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ABSTRACT Air pollution seriously damages human health on a large scale. Although earlier works have
improved a variety of predictive models of air pollution, the ability to accurately predict air pollution indices
remains elusive. Time series prediction plays an important role in many fields. Some predecessors have
experimented with artificial neural networks (NNs), combining linear autoregressive integrated moving
average (ARIMA) models with nonlinear NN models. The typical assumption is that time series has a long
signal with no white noise. However, a real-time short signal with white noise is common. Themethods in the
literature also do not guarantee that the prediction error of an NNmodel is minimized. Therefore, we propose
the use of reinforcement learning (RL) to predict future PM2.5 values. First, we use theQ-learning algorithm
in RL based on its state characteristics on the NN model. Second, we select the input with different input
dimensions and values of time delay, calculate the best strategy, and evaluate the computational complexity
of our RL algorithm. Finally, we show that we effectively reduce the prediction error of the NN models.

INDEX TERMS Smart city, smart environments, urban computing, autoregressive integrated moving
average, time series, neural network, reinforcement learning, Q-learning.

I. INTRODUCTION
Air pollution has been a public health issue on an interna-
tional scale. The most dangerous one is a particulate matter
with an aerodynamic diameter of less than 2.5 mm, called
PM2.5. PM2.5 not only destroys the ecological environment
but also poses a great threat to human health. It increases the
incidence of respiratory and heart disease [1]. PM2.5 is more
likely to cause serious respiratory illness that leads to possible
termination of life. Many institutions and organizations such
as the World Health Organization (WHO) have shown that at
least 2 million people die of air pollution each year.

Although various models and architectures [2]–[4] regard-
ing the PM2.5 predictions have been presented, the ability
to accurately predict the PM2.5 concentration index is still
limited. In our study, the PM2.5 univariate time series is
used as an example. The Autoregressive Integrated Mov-
ing Average (ARIMA) model is used for analysis. ARIMA
is a well-known model used for air pollution simulation
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and analysis. Predicting time series data with high accu-
racy for linear components can effectively predict univariate
time series. Nevertheless, the ARIMA model cannot capture
nonlinear characteristics well. In comparison, our research
combines ARIMA and the Neural Network (NN) model to
deal with the nonlinear characteristics.

Time-series prediction plays an important role in many
areas [5]. It has been dominated by linear models such as
Autoregressive (AR) and Moving average (MA) [6]. How-
ever, these models are difficult to deal with nonlinear and
time varying data. In order to overcome this difficulty, prede-
cessors have tried many artificial neural networks [7]. While
using the neural network model for time-series prediction,
NN models perform future value prediction [8] based on
past historical data via diffusion models and ARIMA. Two
research groups, Zhang [10] and Kugiumtzis [11] show that
the neural network models [9] may enhance the time-series
analysis. Overall, other researches in this field [7], [10], [11]
aims to boost the nonlinear characteristics of the ARIMA
model.
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FIGURE 1. 2008-2017 historical data (left), after the first-order linear
interpolation of the data (right).

Many of these methods assumed the input data set contains
long signal and no white noise data. In real world, many
real time series data has short signal with white noise. Those
methods can not guarantee that the prediction error of the
neural network model is minimized. The focus of our work is
to use its characteristics to select the input dimension of the
neural network model and the time delay between inputs. The
input dimension is the input number of past values for net-
work to predict the future values. The time delay is the delay
interval between adjacent inputs. These two parameters deter-
mine the structural computational complexity and accuracy
of the neural network model in time-series prediction. With
appropriate selections of these two parameters, the neural
network model can be simplified into a simple structure. As a
result, the model is more accurate and of great significance.

In the past, PM2.5 was predicted using supervised learn-
ing [12]–[14]. In comparison, we propose a method based
on reinforcement learning to predict the future PM2.5 data
value. We use the Q-learning algorithm [15] to automatically
calculate three functions: First, finding the best or near-
optimal pairing of the input dimension and time delay of
the neural network model. Second, evaluating the Q value
of the input dimension. Finally, acquiring time delay of the
derived pair during the Q-learning process. The root-mean-
square error (RMSE) is used as our prediction error. So,
we propose a whole new method for the structure of PM
2.5 prediction.

For our training dataset, we utilize the data published
by the US Department of State’s Mission for China Air
Quality Monitoring Program. It includes hourly data for the
following five regions and several attributes. Only Beijing,
China, from 2008 to 2017, as Fig. 1, has been used for nearly
10 years of historical data on air quality as a model training
set.

