) represents the impact of past memory on current dynam-
ics and its form is as follows:

F(s) = κn+1
sne−κs

n!
, n = 0, 1, 2, . . . ,

where κ is the decline rate of the effects of past memories and
κ > 0. The weak delay kernel with n = 0 is considered and
presented as

F(s) = κe−κs.

Remark 2: Evidently, system (7) can be converted to sys-
tem (2) when α = 1 and τ1 = τ2. Therefore, system (2)
discussed in [14] is a special situation of system (7) proposed
in this paper.

In fact, f (·) is an activation function and we make the
following assumption:

(H1) f (0) = 0 and f ∈ C3,
where C3 is the set of third-order differentiable functions.
For simplicity, we introduce two virtual neurons, as follows

p3(t) =
∫ t

−∞

F(t−s)p1(s)ds,

p4(t) =
∫ t

−∞

F(t−s)p2(s)ds.

Then system (7) turns into
C
0D

α
t p1(t)=−p1(t)+v11f (p3(t))+v12f (p2(t − τ2)) ,

C
0D

α
t p2(t)=−p2(t)+v21f (p1(t − τ1))+v22f (p4(t)),

p′3(t)=−κp3(t)+κp1(t),
p′4(t)=−κp4(t)+κp2(t).

(8)

Remark 3: By introducing two virtual neurons p3 and p4,
the new four-neuron system (8) is formed only involving the
discrete delays. Fig. 1 reveals the architecture of (8).
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Remark 4: System (8) is an incommensurate-order neu-
ral model, which shares the property of containing two
integer-order differential equations and two fractional dif-
ferential equations. Compared with the integral-order neural
models in [14], [15] and the commensurate-order neural net-
works in [36], [38], the presence of incommensurate order
usually makes the analytical work more challenging.

From (H1), we obtain that the origin O(0, 0) is an equilib-
rium point of system (7). Thus,O(0, 0, 0, 0) is the equilibrium
point of system (8). We assume that the origin is an isolated
equilibrium point for simplicity. This paper only takes into
account the local dynamics near the origin.

Linearizing (8) at the origin O(0, 0, 0, 0) is
C
0D

α
t p1(t) = −p1(t)+ β11p3(t)+ β12p2(t − τ2),

C
0D

α
t p2(t) = −p2(t)+ β21p1(t − τ1)+ β22p4(t),

p′3(t) = −κp3(t)+ κp1(t),
p′4(t) = −κp4(t)+ κp2(t),

(9)

where βij=vijf ′(0), i=1, 2, j=1, 2.
The characteristic equation of (9) is

det


sα + 1 −β12e−sτ2 −β11 0
−β21e−sτ1 sα + 1 0 −β22
−κ 0 s+ κ 0
0 −κ 0 s+ κ

=0, (10)

namely,

[(sα + 1)(s+ κ)− β11κ][(sα + 1)(s+ κ)− β22κ]

−β12β21(s+ κ)2e−sτ = 0, (11)

where τ = τ1 + τ2.

IV. LOCAL STABILITY AND HOPF BIFURCATION
Assume that the rational number α = m

n , where m, n ∈ Z
+,

(m, n) = 1, and Z+ represents the set of positive integers.
Let λ = s

1
n . According to Lemma 1, the following theorem

can be summarized directly.
Theorem 1: System (8) with τ = 0 is Lyapunov locally

asymptotically stable at the originO(0, 0, 0, 0) if all the roots
of

det


λm + 1 −β12 −β11 0
−β21 λm + 1 0 −β22
−κ 0 λn + κ 0
0 −κ 0 λn + κ

 = 0. (12)

satisfies |arg(λ)| > π
2n .

Proof: Clearly, (12) is the characteristic equation of
system (8) when τ = 0. The conclusion follows directly from
Lemma 1.
Let s = iω(ω > 0) be a root of (11). Separating the real

and imaginary parts leads to
cosωτ =

1
β12β21η2

(A11η2 + A12η + A13),

sinωτ = −
1

β12β21η2
(A21η2 + A22η + A23),

(13)

where

η = κ2 + ω2,

A11 = ω2α cosαπ + 2ωα cos
απ

2
+ 1,

A12 = −κ(β11 + β22)(ωα+1 sin
απ

2
+ κωα cos

απ

2
+ κ),

A13 = β11β22κ2(κ2 − ω2),

A21 = ω2α sinαπ + 2ωα sin
απ

2
,

A22 = −κ(β11+β22)(−ωα+1 cos
απ

2
+κωα sin

απ

2
−ω),

A23 = −2β11β22κ3ω.

