
Received August 10, 2019, accepted September 8, 2019, date of publication September 18, 2019, date of current version January 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2942108

Real-Time Human Intention Recognition
of Multi-Joints Based on MYO
LEI SUN , HONGLEI AN, HONGXU MA, AND JIALONG GAO
College of Mechanics and Automation, National University of Defense Technology, Changsha 410070, China

Corresponding author: Honglei An (ahl1988@163.com)

This work was supported in part by China 2018 National Primary R&D plan under Grant 2018YFC2001300.

ABSTRACT Hill musculoskeletal model (HMM) is commonly used to estimate human motion intentions.
HMM utilizes electromyography (EMG) signals as the nonlinear model input to obtain muscle forces or
torques. However, due to the fact that it contains many physiological parameters that are difficult to measure,
HMM is generally applied in simple continuous intention estimation of a single joint. In this work, we aimed
at recogonizing shoulder and elbow joints angles and their angular vecocities continuously in real time.
Firstly, we used MYO armband as the EMG sensor. Then, a reasonable prediction model was deduced
based on HMM and human dynamics to realize online continuous recognition of the four angles and angular
velocities of shoulder and elbow joints. Nonlinear autoregressive with external input neural network (NARX)
replaced the prediction equation. In addition, the framework of state space model was completed by
constructing an observation equation. Thus, the closed-loop characteristic was realized to eliminate the
influence of cumulative error and ensure good estimation performance. Experimental results verified the
feasibility and accuracy of the algorithm. For predefined trajectory and random trajectory seperately,
the RMSE were 0.955 and 1.15 (degree) for angles estimation and 2.8, 3.40 for angular velocities (degree/s).
Compared with the normally used back-propagation neural network (BPNN), the method proposed in this
paper obviously got more accurate and smooth results.

INDEX TERMS Intention recognition, EMG, HMM, closed-loop estimation.

I. INTRODUCTION
Nowdays, intelligent robots that assist human in situations of
daily life have always been among the most important visions
in robotic research [1], [2]. The HRI (Human-Robot Inter-
action) does matter in the application of wearable assistive
robots, such as rehabilitation exoskeleton, power-augment
exoskeleton and intelligent prosthesis that contact with
human body directly, because the key performance relies on
the stability and nature HRI to ensure the subject’s safety and
comfort [3], [4]. The uncertainty of human activities must be
taken into account because the human-in-loop control mode
may cause many uncertainties that make an impact on control
effect. Therefore, the recognition of MI (Motion Intention)
is an important part of HRI and it performs an upper layer
in intelligent robot control system as figure 1 shows. As the
upper-level control layer, the intention recognition layer ana-
lyzes the motion intention of the human body, generates
corresponding command signals and transmits them to the
lower-level controller, so as to achieve a ‘friendly’ HRI.

The associate editor coordinating the review of this manuscript and
approving it for publication was Kemal Polat.

FIGURE 1. The normal control layers of intelligent robots.

The MI can be explained as the human states of motion, such
as the current step or specific physical motion information.
It is still worth studying to get the effective information of
human movement reasonably and accurately.

MI is usually defined as discrete or continuous modes. The
discrete mode divides the human motion into several specific
categories according to the target demand, and classifies the
action into certain categories by characteristic data [5], [6].
Researchers may design different control strategies for each
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class of state, the intent estimation plays a role of controller
switching at this circumstance. However, some problemsmay
be met in the discrete pattern. Only limited number of motion
can be classified, which makes it difficult to provide a ratio-
nal control scheme when dealing with a complex situation.
As for continuous motion mode, it could detect the condition
information of the user in real time, such as the joint moment
or the joint angles that can change at every step. During our
research, it is suitable to use a continuous MI to translate
human intention into control signals with time continuity,
which serve as the upper control command to guide the robot
movements.

Normally, kinematics, dynamics and EMG signals can be
the sources to estimate the MI. Force or position signals are
commonly used in current commercial products [7], [8], but
they usually hide the subjective initiative of human motion.
In the face of relatively complex motion conditions or with
an accelerated motion speed, it is difficult to ensure the
desired accuracy and response speed. In essence, these sig-
nals have hysteresis characteristics so that cannot be con-
sistent with movement. Fortunately, using EMG or EEG
(Electroencephalo-graph) signals prior to the generation of
motion can make up for the delay of the control system.
Besides, they can reflect the subjective initiative of the human
body to a certain extent. The generation of EEG is prior to the
occurrence of EMG signals and motion but current methods
of EEG acquisition, analysis and processing are relatively
immature [9]. The generation of EMG also precedes move-
ment. There are two acquisition approaches [19]. One is to
insert needle electrodes into muscle for detection. This kind
of EMG signals have small interference, good localization
and are easy to be recognized. The other is to detect the
EMG of human skin through surface electrodes. This method
is prone to interference, while it is widely used because of
its simple operation and non-invasive characteristics. Some
studies have established the relationship between EMG and
human joint angle, force or torque to observe human motion
intention.