For the validation dataset, we used the 40-day historical
data published on Taiwan LASS Environmental Sensing Net-
work System. The validation of data from a different region
enables our model to predict PM2.5 value.

II. BACKGROUND AND RELATED WORK
Unlike current methods [16]–[18] using neural network
model, support vector machines and regression model to
predict PM 2.5. There are plenty of models using ARIMA
to perform air pollution prediction [19]–[22].

Andonis Papaleonidas et al. proposed a hybrid model for
real time air pollution monitoring. They used Reinforce-
ment learning to enhance the learning capability of their
model based on Artificial Neural Networks (ANN) and Fuzzy
Rule [23]. Walraven et al. used reinforcement learning [24]
to optimize the traffic flow problem which can also be for-
mulated as a Markov Decision Process (MDP). They used
Q-learning to learn policies dictating the maximum driving
speed that is allowed on a highway.

So far, the models combine ANN with ARIMA [20], [22]
to perform air quality forecasting. Also, the model integrates
ANNwith Reinforcement learning tomonitor air quality [23].
Nevertheless, the model which can combine the advantages
of reinforcement learning, ARIMA, and neural networks as
sub-systems have yet to be proposed.

A. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
MODEL (ARIMA)
The goal of ARIMA is to convert the sequence data into a
constant sequence after the non-constant sequence is pro-
cessed in a differential manner and then predict it through
the model of the Autoregressive Moving Average model. For
example, the random walk process does not have a fixed
average sequence. Then, it becomes a sequence composed of
smoothness and make predctions through the Autoregressive
Moving Average model.

The extended ARIMA(p, d , q) model of the ARMA(p, q)
model can be expressed as:(
1−

∑p

i=1
φL i

) (
1−LdXt

)
=

(
1+

∑q

i=1
θiL i

)
εt (1)

The p in Autoregressive represents the Autoregressive
term, q in Moving Average represents the Moving Average,
and d is the number of differential orders. Differential order
is needed to make the time-series a stationary sequence and
is greater than zero.
Xt represents the current forecast value and L stands for the

lag operator, meaning that it is equivalent to a time pointer,
and the sequence value is multiplied by the lag operator. For
example, LkXt = Xt−k . ARIMAmodel construction process:

1) First, the time-series data is used for stationary identi-
fication using the features of the auto-correlation func-
tion and the partial autocorrelation function.

2) Then, if the recognition result time-series data is non-
stationary, differential processing is taken until the time
series data is identified as stationary.

3) Finally, the model is judged by the recognition result,
and the characteristics are presented according to the
autocorrelation function (ACF) and the partial autocor-
relation function (PACF).

Autocorrelation is in the ordered random variable time-
series. Compared with the variable sequence itself, autocorre-
lation shows the correlation of the same sequence at different
timings. The partial correlation function is the relationship
between the time-series and a short time-series observation
after the partial interference is removed.
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FIGURE 2. Appropriate selection of m and τ to build time series
predictions for the NN model.

B. NEURAL NETWORK MODEL (NN)
A feedforward neural network is a type of multi-layer
perceptrons that contains multiple neurons in each layer.
The neurons in the same layer are disconnected from each
other, and the transmission of information between lay-
ers is performed in only one direction. The first layer
is called the input layer and the last layer is the output
layer. The middle is the hidden layer, and the hidden layer
can be multi-layer [16]. And the last layer is the output
layer.

Time-series prediction plays an important role in many
fields. It has been dominated by linearmodels such as Autore-
gressive (AR) and Moving Average (MA). However, these
models are difficult to deal with nonlinear and time-varying
data. In order to overcome this difficulty, predecessors have
used the NN model for time-series prediction and predict
future values based on past history of data instances; the
emphasis is on the input dimension and the time delay
between inputs. The input dimension is the number of past
values that enter into the network to predict future values.
The time delay is the delay interval between adjacent inputs.
These two parameters determine the structural computational
complexity and accuracy of the NN model in time series
prediction.

Consider a scalar time-series such that the delay coordi-
nates derived from the time-series are represented as follows:

x(t) = (x(t − τ ), x(t − 2τ ), . . . , x(t−mτ ))T (2)

In NN modeling, x(t) represents the t-th data in the time-
series, m represents the input dimension of the phase space,
τ represents the time delay, and m represents the number
of input nodes of the Neural Network. The pairing of m
and τ determines the structure of the NN model as well as
its computational complexity and prediction accuracy. In the
design of NN models, the number of hidden nodes is also an
important issue.

