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ABSTRACT Most of the widely used multi-view 3D reconstruction algorithms assume that object appear-
ance is predominantly diffuse and full of good texture. For the objects that violate this restriction, the surface
can hardly be reconstructed because such area lacks sufficient support from dense point clouds. To tackle
this problem, we introduce a novel two-stage prior-guided method based on point clouds enhancement to
enable the application of multi-view reconstruction approaches in such scenes. In the first stage, we optimize
the original PlaneNet plane segmentation priors by taking advantage of the estimated depth map and
confidence map from multi-view stereo. In the second stage, we correct and supply 3D point clouds for
the weakly supported plane surface on the basis of the upgraded priors. Furthermore, we utilize a slight
disturbance of the enhanced point clouds to facilitate the subsequent mesh reconstruction. The proposed
point cloud enhancement approach is evaluated on the large-scale DTU dataset. Our method significantly
outperforms previous multi-view stereo state-of-the-arts. We also demonstrate weakly supported plane
surface reconstruction results from real-world photos that are unachievable with either the methods aiming
at preserving weakly supported surfaces or the traditional state-of-the-art 3D reconstruction systems.

INDEX TERMS 3D reconstruction, weakly supported surface, real image reconstruction.

I. INTRODUCTION
3D reconstruction refers to the rebuilding of certain real
3D objects or 3D scenes, making them easily accessi-
ble for human perception as well as computer represen-
tation and processing. Currently, 3D reconstruction from
multi-view images [2]–[6] is quite popular. Compared with
the traditional modeling methods, such as modeling soft-
ware (3D Max, AutoCAD, etc.), and laser scan methods [7],
multi-view approaches are inexpensive and highly auto-
mated. The pipeline for conventional 3D reconstruction from
unordered images consists of three stages: first, obtaining
camera internal and external parameters and sparse point
clouds using structure-from-motion (SfM) methods [8]–[12];
second, recovering dense point clouds using multi-view
stereo (MVS) methods [13]–[18]; and third, generating sur-
face meshes based on dense point clouds and posting tex-
tures through surface reconstruction [19]–[22]. Due to the
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breakthrough progress of the SfM and MVS methods,
the point clouds are often recovered with very high accuracy,
and these techniques have achieved impressive results.

However, one of the drawbacks of the classic multi-view
geometric method is its over-reliance on the photometric con-
sistency assumption [23] and Lambertian reflection assump-
tion [24], which can be frequently violated in the real world.
These situations are always present when building poorly
textured regions and transparent or highly reflective surfaces.
The iPad screen shown in Figure 1 is an example of this. The
reconstructed point clouds of the laptop screen either disap-
pear or appear in the wrong location, making it impossible to
further create the corresponding meshes. This kind of region
is called a weakly supported plane surface, the reconstruction
of which is a challenging problem. In fact, currently, even
the state-of-the-art multi-view algorithms cannot obtain a
satisfactory result for this surface.

Most of the methods reported in the literature concentrate
on flossy surface reconstruction and address the problem by
adding extra hardware (e.g., coded pattern projection [25] and
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FIGURE 1. Results for the ‘iPad’ data set. (a) Input image, (b) dense point clouds recovered with COLMAP, and (c) mesh reconstructed with COLMAP;
(d) the technique presented in this work better reconstructs weakly supported surfaces (the iPad screen).

a two-layer LCD [26]), filtering the non-Lambert region [27],
[28] or translating multi-view images of the objects with
specular reflection to diffuse images [29]. Although these
methods have made great progress towards non-diffuse sur-
face reconstruction, they cannot handle textureless images,
making them unable to realize general weakly supported
surface reconstruction. Unlike the above approaches, the
methods proposed in [30]–[33] working with Delaunay tetra-
hedralization of the dense point clouds provide solutions
that can reconstruct a weakly supported surface of any kind.
These methods separate the tetrahedra labeled as ‘‘free’’
(empty space) and the tetrahedra labeled as ‘‘full’’ (full
space) by minimizing the s-t cut, and the target surface
can be viewed as an interface between the free and full
spaces. However, these techniques often break down when
the percentage of missing and irrelevant point clouds is high
because, in this case, Delaunay tetrahedra cannot be built at
all.