Estimating joint torque through musculoskeletal model
is a widely used method. Firstly, the muscle activities are
extracted from the original EMG signals, and muscle con-
tractile force is calculated using the HMM, and the geometric
model of skeletal muscle is applied to calculate the moment
arm [10]. However, this model is very complex and involves
a large number of unknown physiological parameters, which
makes the analysis and application rather difficult, so only
a few DOFs (Degree of Freedom) (1 or 2) of human joints
have been successfully analyzed by the model [16]. For the
reason that the model contains some complex human physi-
ological parameters which are difficult to measure, [11] min-
imized the difference between muscle torque and reference
torque by offline optimization. Reference [12] proposed a
minimum neuromusculoskeletal model for the prediction of
elbow and shoulder torque, and compared the linear opti-
mizationmethodwith the non-linear method based on genetic
algorithm.

Another estimation approach is to use the neural network to
generate the network model by taking the electromyographic
signal as the network input and the joint angle or torque
to be predicted as the network output. This is a relatively
direct and convenient way. After processing the original EMG
signals by passing a low-pass filter, computing the root mean
square and normalization, [13] used BPNN to identify the
relationship between shoulder joint angles and EMG signals.
Although it has been applied in many studies, there are still
some problems in the prediction of using neural network at
present. The online prediction output of the neural network
is completely determined by training data. However, EMG
is a typical unstable real-time signal, and there is inevitable
deviation between test data and offline training data.

This paper proposes an algorithm to estimate four angles
and angular velocities of shoulder and elbow joints. The chap-
ters are arranged as follows. In section 2, the research targets
and problems are clarified, and the MYO armband used in
the experiment is briefly introduced. Section 3 deduces the
state space model of the intention estimation based on HMM,
and obtains the specific forms between EMG, kinematics
signals and joint angles, in which a NARX neural network
is constructed as the state model and BPNN serves as the
measurement model. Besides, due to the coupling relation-
ship between the signals of MYO channels, we classify the
8 channels based on correlation analysis as the input of
prediction equation and measurement equation respectively.
Experiments are presented in Section 4, in which a motion
capture system is used to make contrast with the estima-
tion results to verify the hole algorithm. Section 5 gives the
conclusion and discussion.

II. PROBLEM RESTATEMENT
A. ESTABLISHMENT OF COORDINATE SYSTEM
TheMI should accurately and completely reflect the informa-
tion of the user’s direction, position and so on. As the upper
control layer, the estimation algorithm transmits the torque,
position and other information to the middle or the lower
controller to perform corresponding actions. As for the upper
limb of human body, we simplify the right arm into a 2-link
structure, in which the shoulder joint is a ball-and-socket joint
with 3 DOFs, and the elbow joint has a single rotation DOF.
As figure 2 shows, the shoulder joint A is the origin, B and
C are the elbow joint and the wrist seperately. The intention
is defined as 4 joint movements including an elbow angle θ1
and shoulder joint angles θ2, θ3, θ4 and their velocities. The
direction shown in the figure 2 is positive.
The motion capture system will be used as the standard

value of the joint angles and angular velocities for initial
network training and for comparing estimated accuracy. The
angles are as follows:

θ1 = arccos
El1 · El2
|El1| · |El2|

, θ2 = arccos
xB − xA
|El1|

θ3 = arccos
yB − yA
|El1|

, θ4 = arccos
zB − zA
|El1|
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FIGURE 2. The definition of the right arm motion system coordinate
system.

FIGURE 3. Major muscle groups associated with arm movement.

where l1, l2 are the length of the two segments, (xA, yA, zA),
(xB, yB, zB) and (xC , yC , zC ) are the coordinates of point
A,B,C seperately. Therefore, El1 = (xB − xA, yB − yA, zB −
zA),El2 = (xC −xB, yC −yB, zC − zB). The state to be estimate
is expressed as xk = [θ1, θ2, θ3, θ4]T at the sample time k .