In our work, the main focus is finding the appropriate
choice of m and τ for the NN model for constructing time-
series predictions. The time-series prediction using the NN
model is shown in the Fig. 2.

In a hybrid model time-series analysis, we assume that
the data instance is long signal and no white noise, and then
determine m and τ values for time-series data.

FIGURE 3. Reinforcement Learning model and decision-making process.

FIGURE 4. Q- Learning process. Q-table is a table that stores Q values
with state and action as indexes.

C. REINFORCEMENT LEARNING
Reinforcement learning uses self-adjustment and optimiza-
tion solutions from environmental feedback. This can be
understood as automated systems based on agents, goal-
oriented learning, and decision making. The environment is
everything that the agent interacts with and it is not fully
controlled by the agent. In each calculation step t , the environ-
ment representation received by the agent is called the state,
represented by st ∈ S, where S is the set of all possible states.

In response to the state st, the policy selection action is
denoted as πt in the at ∈ A(st ) according to the current policy.
A(st ) is one of the behaviors available in state s. At time t+1,
the agent receives a numerical reward expressed as rt+1 ∈ R
from the environment as a result of applying in the state st.
Afterwards, a new state st+1 will be emitted back to the agent.
Set the variable strategy as π , the expected return of the state s
is called the value function, expressed as V (s). The expected
return from the state s after taking action a is the action value
function, or the Q-value, which is expressed as Qπ (s, a). The
end goal of reinforcement learning is to find the best decision
from the learning process and maximize the long-term return
of automated agent-based systems.

Reinforcement learning can also be considered as a task-
independent learning algorithm. It applies to issues that have
no supervisory information, but only feedback from the exter-
nal environment. The NN model is used to determine the
policy to pick m and τ for time-series prediction. In addition,
reinforcement learning selects the input dimension and time
delay in a self-adjusting optimizationmanner. It also has feed-
back from autonomous and environmental data and can well
overcome the shortcomings of existing methods highlighted
by the neural network. In recent years, many reinforcement
learning algorithms have been proposed, one of which is
Q-learning, which attempts to approximate the optimal
action-value function. In our study, the Q-learning algorithm
was used to selecting strategies as well as updating neural
network input dimensions and time delays.

Q-learning process is shown in Fig. 4. The first step is
to create a Q-Table that is used to estimate the best out-
come Q value for a particular action in a particular state.
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Q-Learning process. The Q-table is a table that stores Q
values with state and action as indexes. However, this table
can only be created if the state and action are limited. For
example, in the our model, the state has only six attribute each
being a limited value. Each row in the Q-Table represents
a state, and each column represents an action. Q-learning
can find the best choice strategy in the Markov decision
process (MDP) by learning the action-value function.

The state of the real situation may be infinite, and such a
Q-Table will be infinite. The solution to this problem is to
realize the input state of the Q-Table through the neural
network and output the q values of different actions.

Q-learning is expressed mathematically as follows:

Qnew(st , at ) = Q(st , at )+ a{rt+1 + γmaxa Q(st+1, a)

−Q(st , at )} (3)

The Q-Table update begins with the max a Q(st+1,a) part
of Equation 6, and assuming t = 1, the value of Q(s2,a1) is
larger than Q(s2,a2). Since recent action matters more than
a long ago action, Q(s2, a1) is multiplied by an attenuation
value gamma, assumed to be 0.9, plus the reward R obtained
when reaching s1. We use it as the real Q(s1, a1) which has
a value of 17. Our study then estimate the value of Q(s1, a1)
based on Q-Table, and we used the difference between the
actual value 17 and the estimated value of 8 to multiply by
the learning efficiency. After alpha, the hypothesis is 0.6, and
the value of the estimated Q(s1,a1) is increased to become the
new estimate of 13.4. This is howQ-learningmakes decisions
and learns to optimize decisions in the rewards section.

III. ARCHITECTURE DESIGN
The purpose of using reinforcement learning is to determine
the action strategy more accurately by selecting the input
dimension and time delay. The determined action strategy
can reach the optimal or near-optimal predictions, and is
used in the NN model of time-series prediction. The unique
mechanism of action strategy focuses on selecting the input
dimension [17], [18] and time delay while maintaining a high
level of prediction accuracy. The choice of these two parame-
ters is mapped to the important task of intensive learning task.
The architecture of our proposed system is shown in Fig. 5.