Recently, data-driven approaches that learn priors to
tackle 3D reconstruction problems have been widely applied
to generate 3D scenes from single or multiple input
images [34], [35]. These methods can effectively recon-
struct poorly textured surfaces to some extent. Addition-
ally, some learning-based methods can accomplish image
plane segmentation in advance to obtain a better 3D
prediction [1], [36], [37]. Even though these approaches
expand the solution to the 3D reconstruction problem, they
can only be reliable for examples similar to the training
dataset that they learn from, which means that the practical
application scenario is quite limited. Realizing this restric-
tion, a number of researchers have focused on applying deep
learning in substages of the stereo reconstruction pipeline,
such as pose estimation [38], feature detection and descrip-
tion [39], [40], image retrieval and matching [41], and bundle
adjustment [42]. However, these methods still impose the
photometric consistency and Lambertian assumptions, which
are not suitable for our goal.

Inspired by recent studies, we present a prior-guided
approach that adds a compatible but special step to the 3D

reconstruction pipeline to augment the point clouds in the
weakly supported plane region. Based on this, we can provide
sufficient point support in such areas, leading to surface
reconstruction with high accuracy and integrity without much
effort. We carry out our method in two stages. In the first
stage, we combine a data-driven plane segmentation mask
with the attributes of depth-map merging based MVSmethod
to refine the initial inaccurate segmentation prior. Then,
we propagate the refined mask to all visible images, serving
as the projections of the truly 3D plane surface. In the second
stage, by carefully analyzing the depth map, the confidence
map and the plane segmentation mask, we effectively obtain
point clouds that belong to the target plane surface with
high confidence. The corresponding 3D plane parameters are
obtained by fitting these point clouds with the RANSAC [43]
framework. Last, our approach corrects and yields point
clouds that not only satisfy the plane parameters mentioned
above but also can be projected back into the mask area.
A main advantage of our approach is its non-reliance on par-
ticularly accurate and complete a priori information - a nec-
essary condition for reconstructing objects from real-world
images. With this method, we take a step toward the practical
usage of 3D weakly supported plane surface reconstruction
with real images.

Our contributions are summarized as follows:
1) We incorporate the multi-view stereo method with

data-driven plane segmentation cues to further correct
and create the missing point clouds of the weakly sup-
ported plane surface.

2) We introduce a novel segmentation process that, pro-
vided with an incorrect and incomplete plane segmen-
tation of a certain image, enables all of the masks of the
same plane among the visible images to be extracted
accurately and efficiently.

3) We evaluate our method on DTU and real-life datasets
and compare it with other existing methods. The exper-
imental results prove that our method has a better per-
formance than either traditionalMVS pipelines or other
advanced alternatives.
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In the rest of the paper, we first present the related work in
Section II and then introduce the mechanism of our method in
detail in Section III. Then, we conduct extensive experiments
on DTU and real-life datasets in Section IV. At the end,
we present the conclusion of our findings in Section V.

II. RELATED WORK
A. CONVENTIONAL MULTI-VIEW 3D RECONSTRUCTION
As described in Section I, the conventional multi-view 3D
reconstruction pipeline can be divided into three parts,
namely, structure-from-motion (SfM), multi-view stereo
(MVS), and surface reconstruction. In this section, we focus
on the first two processes because our method aims at oper-
ating point clouds that come from the end of MVS combined
with SfM.

We only focus on the incremental SfM approaches [12]
that are adopted by large-scale software packages [10], [16],
including commercial packages, to achieve a stable recon-
struction effect. Typically, the core process of the incremen-
tal SfM is multiple realizations of nonlinear optimization,
which is called bundle adjustment [44], [45]. The parameters
optimized by bundle adjustment are normally the generated
sparse feature point cloud coordinates, registered camera
focal length and camera external parameters, where the ini-
tial values of these parameters are obtained with multiple
view geometry in computer vision. During the initialization
process, feature extraction [46]–[49], image matching [50],
geometric verification [43], and the PnP algorithm [51] are
used to register the new image, and triangulation [43] is
applied. The reader is referred to [10] for more details. Since
this problem has been well addressed, we can directly regard
the output of SfM as reliable data when reconstructing real
objects.