B. ANATOMICAL ANALYSIS OF HUMAN UPPER LIMBS
The unilateral upper limb is composed of 32 pieces of
skeleton, 34 muscle groups and tendons that connect the
bones [14]. Figure 3 represents the main acting muscle
groups (Trapezius, Acromion of scapula, Deltoid, Insertion
of deltiod, Triceps brachii and Biceps brachii) when mov-
ing the arm. The shoulder joint consists of the head of the
humerus and the articular cavity of the scapula, which can
realize the rotation movement around 3 axes (coronal axis,
sagittal axis and vertical axis), as well as the up-down and
backward-forward extension movement. For the convenience
of research, it is usually simplified as an articulatio cotylica.
The elbow joint is a hinge joint which is in fact made up of 2
joints, both of which are enclosed in a joint capsule and are
essential to connect the forearm and the upper arm [14].

Joint movement is the result of contraction or extension
of the corresponding muscle groups. During the experiment
and the actual use, it is impractical to measure EMG signals
of all contributed muscles, which may need lots of sensors.
Therefore, we use the MYO armband that can acquire EMG

FIGURE 4. The armband sensor named MYO was adopted to measure the
related major EMG signal.

FIGURE 5. The three marker points of the motion capture system and
MYO armband relative position on the arm.

data from contributing muscle groups when wearing it on the
upper arm. These muscles are associated with the movement
of both two joints at the same time.

C. INTRODUCTION OF THE MYO ARMBAND
MYO is released by Thalmic Labs, a Canadian company,
as shown in figure 4. It uses 8 electrodes to detect mus-
cle activities and arm movements, gestures and even finger
movements through the detection of biological electrical sig-
nal changes of the forearm. Meanwhile MYO also contains a
9-axis inertial sensor, which is used to detect the movement
track, orientation and posture information of the arm [15].
The signals are transmitted through low-power bluetoothwith
low interference, high quality and low price. MYO is selected
to replace the commonly used EMG sensors with electrodes
to simplify the acquisition process and obtain real-time EMG
signals with higher accuracy in our research. In the experi-
ment, MYO is worn at the center of the upper arm, where the
muscles could control the rotation of the two joints at the same
time. Figure 5 shows the schematicmap. In fact, the EMGof 8
channels are inevitably coupled, and not every pair of patched
can only measure the data of one muscle.

III. STATE SPACE MODEL BASED ON HMM
A. BRIEF INTRODUCTION OF HMM
This section introduced the traditional HMM for predicti-
ing muscle torque. The model includes contraction element,
series elastic element and parallel elastic element, by using
which to reflect the function of muscles, as figure 6 shows.
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FIGURE 6. The equivalent simplified model based on HMM.

HMM consists of two elements: a contractile element
producing the active muscle force FmA and a parallel elastic
element producing the passive force FmP . Figure 6 represents
the schematic of muscle-tendon and the muscle fiber with the
contractile element and parallel elastic component. As for one
muscle, the torque produced by it for a joint can be given
as

FmA = fA(l) · fV (v) · a(k) · Fm0 (1)

FmP = fP(l) · Fm0 (2)

where fA(l), fV (v) and fP(l) are the normalized active
force-length relationship, the force-velocity relationship and
the passive elastic force-length relationship respectively. Fm0
represents the maximum isometric muscle force and a(k) =
[a1(k), . . . , a8(k)]T is the muscle activation derived from
EMG. l = lm/lm0 is the normalized muscle fiber length,
v = vm/v is the normalized muscle fiber velocity, in which
lm and vm are the fiber length and the muscle contraction
velocity, respectively. lm0 represents the optimal fiber length
and vm0 is the maximum muscle contraction velocity.
Besides, the musculotendon force Fmt is calculated as

Fmt = [FmA + F
m
P ]cos(φ)

= [fA(l) · fV (v) · a(k)+ fP(l)]Fm0 cos(φ) (3)

where φ is the pennation angle.
For caculating the value of Fmt , some researchers

give simplifications to replace the complex biomechanical
parameters:

fA(l) = q0 + q1 · l + q2 · l2

fP(l) = e10l−15

fV (v) == 1 (4)

Furthermore, the musculotendon length lmt can be calcu-
lated as

lmt = l t + lm · cosφ (5)

where l t is the length of the tendons. The physiological
parameters can be set as constants.