Considering the NN model and time-series data as the
external environment, the actions taken by the agent in
response to the external environment state, and then defined
as the input dimension and time delay of the NN model
via the Q-Table comparison in reinforcement learning, i.e.
a = (m, τ ), where m represents the input dimension and τ
represents the time delay. Time delay can be selected as a
setting of parameter, as Fig 6.

Assuming that the state of time t+1 is to be predicted, our
study selects the input parameter dimension by m. Assuming
m = 3 here, the input of the NN model has only three
quantities. Parameter time delay τ of the input can also be
selected. Assuming τ = 2, each time the input parameter is
selected, data before t−2 will be selected as the input.

FIGURE 5. RL-ARIMA-NN model architecture. The model is based on
reinforcement learning module which uses the feedback of autonomous
environmental data to select the input dimension and time delay for
Feedforward Neural Network Module and Time-Series Module.

FIGURE 6. The parameter of time delay for the input by τ time unit.

The RL-ARIMA-NN model architecture is composed of
three modules: Reinforcement Learning Module, Feedfor-
ward Neural Network Module, and Time-Series Module.
Firstly, The Reinforcement Learning module is initialized
by a set of initial states and actions. Next, the model learns
and then updates other states and actions during the model
learning process. The Time-Series module will organize the
data in a smooth time-series, and then analyze it by ARIMA
model to determine whether to adopt Autoregressive model,
Moving Average model or Autoregressive Moving Average
model strategy, then the time-series Data of ARIMA model’s
prediction is passed to the NN model for learning. The
Feedforward Neural Network Module (NN model, As shown
in Fig. 8) uses actions made by the Reinforcement Learning
module and the data from the Time Series module to train
itself as well as update the weights by minimizing the mean
square error. The prediction error is expressed as the root-
mean-square error (RMSE), and the calculated reward values
are passed onto the reinforcement learning module. Then the
update of Q-Table will be executed so that the model can
predict more accurately and effectively next time. As shown
in Fig. 7, Reinforcement Learning module learns and updates
Q-Tables based on feature status and rewards.

A. REINFORCEMENT LEARNING MODULE
The first step of the module is to create a Q-Table that is used
to estimate the best resulting Q value for a particular action in
a particular state. Each row in the Q-Table represents a state
and each column represents an action. Q-learning can find
the best strategy in the Markov decision process (MDP) by
learning the action-value function.

In this study, Q-Table takes St as the input state at time t,
and St is the stationary time-series data processed by time-
series. In the proposed RL-NN method, the attribute values
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FIGURE 7. The reinforcement Learning module. The model learns and
updates Q-Tables based on feature status and rewards.

FIGURE 8. The Feedforward Neural Network module.

are used as the state variables for learning. It contains six
attributes as the state parameters PM2.5: PM2.5, TEMP:
temperature, HUMI: humidity, PRES: atmospheric pressure,
cbwd: integrated wind direction and las: cumulative wind
speed. These attributes are the state variables, which well
describes each state in the Reinforcement learning, normally
denoted as S. For more detail of how the learning process
works, please reference the theory of Reinforcement Learn-
ing [27].

We define initial action a = (m,τ ) at t = 0. And then,
st and a = (m, τ ) at t = ti will automatically learn and
update m and τ value during the training procedure of the
RL-ARIMA-NN model. The architecture of Reinforcement
Learning module is shown in Fig. 7.

RL-ARIMA-NN model is started in the second step,
It learns and updates the Q-Table after selecting the next
action and reward based on the current status and Q-Table.
Feedforward Neural Network module, as shown in Fig. 8,
adjusts the weights of the NN model and makes predictions
with selected m and τ .