Almost all MVS algorithms reconstruct the 3D geometry
using photo consistency [52] functions. By measuring the
agreement between a set of input photographs’ information,
such as illumination, material and texture, MVS algorithms
can invert the image formation process and produce highly a
detailed 3D geometry. TheMVS process can be implemented
in a variety of ways [23], and in this paper, we only intro-
duce depth-map merging-based methods not only because
they currently show the best performance but also to obtain
more intermediate verbosities to help us generate point clouds
at weakly supported planes. These methods consist of four
steps: stereo pair selection [16], depth-map computation [53],
depth-map refinement [54], and depth-map fusion [55], with
each of these processes intensely investigated in previous
work. In the refined depth map, the depth is marked as
unknown if it is not determined; while this leads to very good
performance in terms of accuracy, there is much room for
improvement for the reconstruction completeness. Recently,
Schönberger et al. presented the COLMAP [10] MVS sys-
tem. Through a tight integration of multiple advanced tech-
niques, COLMAP is one of the best performing algorithms
on several public multi-view stereo benchmarks and is useful
for real-world reconstruction. However, because it does not

eliminate the photo consistency assumption, COLMAP still
has difficulty in manipulating poorly textured and reflec-
tive surfaces. Additionally, OpenMVG [56] combined with
OpenMVS is another mature open-source 3D reconstruction
system; even though the 3D reconstruction production is
promising, it faces the same problem as COLMAP.

B. WEAKLY SUPPORTED SURFACE RECONSTRUCTION
As mentioned above, most photometric stereo methods
assume that the appearance of the object is uniquely identi-
fied. However, such assumptions are not valid for specular
and textureless objects, and researchers have put forward
improved methods. These methods can be roughly classified
into two categories with respect to their operating objects.
The first are focused on non-diffuse surfaces, while the others
aim at reconstructing weakly supported surfaces of any kind.
Tin et al. [26] adopt a two-layer liquid crystal display (LCD)
setup to encode the illumination directions for reconstruction
of the mirror-type specular objects. Or-El et al. [57] address
the same issue by exploiting the built-in monochromatic IR
projector and IR images of RGB-D scanners. While such
techniques can deal with challenging non-Lambertian effects,
they require the use of additional hardware and user expertise.
Given only images, Büyükatalay et al. [57] directly filter
the highlight surface, and Mallick et al. [28] separate the
specular reflection effects for surfaces that can be modeled
with dichromatic reflectance. Wu et al. [29] extend a ‘‘spec-
ular to diffuse’’ generative adversarial network translation
for transforming objects with specular reflection into diffuse
objects. Since these methods target only one type of weakly
supported surfaces, they cannot fully solve the problem raised
in this paper.

On the other hand, inspired by Sinha et al. [32], who
formulated multi-view 3D shape reconstruction as the com-
putation of a minimum s-t cut on the dual graph of a tetrahe-
dral mesh, and Labatut et al. [31], who provided an energy
function that perfectly fits into the above minimum optimiza-
tion framework, Jancosek and Pajdla [33] augmented these
methods with the ability to cope with any kind of weakly sup-
ported surface by merely changing the t-edge weights. Then,
they proposed an interface classifier to modify the previous
method, obtaining better performance [30]. However, for this
type of approach, there is no way to deal with the extreme
situation inwhich the surface is completely free of point cloud
support.

C. LEARNING-BASED 3D RECONSTRUCTION
Learning-based 3D reconstruction from images has recently
been a quite active research direction. The studied methods
mainly follow two technical routes, namely, an end-to-end
implementation directly from the images to the final 3D
model, and the replacement of some intermediate processes
of the traditional multi-view pipeline. In the former frame-
work, Tatarchenko et al. [58] present a convolutional network
to infer a 3D representation of a previously unseen object
with a single image. Choy et al. [59] propose a recurrent
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neural network to learn a mapping from the pictures of the
objects to their underlying 3D shapes. Lin et al. [34] propose
a 3D generative modeling framework to efficiently generate
object shapes in the form of dense point clouds. Along the
latter line, we are mainly concerned about the learning-based
MVS methods because these methods share similar charac-
teristics with the depth-map merging-based approaches that
we adopt. Zbontar et al. [60] and Hartmann et al. [61] sought
to learn a similarity measure for patchmatching.MvsNet [62]
represents an end-to-end deep learning architecture for depth
map inference from multi-view images. DeepMVS [63] pre-
dicts high-quality disparity maps taking an arbitrary num-
ber of posed pictures as the input. Nevertheless, generally,
the reconstruction quality of these methods cannot surpass
that of the traditional approaches, particularly for real photos,
because of the diversity limitations of the training data.