Applying sin2 ωτ + cos2 ωτ = 1 to (13), it results in

G(ω) = 0, (14)

where

G(ω) = A211η
4
+A212η

2
+A213+2 A11A12η

3
+2 A11A13η2

+ 2 A12A13η+A221η
4
+A222η

2
+A223 +2 A21A22η

3

+ 2 A21A23η2+2 A22A23η−β212β
2
21η

4.

Now, we make the following assumption:

(H2) (β11 +β22 −β11β22 − 1)2 <β212β
2
21.

Lemma 2: If (H2) holds, (11) has at least a pair of purely
imaginary roots.

Proof: It is easy to see that the highest order term of
G(ω) is ω4α+8, and

G(0) = [(β11 +β22 −β11β22 − 1)2 − β212β
2
21]κ

8.

If (H2) holds, then G(0) < 0. Together with lim
ω→+∞

G(ω) =

+∞, (14) has at least one positive root. Namely, (11) has at
least a pair of purely imaginary roots.
Since the powers of (14) are rational numbers, it is hard to

solve the solutions directly. Thus, we may convert (14) into
a polynomial equation by a coordinate transformation. Let
z = ω

1
n , (14) turns into

H (z) = 0, (15)

where

H (z) = B211ϑ
4
+B212ϑ

2
+ B213+2B11B12ϑ

3
+2B11B13ϑ2

+ 2B12B13ϑ+B221ϑ
4
+B222ϑ

2
+B223+2B21B22ϑ

3

+ 2B21B23ϑ2
+2B22B23ϑ−β212β

2
21ϑ

4,

in which

ϑ = κ2 + z2n,

B11= z2m cos
mπ
n
+ 2zm cos

mπ
2n
+ 1,

B12= κ(β11 + β22)(zm+n sin
mπ
2n
+ κzm cos

mπ
2n
+ κ),

B13= β11β22κ2(κ2 − z2n),

B21= z2m sin
mπ
n
+ 2zm sin

mπ
2n
,
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B22=−κ(β11+β22)(−zm+n cos
mπ
2n
+κzm sin

mπ
2n
−zn),

B23=−2β11β22κ3zn.

Remark 5: Compared with (14), (15) is more tractable to
determine the distribution of roots. As long as (15) owns the
positive root zk , (14) has the positive root ωk = znk .

Assuming that (15) has l positive roots zk , k = 1, 2, . . . , l.
From (13), we obtain

τ
(j)
k =

1
ωk

{
arccos

A11η2 + A12η + A13
β12β21η2

+ 2jπ
}
,

k = 1, 2, . . . , l; j = 0, 1, 2, . . . . (16)

Define the bifurcation point

τ0 = τ
(0)
k0 = min

k∈{1,2,...,l}
{τ

(0)
k }, (17)

and ω0 = ωk0.
Now, we make the following assumption:

(H3) 8 > 0,

where

8 = r11r21r31 − r12r22r31 − r11r22r32 − r12r21r32
− 2β12β21ω2

0(κ
2
+ ω2

0),

r11 = (α + 1)ωα0 cos
απ

2
+ ακωα−10 sin

απ

2
+ 1,

r12 = (α + 1)ωα0 sin
απ

2
− ακωα−10 cos

απ

2
,

r21 = −2ω
α+1
0 sin

απ

2
+2κωα0 cos

απ

2
+(2−β11−β22)κ,

r22 = 2ωα+10 cos
απ

2
+ 2κ2ωα0 sin

απ

2
+ 2ω0,

r31 = 2κω2
0 cosω0τ0 − (κ2 − ω2

0)ω sinω0τ0,

r32 = 2κω2
0 sinω0τ0 + (κ2 − ω2

0)ω cosω0τ0.

Lemma 3: Let s(τ ) = ζ (τ ) + iω(τ ) is the root of (11) at
τ = τ0 satisfying ζ (τ0) = 0, ω(τ0) = ω0. If (H3) holds, then

Re
[
ds
dτ

]
ω=ω0
τ=τ0

> 0.

Proof: Differentiating both sides of (11) with respect to
τ , we derive that

C1C2
ds
dτ
+ C3[2

ds
dτ
− (s+ κ)(τ

ds
dτ
+ s)] = 0,

where

C1 = αsα−1(s+ κ)+ sα + 1,

C2 = 2(sα + 1)(s+ κ)− (β11 + β22)κ,

C3 = −β12β21(s+ κ)e−sτ .