B. FEEDFORWARD NEURAL NETWORK MODULE
Initially, when st is fed as a parameter into the Q-Table, the at
action is taken, and the at action contains a = (m,τ ) as a
parameter of the neural network model, which then generates
a prediction result y(t) , the reward for the action at is defined
as the neural network model prediction result y(t) , which can
evaluate the prediction result of the RL-ARIMA-NN model
accuracy and error. The predicted result y(t) is compared with
the stationary time-series data value provided by the actual

FIGURE 9. The correlation between time-Series module, output data and
status of features.

time-series, which is called the actual value y(t) , and the
mean square accuracy is calculated. The prediction error is
expressed as the root-mean-square error (RMSE), defined as
follows:

RMSE(y(t), y(t)) =

√(∑n
t=0(y(t)− y(t))2

)
n

(4)

where y(t) is the actual value while y(t) is the predicted output
of the predicted RL-ARIMA-NN model. When the time t is
calculated by RMSE, the reward for st taking the at action is
defined as:

r = (1− RMSE(y(t), y(t)))2 (5)

The design of (5) here indicates that higher prediction error
gives less reward for the action, and vice versa. Since the
range of actual values is a contiguous space, discretization
is performed to derive various states. This is how Q-learning
makes decisions and learns to optimize decisions in the
reward system.

C. TIME-SERIES MODULE
Time-Series module outputs data and feature status are shown
in Fig. 9.

Our work leverages a training set and validating set to
train the RL-ARIMA-NN model. We take the historical data
published in the US Department of State’s Mission China
Air Quality Monitoring Program, which includes Beijing’s
historical data on air quality for nearly 10 years from 2008 to
2017, as a training set. The 40-day historical data published
by the Taiwan LASS Environmental Sensing Network Sys-
tem is used as a verification set. We verified on the data from
different region to prove the effectiveness of our model in
the case of providing the same attribute state parameters in
different regions.

Since the data used in the time-series analysis is contin-
uous, the first-order linear interpolation method is used to
estimate the data of the missing observations, and the data
is collated. Then the duration of the total observation data
of Mission China air quality is 10 years. 3195 data points
are hashed and the entire data set is divided into two parts
for fragmentation learning. Each time the clip learning takes
30 days of data, the first 20 days of data is treated as a
prediction label, and the data of the next 10 days is used as a

9868 VOLUME 8, 2020



S.-W. Chang et al.: RL for Improving the Accuracy of PM2.5 Pollution Forecast Under the NN Framework

ground truth label. To use the difference between the output
from the prediction and the correct value, the neural network
calculates the loss, computes the gradients to update weights.

First, the time-series data is used for stationary identifica-
tion using the features of the autocorrelation function and the
partial autocorrelation function. If the recognition result of
the time-series data are non-stationary, differential processing
will be taken, until the time-series data is identified as station-
ary. The training data is a non-constant sequence, which needs
to be processed differentially to become a constant sequence.

According to the smoothing process of the correspond-
ing time-series model established after the recognition,
an Autoregressive model is established when the partial
autocorrelation function is truncated and the autocorrelation
function is smeared. A Moving Average model is established
when the partial autocorrelation function is smeared and
the autocorrelation function is truncated. If both the partial
autocorrelation function and the autocorrelation function are
smeared, the sequence is suitable for theAutoregressiveMov-
ing Average model.

Then the time-series data of the Autoregressive Mov-
ing Average prediction is transmitted to the neural network
model. The neural network model is trained to adjust and
update the weights as well as the Q-Table, so that the model
can predict the future more accurately and effectively.

The 40-day historical data published by the LASS envi-
ronmental sensing network system in Taiwan is also used as
a first-order linear interpolation method to estimate the data
of the missing observations, and the data is collated, and then
put into the trained RL-ARIMA-NN model for verification.
Because there is already a well-trained Q-Table at this time,
knowing that the m and τ parameters need to be taken as the
inputs in different states. Data collected by another region
is taken as verification to show our model has the ability to
apply on different regions.

IV. RESULTS AND DISCUSSION
Air pollution prediction is certainly the solution for the worse
and worse air quality. Although multiple types of prediction
models and architectures have been improved, the ability
to accurately predict is still limited. Actual time-series data
contains a combination of linear and nonlinear features, but
the use of ARIMA model or NN models cannot adequately
describe the characteristics of actual data.

The purpose of this study uses Reinforcement learning to
be more precise in determining the input dimension and time
delay. In conclusion, the mixture of the three models would
have a better predictive effect than a single model. The linear
part of our architecture is modeled by the ARIMA model.
The predicted result is overline Lt. The original sequence and
overline Lt have a residual of et. The formula is as follows:

et = yt − L t (6)

The residual et implies the nonlinear relationship in the
original sequence. Therefore, our study uses the NN model
to approximate this nonlinear relationship and assumes that

there are at least n inputs in the NN model. The formula is
described as follows:

et = f (et−1, et−2, . . . , et−n)+ εt (7)

In this equation, f is a nonlinear function determined by
NN, and t is a random error. The predicted value is et esti-
mated by NN, and the predicted value is recorded as Nt . Then
the results predicted by the hybrid model can be written as:

yt = Lt + Nt (8)

The hybridmodel is characterized by anARIMAmodel for
linear partial prediction and a NNmodel for non-linear partial
prediction. We used comprehensive application of ARIMA
and NNmodels to fully achieve their respective strengths and
to achieve the purpose of improving the prediction effect.