Moreover, for a scene with many planes, such as an
indoor environment, to increase the plane constraint during
the reconstruction, PlaneNet [1] propose end-to-end CNNs
to directly infer a set of plane parameters and correspond-
ing plane segmentation masks from a single RGB image.
PlaneRCNN [64] has been reported to improve the quality
of PlaneNet by employing a variant of Mask R-CNN and
adopting a novel loss during training, but this method is not
open source yet. Yu et al. [36] leverage a two-stage method
based on associative embedding to detect an arbitrary number
of planes. These studies are helpful for our work because
they provide the priory segmentation mask of the weakly
supported plane in images, even though these segmentation
masks are inaccurate for real data.

III. PROPOSED METHOD
Our goal is to generate a complete 3D scene containing a
weakly supported surface. The input for our approach is a
multi-view image sequence with only manual assignation of
the weakly supported plane in a certain image. This enables
our approach to process real-world photos, where such addi-
tional information is easy to acquire. The output of our
method is scene point clouds rectified at theweakly supported
plane position, which directly serve as the input to the surface
reconstruction pipeline, resulting in integrity-improved 3D
reconstruction without additional effort. To accomplish this
goal, we add an auxiliary step after the standard dense point
cloud reconstruction that modifies the mistaken point clouds
on the weakly supported plane and supplements some fresh
point clouds in this region. Moreover, we also provide precise
image segmentation masks as the projection of the weakly
supported planar surface on each visible image. The overall
pipeline of our proposed approach is visualized in Figure 2.
We discuss the depth-map information and the confidence
map information obtained from the multi-view stereo process
in Section III-A. In Section III-B we introduce the method
for obtaining a complete and precise plane mask on the basis
of a pretrained plane segmentation model. The implementa-
tion details of the correction and interpolation of the point
clouds of a weakly supported plane surface are discussed in

Section III-C. Finally, in Section III-D, we apply a minor
disturbance to the planar point cloud position, which is neces-
sary for the establishment of the Delaunay tetrahedron during
surface reconstruction. All of the parameters in this section
are evaluated in the normalized coordinate system.

A. DEPTH MAP AND CONFIDENCE MAP
Suppose that we have N unordered images {Ii,Pi}Ni=1, where
each image Ii is associated with its self-camera matrix
Pi. First, the camera matrix {Pi}Ni=1 is calibrated utilizing
SfM algorithms. Specifically, the rotation matrix {Ri}Ni=1,
the camera center position {Ci}Ni=1 and the intrinsic param-
eters {Ki}Ni=1 are obtained, where their relation with camera
matrix {Pi}Ni=1 is described as follows:

Pi = KiRi[I | − Ci] (1)

where I is a 3× 3 identity matrix.
Then, based on the relative position of the calibrated cam-

eras {Pi}Ni=1, the best performing MVS method (depth-map
merging based) is applied to recover dense point clouds.
This method computes the depth map at each view and then
fuses the obtained depth maps together into a single structure.
The depth map Di is determined by the constraints on the
polar geometry and photometric consistency, as shown in
detail in Figure 3, where there are many ways to measure
the similarity between the patches, such as the sum of the
squared differences (SSD), sum of the absolute differences
(SAD), normalized cross correlation (NCC) and other more
advanced methods [65]. NCC is one of the most common and
successful photo consistency measures used in multi-view
stereo algorithms. It is invariant to changes in gain and bias of
the pixel value, so it is mainly used to rebuild the scene of the
real world. For a square domain B centered on pixel p and its
corresponding domain B′ centered on pixel p′, the NCC score
between p and p′ is computed as:

NCC(p, p′)=1−

∑
q∈B,q′∈B′ (q− q)(q

′
− q′)√∑

q∈B(q− q)2
∑

q′∈B′ (q′ − q
′)2

(2)

where q represents the mean value of q, and q′ represents the
mean value of q′.
When reconstructing the weakly supported plane surface,

we observe that while the depth inside the plane cannot be
estimated, the depth of the plane edge can be accurately com-
puted, and the NCC score is rather high, as shown in Figure 4.
This is mainly because the plane edge is rich in distinguish-
able features. This observation shows us that we may renew
the incomplete weakly supported plane by the depth map Di
and the NCC map (which we call the confidence map instead
later in the text)Ci, as only three highly confident edge points
are enough to span the plane. The important question now is
how to determine the plane area.