In addition to the simplifications aboce, lmt is also
simplified by a polynomial of the joint angle normally.
We use a first-order polynomial to express it in this paper

lmt = b0 + b1 · θ (6)

where b0, b1 are constants. We can get the moment arm by

r =
∂lmt (θ )
∂θ

= b1 (7)

Thus, the muscle’s contribution to the joint moment is
obtained by

τ = Fmt · r (8)

From the analysis in the former theorem, the moment of a
muscle reacting on a joint can be written as

τ = (s0 + s1θ + s2θ2)a(k)+ s3es4θ (9)

where si(i = 0, 1, . . . , 5) are constans given as:

s0 = (q0 + q1
b0 − l t

lm0 cos(φ)
+ q2(

b0 − l t

lm0 cos(φ)
)2)a(k)Fm0 cos(φ)

s1 = (
q1b1
lm0
+
q2b1(b0 − l t )

lm0
)a(k)Fm0

s2 = q2
b21

(lm0 )
2 a(k)F

m
0

s3 = a(k)Fm0 cos(φ)exp(
10(b0 − l t )
lm0 cos(φ)

− 15)

s4 =
10b1

lm0 cos(φ)

B. CLASSIFICATION OF ACTIVITIES BASED ON
COORELATION
There is a certain coupling relationship between the measure-
ment signals of 8 channels ofMYO, so it is unnecessary to use
the signals of all channels as the input of the estimation, which
may increase the calculation amount and even affect the final
prediction structrue. Therefore, muscle activity is divided into
a1 and a2 according to the results of correlation analysis.
The correlation coefficient among different channels can be
calculated as follows:

σi =

√√√√ 1
N

N∑
k=1

(ai,k − āi)2

cov(i, j) =
1
N

N∑
k=1

(ai,k − āi)(aj,k − āj)

ri,j =
cov(i, j)
σi · σj

where N is the number of samples; ai,k represents the muscle
activity at time k of channel i. σi is standard deviation of
channel ith, and cov(i, j) is covariance coefficient; besides, rij
represents the correlation coefficient of the muscle activities
between the ith and jth channels.

The correlation coefficient reflects the degree of linear cor-
relation between two sets of data. We choose 5 channels with
the lowest correlation coefficient as the input of the prediction
equation expressed as a1, which contain all the information
with less data and simplify the calculation effectively. Other
channel data are used as redundancy to serve as measurement
output.

4238 VOLUME 8, 2020



L. Sun et al.: Real-Time Human Intention Recognition of Multi-Joints Based on MYO

C. STATE SPACE MODEL DEDUCTION
In this section, the HMM and dynamic analysis are used to
speculate the state space model for an accurate relationship
between joint angles and muscle activities. As shown in
figure 2, M ,N are the centers of gravity of upper arm AB
and forearm BC . For the two segments:

Min +M1 +MG1 = I1(θ̈1 + θ̈2 + θ̈3) (10)

−Min +M2 +MG2 = I2θ̈4 (11)

where Min represents the interaction moment between two
segments. M1 and M2 are the muscle torque reacted on the
two segments seperately. Besides,

MG1 = m1gd1sin(θ3),MG2 = m2gd2sin(θ3 − θ4)

are the gravitational moment. I1 is the moment of inertia of
AB that rotates around point A and I2 is moment of inertia of
BC that rotates around B. From equations 10 and 11, we can
obtain

M1 +M2 +MG1 +MG2 = I1(θ̈1 + θ̈2 + θ̈3)+ I2θ̈4 (12)

Therefore, we have

ẍk =



0 −1 −1 −
I2
I1

−1 0 −1 −
I2
I1

−1 −1 0 −
I2
I1

−
I1
I2

−
I1
I2

−
I1
I2

0


ẍk−1 +


1
1
1
1

 f (∗)

i.e.

ẍk = Aẍk−1 + I4×1f (∗) (13)

in which

f (∗) =
M1 +M2 +MG1 +MG2

I1
(14)

The total joint torque M1 and M2 can be expressed as
follows

M1 = h1(a1(k), θ1, θ2, θ3)

M2 = h2(a1(k), θ4)

which can be obtained from equation 9. h1 and h2 represents
the function relation between input and output.