Then, (
ds
dτ

)−1
ω=ω0
τ=τ0

=
2

(s+ κ)s
+

C1C2

(s+ κ)sC3
−
τ

s
. (18)

Afterwards, we have

Re
[
ds
dτ

]−1
ω=ω0
τ=τ0

=Re
[

2
(s+ κ)s

]
ω=ω0
τ=τ0

+Re
[

C1C2

(s+κ)sC3

]
ω=ω0
τ=τ0

=
8

β12β21ω
2
0(κ

2 + ω2
0)

2
.

Thus,

sign

{
Re
[
ds
dτ

]
ω=ω0
τ=τ0

}
= sign

{
Re
[
ds
dτ

]−1
ω=ω0
τ=τ0

}

= sign

{
8

β12β21ω
2
0(κ

2 + ω2
0)

2

}
.

In view of (H3), it can be achieved that Re
[
ds
dτ

]
ω=ω0
τ=τ0

> 0.
Theorem 2: Assuming that (H2) and (H3) hold, and all

the roots of (12) satisfies |arg(λ)| > π
2n . For system (8),

the following results hold.
1) The equilibrium point (0, 0, 0, 0) of system (8) is

locally asymptotically stable for τ ∈ [0, τ0), and unsta-
ble when τ > τ0.

2) System (8) undergoes a Hopf bifurcation at the equilib-
rium point (0, 0, 0, 0) when τ = τ0.
Proof:

1) If all the roots of (12) satisfies |arg(λ)| > π
2n , then

all the roots of (11) with τ = 0 have negative real
parts. For another thing, fromLemma 2, we know that if
(H2) holds, then (11) has purely imaginary roots ±iωk
when τ = τ

(j)
k . Notice that τ0 defined in (17) is set

as the minimum value for τ > 0 such that (11) has
a couple of purely imaginary roots ±iωk that appear
on the imaginary axis. Therefore, all roots of (11) have
negative real parts for τ ∈ [0, τ0), which reveals that
system (8) is locally asymptotically stable for τ ∈
[0, τ0). According to Lemma 3, if (H3) holds, then we
have Re [ds/dτ ]ω=ω0

τ=τ0
> 0. Hence, (11) has at least

a pair of roots with positive real parts when τ > τ0,
which implies that system (8) is unstable when τ > τ0.

2) The conclusion in Lemma 3 indicates that the transver-
sality condition for the Hopf bifurcation is satisfied
under the assumption, so system (8) undergoes a Hopf
bifurcation at τ = τ0.

Remark 6: When α = 1 and τ1 = τ2, system (7) is
regarded as the integer-order system (2) in [14], which still
satisfies Theorems 1 and 2.

V. NUMERICAL SIMULATIONS
In this section, the theoretical results acquired in Sec. IV will
be supported by several numerical simulations to certify the
accurateness and feasibility.
Example 1: Consider the two-neuron system (7) with

v11 = −0.5, v12 = −1.8, v21 = 1.3, v22 = 1.7, κ = 1,
and f (·) = tanh(·), which are adopted in [14].

We set the rational number α = 0.75. By (16), we can
obtain ω0 = 0.8834 and τ0 = 2.1976. Based on Theorem 2,
if the discrete delay τ is between 0 and τ0, then the equi-
librium point O(0, 0) of system (7) is locally asymptotically

VOLUME 8, 2020 46075



L. Si et al.: Dynamics of FNNs With Discrete and Distributed Delays

FIGURE 2. Waveform plots and phase portraits of system (7) with
τ = τ1 + τ2 = 2 < τ0 = 2.1976.

FIGURE 3. Phase portraits of system (8) with
τ = τ1 + τ2 = 2 < τ0 = 2.1976.

stable. Figs. 2 and 3 show the stable origin of systems (7)
and (8) in which τ = τ1 + τ2 = 2 < τ0, respectively.
However, system (7) turns out a Hopf bifurcation when τ is

FIGURE 4. Waveform plots and phase portraits of system (7) with
τ = τ1 + τ2 = 2.4 > τ0 = 2.1976.