B. PRECISE 2D PLANE SEGMENTATION
In fact, provided with the depth map Di of a certain image Ii,
if the projection mask Mi of the weakly supported plane is
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FIGURE 2. Overall pipeline of our proposed method.

FIGURE 3. The depth of a pixel is determined by the constraints on the
polar geometry and photometric consistency. Specifically, the depth is
obtained by looking for a patch on the polar line most similar to the
patch on the left.

known, then the 3D plane area can be easily calculated by
reverse projection. This problem now turns into a problem
of weakly supported planar instance segmentation in the
image. Most recent approaches leverage convolutional neural
networks (CNNs) and achieve state-of-the-art performance
on multiple indoor and outdoor datasets in this task. After
comparing several CNN-based methods, we choose PlaneNet
because, through extensive experiments, we found that it
has a better segmentation effect on real data. Readers can
refer to Figure 11 in Section IV-D.1 to see the segmentation
comparison results of different methods. However, due to
the deviation between the real data and the training dataset,
the segmentation result from the pretrained model is still not
ideal, as shown in Figure 5. In most cases, the segmentation

FIGURE 4. Depth map and confidence map priors on the ‘iPad’ data set.
In both maps, the black color indicates that the value of this position is
unknown.

mask is a partial section of the integral plane. It is not wise
to rebuild a real dataset to fine-tune this model because this
task is very large, and it is impossible to accommodate all of
the scenes. Nevertheless, due to the prior information of the
depth map Di and the confidence map Ci, we can recover an
accurate segmentation mask not only for the reference image
Ii but also for the other visible images Ij by an uncomplicated
operation.

For a certain registered image Ii containing a weakly sup-
ported plane, after piece-wise planar instance segmentation
with CNNs, an inaccurate weakly supported plane maskMipre
is obtained. In this mask, there are pixels with known depth
value and high confidence that draw our attention. Suppose
one of these pixels pi = Ii(u, v) ∈ Mipre , for which the
homogeneous coordinate is:

pi =

uv
1

 (3)
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FIGURE 5. Pretrained PlaneNet segmentation results given RGB images
(a)-(c) from the ‘iPad’ dataset, used to generate the three corresponding
segmentation masks (d)-(f) according to the pretrained model.

The 3D point Xi must lie in the viewing ray of pi. Given
the depth value λi = Di(u, v) of this pixel pi, Xi is computed
in Pi’s coordinates as:

Xi = λiK
−1
i pi (4)

Next, given the rotation matrix Ri and the camera center
position Ci, Xi is transformed to the world coordinates X as:

X = RTi Xi + Ci (5)

Through this process, hundreds or thousands of such points
will be formed in space, which come from the mask Mipre .
Unfortunately, the initial maskMipre covers not merely pixels
inside the plane but also some outliers, making some gen-
erated points be distributed beyond the plane in 3D space.
Due to the relatively large proportion of outliers, we adopt
the RANSAC framework to fit the plane, and the plane
parameters are estimated. We define the plane parameters as
(A,B,C,D). For a 3D point Q = (x, y, z) lying on this plane,
we have Ax + By + Cz − D = 0. Then, we traverse the
image Ii and back-project all of the pixels to space only if its
depth value λi is known. According to the distance formula,
the distance from point (x0, y0, z0) to plane (A,B,C,D) in
three-dimensional space is given by:

d =
|Ax0 + By0 + Cz0 − D|
√
A2 + B2 + C2

(6)

The points for which the distance d is less than a threshold t
are considered to be on the estimated plane. As a result, in the
image Ii, all of the pixels that meet the weakly supported
plane surface parameters are captured. Since we did not set
the spatial extent in the above steps, some points that are not
on the weakly supported plane but satisfy the plane equation
by chance are also extracted, as is shown in Figure 6.We filter
these points by employing the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [66] method.
The DBSCANmethod is introduced in Algorithm 1. We treat
the category with the largest number as the desired result.