Consequently, we get the EMG-driven joint motion model
in discrete time. i.e.,ẍkẋk

xk

 =
A 0 0
Ts 1 0
0 Ts 1

 ẍk−1ẋk−1
xk−1

+
I4×1f (∗)0

0

 (15)

where Ts is the sampling time.
Joint angles at the current moment is no only related to

the current EMG signals, but also the state at the previous
moment. It may not be accurate to use only muscle activities
as input. Therefore, equation 15 can be rewrite as:

[ẍk , ẋk , xk ]T = G(xk−1, xk−2, a1k−1)+ wk (16)

where G is relationship deduced before; wk represents the
process noise. EMG signal is a typical unstable signal, and
the position of sensor eletrodes is related to condition of
human skin sureface. The parameters in equation *** are not
completely unchanged. Therefore, a NARX neural network
is introduced to realize state estimation, so as to meet the
requirement of robustness.

NARX is a recursive dynamic neural network, which
can take the estimated value of the last moment or sev-
eral previous moment as the input of the network model.
For continuous state estimation, this makes the algorithm
have a consistency of time, and increases the accuracy and
rationality for the estimation with time series requirements.

D. CLOSED-LOOP ESTIMATION
The above method form an open loop structure for estima-
tion, and the error cannot be effectively corrected during the
recursion of NARX network. More seriously, the accumu-
lative error may result in large deviation. In addition, many
parameters in the model may change with time, which is
also one of the reasons for errors, In order to eliminate the
influence of the errors, an observation equation is introduced
here:

a2k = H (ẍk , ẋk , xk )+ vk (17)

where vk is themeasurement noise.H represents themeasure-
ment equation that is established by BP (Back Propagation)
nueral network. Then, we use UKF (unscented Kalman filter)
algorithm to estimate the state online by assuming wk and vk
as the Gaussian white noise. The UKF algorithm provides a
closed-loop nature and [17] gives a detailed explanation.

IV. EXPERIMENT
In this section, experiments are given to verify the proposed
algorithm above. An able-bodied subject participated in the
experiments.

A. EXPERIMENT SETUP
In this part we analyze analyzes characteristics of the
subject’s upper limb movements through motion capture sys-
tem. In the experiment, a set of preset motion trajectory is
defined, as figure 7 shows, which starts from the natural droop
of the arm and covers the motion range of elbow and shoulder
joints in a comprehensive way.

Before the test, network training is needed to obtain an
initial network for data prediction. During the movement
of the subject following defined trajectory, the training data
of the initial network is obtained is acquired. The output
is the joint angles calculated by the motion capture system,
and the original EMG signal of the MYO armband is pro-
cessed as the network input. The sampling frequency of
the motion capture system and the EMG sensors of MYO
armband are 60Hz and 200Hz seperately. The duration of
each group is about 20s, which allows two groups of defined
motion.

VOLUME 8, 2020 4239



L. Sun et al.: Real-Time Human Intention Recognition of Multi-Joints Based on MYO

FIGURE 7. A set of motion processes designed for the experiment.

TABLE 1. Data ranges of θs and θ̇s(s = 1,2,3,4).

During the first test group, the subject moves according to
the preset trajectory, and the second group moves randomly
within 20 seconds. Take one set of data as an example seper-
ately, Table 1 lists the 4 angles and their angular velocities
ranges.

In the experiments, muscle activities are calculated by
raw EMG signals through the processes of high-pass filter,
low-pass filter and normalization for every channel [20]. Take
the signal of the first channel as an example, the raw signals
and the processed results are shown in figure 8.

B. EXPERIMENT RESULTS AND ANALYSIS
In order to observe the effect of the algorithm intuitively,
the results calculated by the motion capture system can be
considered as the actual motion state of the subject during
the movement.

Figure 9 shows the estimation of state variables when the
subject followed the predefined trajectory, in which the
curves are derived from the motion capture system,
the NARX network only and the closed-loop estimation
seperately. We can see from figure 9, when using only the
NARX neural network for estimation, the errors accumulated
over time, which led to the divergence of the final results
although it can follow the motion capture system results
at the first 2 seconds. However, when using closed-loop

FIGURE 8. Raw EMG signals and the processed results.

FIGURE 9. Comparisons between motion capture system, NARX without
feedback and closed-loop NARX algorithm of θ1 estimation during
pre-defined trajectory.

FIGURE 10. Comparisons between motion capture system, NARX without
feedback and closed-loop NARX algorithm of θ̇1 estimation during
pre-defined trajectory.

estimation algorithm, the errors could be corrected in time at
every step to reduce the influence of accumulated errors on
the experimental results and achive relatively stable estima-
tion, due to the introduction of closed-loop structure.
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FIGURE 11. Comparisons between motion capture system, closed-loop
NARX algorithm and BPNN of θ1 estimation during pre-defined trajectory.