In our study, the dual model serial superposition method,
ARIMA-NN, is improved through reinforcement learning of
the Q-learning, which makes the NN model take a better
parameters of input dimension and time delay. The first model
is built with ARIMA model by dividing 20,000 data points
into two subsets. The initial 16000 data points, are used for
training data, and the remaining 4000 data points are used
for testing. The Root Mean Square Error (RMSE) is used to
evaluate the predictive performance on the test set. The resid-
ual of the ARIMA model is assigned to the neural network
to establish a second model. Eventually, the predicted values
of the two models are superimposed into the final predicted
value. In addition, the 40-day historical data published by
the Taiwan LASS Environmental Sensing Network System
was used as a validation set. For example, Zhang uses this
method to solve classic examples of three-time series: sunspot
problem(1700−1987,288yeardata), Canadian lynx problem
(1821−1934, 114 data per year), Q-Table. With this method,
we have trained and verified the RL-ARIMA-NN model
by comparing with the accuracy of ARIMA-NN and other
significant CNN models.

A. DATA
Since the data used needs to be continuous in the time-series
analysis, we collated the data before using the observation
data to train the model of our study. Therefore, our study uses
the first-order linear interpolation method to estimate the data
of the missing observations. Therefore, the 10-year data is
aggregated into the total observations. From 2008 to 2017,
a whole dataset of 20,000 data points has been hashed. The
entire dataset is then used as a fragment for themodel to learn.
We captured 30 days of data each time; the first 20 days of
data are regarded as a predict label and the next 10 days of
data are considered as the ground truth labels.

The 40-day historical data disclosed by the Taiwan LASS
environmental sensing network system adopts the best strat-
egy according to the state numbering parameter and the data
is modeled directly to the ARIMA model. After determining
several possible tentative modes, AIC is used as the criterion
for judgment, and a model with a smaller AIC is selected,
as shown in Fig. 11. The AIC values of the tentative modes
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FIGURE 10. ADF Augmented Dickey-Fuller test.

FIGURE 11. We found the smallest AIC values of ARIMA(3, 1 ,1) through
our method.

TABLE 1. ARIMA tentative model AIC values.

are compared in Table I, and the AIC values are smaller when
the modes of p=3, d=1, and q=1 are obtained.

B. ARIMA MODEL CONSTRUCTION
The PM2.5 data per hour from 2008 to 2017 is shown in
Fig. 1. Box and Jenkins proposed three model evaluation
methods: the parameter estimation, the pattern identification,
and the AutoCorrelation Function (ACF).

According to the Auto-Correlation Function test, the abso-
lute value of the Auto-Correlation Function is kept smaller
and smaller for a long time, and it is judged as a smooth
sequence. The model judges that before performing a time-
series analysis. It is necessary to judge themodel to determine
whether the sequence is stable. If the sequence is unsta-
ble, we perform the difference processing until it is smooth
enough. Our study used an expansion of the Dickey-Fuller
(ADF) single root assay. The ADF detection feature describes
that the appropriate factor variation is added to the regression
equation as shown in Fig. 10. Finally, the hypothesis error
term in the DF test is corrected to have no self-correlation,

FIGURE 12. ARIMA model (3,1,1) prediction map.

and the white noise problem caused by the Moving Average
term is ignored.

As a result of the ADF test, the p value of the return
value is significantly less than 0.05 (p value = 1.5291
955682384625e-29), and therefore, the time series is judged
to be a smooth sequence. The model is diagnosed and the
and the British pound dollar exchange rate issue (1980−1993,
731 weekly data)

The results predicted using the constructed model
(3, 1, 1) are shown in Fig. 12. Red line: historical actual value.
Blue line: 1-step-ahead Forecast (get predictions, dynamic
= False). Purple line: Dynamic Forecast (get predictions,
dynamic=True). Gray line: Dynamic Forecast (get forecast).
If it is a static prediction, the actual value will be used for the
next prediction.