FIGURE 6. An example of mistaken point clouds accidentally lying on the
target plane. The captured point clouds that do not belong to the display
area are not what we need, and they should be removed.

We note that the edge of the plane is filled with significant
features, and the edge point clouds are always well created.
We re-project these clustered point clouds into image Ii to
obtain their pixel positions xi, and then, we obtain the recti-
fied plane segmentation maskMi using the envelope contour
provided by openCV [67]. Moreover, we also project these
point clouds into other visible images {Ij}j∈Vis⋂ j6=i to collect
precise plane segmentation mask {Mj}j∈Vis

⋂
j6=i. The projec-

tion function is defined as:

xi = PiX = KiRi[I | − Ci]X (7)

This plane mask information {Mi}i∈Vis is used to advance
the subsequent operation.

C. CORRECTION AND INTERPOLATION
From experiments, we found that weakly supported plane
reconstruction failure is due to two factors: first, some point
clouds are built in a wrong location, and second, some point
clouds are not built at all. To address these issues, we pro-
posed two corresponding options, namely, correction and
interpolation.

As shown in Figure 7, due to reasons such as specular
reflection imaging, some point clouds that should be on the
weakly supported plane are generated behind the surface.
These kind of points have a strong negative effect. This
occurs because even though a new point cloud is created
at the weakly supported plane from the other view, it will
be removed to obey the occlusion rule when conducting
depth-map fusion. We decided to directly move these points
to the weakly supported plane by perspective transforma-
tion. These points are selected based on a simple condition,
i.e., whether they can be projected back into a mask area of a
visible image.

Apparently, a correction in and of itself is not sufficient
because such points only occupy a part of the whole weakly
supported plane. We utilize linear interpolation to complete
the rest of the point clouds that should have existed in the
weakly supported plane region. The spatial boundary range
of these interpolated points are found by the following steps.
After leveraging the Sobel operator [68] for edge extraction
on a certain mask map Mi, we inverse project these edge
pixels to three-dimensional space to form the bound using
depth map Di. The interpolation density ρ is set to control
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Algorithm 1 DBSCAN, a Density-Based Clustering
Method

Input :
A dataset containing n objects D;
The radius parameter ε;
The field density thresholdMinpts;

Output:
The density-based cluster sets;

1 mark all objects as unvisited;
2 while there are unvisited objects do
3 randomly select an unvisited object p;
4 mark p as visited;
5 if there are at least Minpts objects in the ε field

of p then
6 create a new cluster C , and add p to C ;
7 let N be the set of all objects in the ε field of

p;
8 for each p′ in N do
9 if p’ is unvisited then

10 mark p as visited;
11 if there are at least Minpts objects in

the ε field of p′ then
12 add these objects to N
13 end
14 if p′ is not a member of any cluster

then
15 add p′ to C
16 end
17 end
18 end
19 output C ;
20 end
21 else
22 mark p as noise
23 end
24 end

FIGURE 7. (a) Specular reflection imaging of a specular plane surface;
(b) point clouds with black color that should be on the ‘iPad’ screen are
generated behind the surface.

the sparseness of the created point clouds, which is measured
by the pixel density projected onto image Ii.

D. MINOR DISTURBANCE OF PLANE POINT CLOUDS
We plan to directly generate plane meshes from the
corrected and interpolated point clouds via surface

reconstruction. To our surprise, although the reconstructed
plane already has sufficient support in the point clouds,
the reconstruction result is not perfect and is accompanied by
a small number of holes. After careful analysis and consider-
ation, we found that this problem may be caused by the fact
that the plane is too flat to induce the building of the Delaunay
tetrahedron. Therefore, we apply a minor disturbance to
these plane point clouds in the direction of the plane normal
vector. The disturbance distance e is defined on the basis
of the interpolation density ρ, where e = 0.1ρ. Finally,
the reconstructed mesh model of the weakly supported plane
surface appears to be complete and error-free.