FIGURE 12. Comparisons between motion capture system, closed-loop
NARX algorithm and BPNN of θ̇1 estimation during pre-defined trajectory.

In addition, the algorithm is also compared with the results
of BPNN (all activity channels as network input). As can be
seen from figure 11 and 12, for such data with strong time
series characteristics, BPNN has a large estimation error and
cannot fit the motion well.

In order to evaluate the algorithm performance quantita-
tively, evaluation indexes are introduced. The RMSE used in
this paper is a commonly used index to evaluate the deviation
between the predicted value and the true value. The RMSE is
calculated as:

RMSE =

√∑
(yk − ŷk )2

n
(18)

where yk and ŷk represents the true value and the estimated
value at time k seperately; and n is the number of sampling
points. Table 2 shows the mean error and the RMSE of all
the 5 groups (the motion capture data are substituted into the
formula as the true value).

The estimation results of the random motion are shown
in figure 13 and 14. The conclusion is similar to the above
that the algorithm can estimate motion state of the two joints

TABLE 2. Mean errors and RMSE of θs (Degree) and
θ̇s(Degree/s)(s = 1,2,3,4) in pre-defined trajectory.

FIGURE 13. Comparisons between results of motion capture system and
closed-loop NARX algorithm of θ1 estimation during random trajectory.

FIGURE 14. Comparisons between results of motion capture system and
closed-loop NARX algorithm of θ̇1 estimation during random trajectory.

within a reasonable error range, but the accuracy decreases
compared with the predetermined motion prediction.

The mean errors and the RMSE are listed in Table 3.
In addition to proving the superiority of this algorithm over
BPNN, we combined the data from two tables. When mov-
ing along the predetermined trajectory, the average errors of
real-time estimation values for the four joint angles using the
method in this paper were 1.19, 0.77, 0.93 and 0.79 (degree)
respectively, and the average values of RMSE were 1.1,
0.87,0.97 and 0.88 (degree) respectively. However, the esti-
mation errors of joint angular velocity increase significantly,
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TABLE 3. Mean errors and RMSE of θs (Degree) and
θ̇s(Degree/s)(s = 1,2,3,4) in random trajectory.

which are 11.52, 6.42, 7.73 and 7.12 (degree/s) respectively.
Besides, when the arm moved randomly, the general estima-
tion effect became worse. The average RMSE of joint angle
estimation were 1.43, 1.25, 1.44 and 1.26 (degree), and the
average RMSE of joint angular velocity were 4.06, 3.25,
3.18 and 3.10 (degree/s).

V. CONCLUSION AND DISCUSSION
In this paper, the MYO armband of Thalmic Labs is used as
a sensor to continuously estimate the angle, angular veloc-
ity, and angular acceleration of the four rotation DOFs of
shoulder joint and elbow joint during the movement of the
upper limb as the expression of human motion intention.
Firstly, EMG signals of the upper limb are collected and the
muscle activities are obtained through a series of process-
ing for the subsequent estimation algorithm. Then, Hill-type
musculoskeletal and dynamic equation are used to construct
the estimation equation, and NARX neural network with
autoregressive characteristics of time series is worked to
replace the complex estimation function. At the same time,
an observation equation is constructed by BP neural network.
Meanwhile, UKF algorithm is employed to realize a
closed-loop estimation which can eliminate the influence
brought by accumulated errors, so as to obtain a com-
plete state space model. The feasibility is verified by the
experiment.

Compared with many researches that use EMG to calculate
the muscle torque, the algorithm in this paper directly obtains
the current state fo joint, providing a new idea of control
framework. In addition, the introduction of time series neu-
ral network and closed-loop structure effectively improves
the estimation performace, and the accuracy is significantly
increased compared with the open loop estimation and BP
network estimation.

Although the intention estimation algorithm has achieved
some fruit, there is still room for further exploration. First
of all, EMG is a typical unstable signal and will be inter-
fered by many factors, such as the state of the skin surface
and the position of the sensor patch, etc. Therefore, how to
effectively shield the influence of interferers and maintain
stable performance is a problem worthy of study. In addition,
according to the HMM, there is a relatively accurate non-
linear relationship between EMG signal and muscle torque,
which is independent of the initial state, hand movements,

and the weight of load. However, for the estimation of joint
information, the errors caused by these problems must be
considered. Finally, applying the algorithm to exoskeleton
robot or intelligent prosthesis, as the upper control layer to
achieve stable and ‘friendly’ control is the ultimate goal.
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