FIGURE 5. Phase portraits of system (8) with
τ = τ1 + τ2 = 2.4 > τ0 = 2.1976.

above the critical value τ0. Figs. 4 and 5 reveal the periodic
oscillation when τ = τ1 + τ2 = 2.4 > τ0.
Next, we will compare with the previous work so as to

show our novel method. Setting the rational number α = 1,
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FIGURE 6. Waveform plots and phase portraits of system (2) with
τ = τ1 + τ2 = 1.2 < τ0 = 1.404.

system (7) is considered to be the integer-order system which
is identical to the system in [14]. By (16), we obtain ω0 =

0.8152 and τ0 = 1.404, which is in accordance with the
results in [14]. By means of Theorem 2 and Remark 6,
the equilibrium point O(0, 0) is locally asymptotically stable
for τ = τ1+ τ2 = 1.2 < τ0, which is plotted in Fig. 6. While
the equilibrium point O(0, 0) loses stability, Hopf bifurcation
occurs when τ = τ1 + τ2 = 1.5 > τ0, which is displayed
in Fig. 7.

In what follows, we discuss the relationships between the
parameters α, κ and τ0 for system (7).
Case 1: Fix κ = 1, then plumb the effect of the order α on

the bifurcation point τ0 for system (7). The order α exhibits
a linear relationship with the bifurcation point τ0, as shown
in Table 1 and Fig. 8. The value of τ0 rises with the decrease
of the order α.

Case 2: Set α = 0.5, 0.75 and 1 respectively, then observe
the influence of κ on the bifurcation point τ0. From Table 2
and Fig. 9, we can get the following information. Firstly, for
a fixed value of α, the parameter κ is inversely proportional
to bifurcation point τ0. Even more intuitively, the value of τ0

FIGURE 7. Waveform plots and phase portraits of system (2) with
τ = τ1 + τ2 = 1.5 > τ0 = 1.404.

TABLE 1. The influence of α on the value of τ0 for system (7) with κ = 1.

decreases as the parameter κ increases. Secondly, for a fixed
value of κ , the smaller the order α is, the greater the critical
value of τ0 is.
Remark 7: Fig. 8 clearly shows that the smaller the order

is, the larger bifurcation point gets. It is indicated that by
contrast with the integer-order model in [14], the presence
of fractional order effectively delays the occurrence of Hopf
bifurcation for system (7), so the stability region is broadened.
Remark 8: From Fig. 8, it can be also find that the

smaller the order is, the greater the bifurcation point is
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FIGURE 8. The influence of α on the value of τ0 for system (7) with κ = 1.

TABLE 2. The influence of κ on the value of τ0 for system (7) with
α = 0.5,0.75 and 1.

and the larger the stable domain is. This fact is also true
not only for fractional-order neural networks [48], [49],
but also for the fractional-order genetic regulatory network
[29], the fractional-order predator-prey model [31] and the
fractional-order SIS epidemic model [45].
Remark 9: It can be seen that the decline rate κ is a param-

eter in the delay kernel function F(s), which may represent
the distributed delay to some extent. Hence, Fig. 9 presents

FIGURE 9. The influence of κ on the value of τ0 for system (7) with
α = 0.5,0.75 and 1.

the influence of distributed delays on the dynamical bifur-
cation in the fractional-order neural network (7). It is worth
noting that the effect of distributed delays on bifurcation of
fractional-order systems has not been reported.
Example 2: Consider the two-neuron system (7) with

v11 = −2, v12 = −1.8, v21 = 10, v22 = 3.5, κ = 1, and
f (·) = sin(·). When α = 0.75, the equivalent system (8)
shows chaotic attractors (see Fig. 10).

FIGURE 10. Chaotic attractor for α = 0.75.

Remark 10: The activation function f (·) = tanh(·) used
in Example 1 is not periodic, while the function f (·) =
sin(·) chosen in Example 2 has the periodicity. Therefore,
the selection of activation function is enormously influential
for the occurrence of chaos in system (8).

VI. CONCLUSION
This paper studies the dynamic behaviors of a fractional-order
neural network with discrete and distributed delays. Firstly,
by introducing two virtual neurons, we construct an equiv-
alent four-neuron system that contains two fractional dif-
ferential equations and two integer differential equations.
Next, by adopting the sum of discrete delay as the bifur-
cation parameter, the sufficient conditions for the stability
of the original system have been obtained. Furthermore,
the Hopf bifurcation has been ascertained successfully by
exploring the derived characteristic equation. Finally, through
the numerical simulations, the correctness of the results has
been verified and the influence of the order and parameter on
the onset of bifurcation has been given. The simulation results
show that the neuron system turns out a Hopf bifurcation
when the sum of discrete delays reaches a certain critical
value. In addition, the order exhibits a linear relationship with
the bifurcation point, and diminishing order can postpone
the onset of bifurcation. It indicates that the fractional-order
system has a larger stability region than the integer-order one.
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Chaos plays an important part in the study of system
dynamics. In the future, we will devote to probing into chaos
in fractional-order neural networks.
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