IV. EXPERIMENTS AND RESULTS
In this section, we present qualitative and quantitative exper-
imental results and evaluations of our proposed approach
on datasets that contain specular or textureless images.
In Section IV-A, We briefly introduce the datasets informa-
tion as well as the implementation details. In Section IV-
B, we report 3D reconstruction effect on standard DTU
dataset and we also perform an evaluation on real-world data
in Section IV-C. At last, in Section IV-D, we provide two
meaningful additional experiments. In the first experiment,
we compare our segmentation refine results with several
learning-based baselines, including PlaneNet [1] and an asso-
ciative embedding-based method [36]. In the second experi-
ment, we report on a number of ablation studies carried out
to validate our method, where each action cannot be ignored.

A. DATASET AND IMPLEMENTATION DETAILS
Our approach works towards reconstructing practical scenes
dominated by a weakly supported plane structure. We first
evaluate our method on the DTU dataset [71]. This dataset
consists of 80 different scenes of large variability. Each
scene consists of 49 or 64 accurate camera positions and
reference structured light scans, all acquired by a 6-axis
industrial robot. Most importantly, the DTU dataset not only
focuses on the Lambertian surface objects, but also provides
some weakly textured cases that are just right for testing
our methods. We select 5 suitable scans inside it for com-
parative experiments and evaluation. In addition, to prove
the feasibility of our algorithm in real scenes, we decide to
compile a real-world test set ourselves. We choose 5 objects
common in life and take pictures of them using a cell-
phone from 25 different camera positions. The resolution
of each image is 3840 × 3840. These objects are ‘iPad’,
’display’,’box’,’mirror’ and ’charger’. The provided dataset
contains non-Lambertian surfaces and texture-free structures,
which is sufficient for proving the feasibility range of our
method.

The proposed method has seven parameters, and we have
discussed their settings in Section III. We give a summary of
the set parameter values in Table 1.

B. BENCHMARKING ON DTU DATASET
We first evaluate our method on the 5 weakly supported
plane surface scans of the DTU dataset. By adopting camera
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TABLE 1. This table shows the results of the quantitative analysis of the generated point clouds of the scene.

TABLE 2. This table shows the results of the quantitative analysis of the generated point clouds of the DTU dataset.

FIGURE 8. Qualitative results of scans 10, 11 and 13 of DTU dataset between our method and other MVS methods. (a) Camp [69], (b) Furu [18],
(c) Tola [70], (d) Shen [53], (e) our method and (f) ground truth. Our method generates the most complete point clouds especially in those textureless
areas.

calibration(internal and external) information from dataset
for MVS reconstruction, we ensure that the generating point
cloud result is in the same coordinate system with the ground
truth point cloud. For quantitative evaluation, we calculate
the accuracy and the completeness of the distance met-
ric [72]. Accuracy is measured as the distance from the
MVS reconstruction to the structured light reference, and the
completeness is measured from the reference to the MVS
reconstruction. For each reconstruction, the distances of 3D
point are condensed into comparable statistics by computing
themean andmedian for the accuracy and completeness. This
is, however, first done by removing all distances over 20 mm
to avoid biasing by outliers.

The MVS methods of Campbell et al. [69], Furukawa
and Ponce [18], Tola et al. [70], and Shen [53] have been

evaluated by comparing the point clouds. A summary of the
overall quantitative performance is shown in Table 2. While
Tola et al. [70] performs best in the accuracy, our approach
outperforms all other methods in both the completeness and
the overall quality with a significant margin. As shown
in Figure 8, our method corrects and generates point clouds
in the weakly supported plane region which leads to better
completeness.

C. RECONSTRUCTION ON REAL-WORLD DATASET
The DTU scans are taken under well-controlled indoor envi-
ronment with fixed camera trajectory. To further demon-
strate the generalization ability of our method, we test the
proposed method on the more complex real world dataset.
We perform comparisons with state-of-the-art large-scale
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FIGURE 9. Qualitative point cloud comparisons between our method and well-known multi-view stereo approaches. (a) Input images, (b) dense point
clouds recovered with openMVS [53], (c) dense point clouds recovered with COLMAP [16], and (d) dense point clouds recovered through our correction
and interpolation of the openMVS result.

reconstruction systems [16], [53] and the most recently
reported approach [30] designed for preserving weakly sup-
ported surfaces. These methods can effectively reconstruct
real-life 3D scenes.

We use the number of reconstructed point clouds as an
indicator to quantitatively evaluate the reconstruction com-
pleteness. The number of generated point clouds is listed

in Table 3. Our proposed method has the most point clouds,
implying better integrity. The reconstructed dense point
clouds of different methods are shown in Figure 9. We found
that both COLMAP and openMVG+openMVS cannot pro-
duce point clouds in the weakly supported plane. The point
clouds that should have been generated in the weakly sup-
ported plane disappear in pieces. Our method instead creates
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FIGURE 10. Qualitative mesh reconstruction comparisons between our method and other methods aimed at weakly supported surfaces. (a) Input
images, (b) mesh reconstruction with openMVS [53], (c) mesh reconstruction with COLMAP [16], (d) mesh reconstruction with s-t cut [30], and (e) mesh
reconstruction with our method.

TABLE 3. This table shows the results of the quantitative analysis of the generated point clouds of the scene.

complete point clouds in such regions. We attribute the point
cloud completeness in the weakly supported plane surface to
the use of the correction and interpolation methods.

We introduce the mesh reconstruction results obtained
by building on the point clouds in Figure 10. The mesh
reconstructions of COLMAP and openMVS are filled with
mistakes and holes. Although the s-t cut based method

alleviates this problem, the obtained results still show much
room for improvement. Generally, these reconstructed plane
mesh results are too poor to see. Only our proposed method
can reconstruct the flat and complete weakly supported plane
surface. These results prove that our method can effectively
solve the problem of the inability to generate weakly sup-
ported planes in real scenes.
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FIGURE 11. Qualitative segmentation comparisons between our refinement method and existing plane segmentation methods. (a) Input images,
(b) plane segmentation results for PlaneNet [1], and (c) plane segmentation results for the associative embedding-based method [36]; (d)(e)(f) are
weakly supported plane masks of the visible images after the manual assignment and refinement process.

D. ADDITIONAL STUDIES
1) SEGMENTATION REFINEMENT
To evaluate the benefit of our proposed segmentation
refinement operation, we perform a comparison with
plane segmentation baselines by implementing a pretrained
model. PlaneNet [1] and the associative embedding-based
method [36] are used in the comparison as the state-
of-the-art open source algorithms on standard datasets.
In Figure 11, we show the segmentation results. The seg-
mented plane mask using the pretrained network is com-
pletely unusable, but the results obtained by PlaneNet
are relatively better, and we therefore take them as pri-
ors. After manually specifying the weakly supported plane
and effectively refining, the segmentation area is much
more accurate. The results of this experiment fully prove

that our proposed refinement operation is useful and
necessary.

2) ABLATION STUDIES
To evaluate the effectiveness of the entire process, we show
the reconstruction results step by step (with correction, inter-
polation and minor disturbance) in this experiment. As visu-
alized in Figure 12, each step plays an important role
in restoring the complete weakly supported plane surface.
In Figure 12 (a), the reconstructed plane surface meshes are
completely empty. In Figure 12 (b), some of the faithful
meshes have been built. In Figure 12 (c), while more meshes
are generated on the plane, the result of the reconstruction still
retains a small part of the cavity. In Figure 12 (d), the results
of the reconstruction are complete and smooth.
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FIGURE 12. Ablation study of the reconstruction pipeline on the ‘iPad’ and ’display’ test sets. (a) Mesh reconstruction without any operations, (b) mesh
reconstruction with only correction, (c) mesh reconstruction with correction and interpolation, and (d) mesh reconstruction with correction and
interpolation plus a minor disturbance.

V. CONCLUSION
In this paper, we propose a point cloud enhancement method
for 3D reconstruction of weakly supported plane surfaces.
Based on correcting and integrating inaccurate prior informa-
tion from a pretrained CNN model and depth-map merging
methods, we successfully repair incorrectly generated points
and further interpolate more points on the weakly supported
plane surface. The proposed approach significantly outper-
forms state-of-the-art MVS systems in the weakly supported
plane surface reconstruction task. It also advances recent
methods focusing on preserving weakly supported surfaces.
An interesting future direction is to go beyond the plane
hypothesis and tackle the structured geometry prediction
problems of an arbitrary surface shape.
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