Our study uses an ARIMA model to perform time-series
prediction of PM 2.5. In the case of dynamic prediction,
the next predicted value will be used for the following pre-
diction values. From the results, we see that the prediction
after time p (2015) starts to become inaccurate and the error
increases gradually. Our study uses an ARIMA model to
assume that the PM 2.5 value is linear, but the determinants
depend on its previous p-value. This can be a relatively good
approximation to p time points.
However, over time, the accuracy of the ARIMA predicts

PM 2.5 values begins to decline. It is resulted of the non-
linearity of the PM 2.5-time series data. Therefore, in order to
enhance the prediction accuracy, wemake use of othermodels
that can better describe non-linearity.

Then, our study used the appropriate data set to generate
the ARIMA (3,1,1) model to predict the PM2.5 concentra-
tions after 5 days. The error results in calculating the Pre-
dicted error and RMSE are shown in table 2.

The Fig. 13 shows the error between the actual value and
the predicted value of the ARIMA (3,1,1) mode. From the
residuals from 2008 to 2017, the residual is assigned to the
neural network to establish a second model.

C. RL-NN MODEL CONSTRUCTION
At the end of our study, the difference between the predicted
value of the ARIMA model and the actual value is called the
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FIGURE 13. The error between ARIMA model (3,1,1) prediction.

TABLE 2. ARIMA tentative model AIC values.

residual, and the residual is passed to the NN model to make
the second model. The RL-ARIMA-NN and the traditional
ARIMA-NN model are tested with RMSE. The Predicted
Error and the validation data set is then predicted using the
best strategies of the two models.

As mentioned previously, the residual 20000 data points
are divided into two subsets. The first 18,000 data were used
for RL-ARIMA-NN and Neural Network methods as training
data, and 30 data sets (batch size =30) were divided into
600 training samples. Finally, the remaining 2000 data points
are used for testing, and the root-mean-square error (RMSE)
is used to indicate the predictive performance on the test
set. In addition, the 40-day historical data published by the
Taiwan LASS Environmental Sensing Network System was
used as a verification set for verification.

In our study, a three-layer Neural Network is used as the
predictive model design in the NN model, and the number of
iterations (epochs) is set to 100 times. After each iteration, the
NN model adjusts the weight between nodes, and the hidden
layer the number of nodes (hidden unit) is set to 128 nodes.
The input dimension is set to amaximum of 30with each time
capturing 30 days of data.

Among them, the ARIMA-NNmodel manually adjusts the
parameters with input dimensions (i.e the window size) to
find the best combination of strategies. RL-ARIMA-NN uses
Q-learning in Reinforcement learning with six attributes as
the state parameters: PM2.5, TEMP (temperature), HUMI
(humidity), PRES (atmospheric pressure), cbwd (integrated
wind direction) and las (cumulative wind speed).

In order to find the best combination of strategies,
we choose which input dimension (m) to take in conjunction
with the time delay (τ ). Nevertheless, it may lead to potential
over-fitting problems. In practice, this study attempts to use

FIGURE 14. The ARIMA-NN model has a short-term prediction input
dimension of 6.

FIGURE 15. The ARIMA-NN model has a short-term prediction input
dimension of 5.

FIGURE 16. The ARIMA-NN model has a long-term prediction input
dimension of 18.

FIGURE 17. The ARIMA-NN model has a long-term prediction input
dimension of 17.

the different parameters and structures to obtain the best
model in order to balance the variance and bias.

The results of the ARIMA-NN model train on 18,000 data
points and are tested at 2000 data points using different input
dimensions as shown in Figure 14, Figure 15, Figure 16 and
Figure 17. The RMSE and Predicted Error are listed in the
Table 3. The table shows the analysis with short-term and
long-term. The RMSE and Predicted Error are both lower in
the short-term forecast. Because of the time delay, the NN
model is preset to a time unit delay for the learning of
the time-series. Therefore, the short-term forecasts are more
accurate than the long-term prediction. The performance of
the model with six input dimensions is slightly better than
the model with five input dimensions.

In the long-term prediction part of Table. 3, the perfor-
mance (both error and RMSE) of model with 18 input dimen-
sions is better than the model with 17 input dimensions. Since
it’s impossible to change the input state and time delay of
ARIMA-NN model, and the overall long-term prediction of
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TABLE 3. ARIMA-NN model predicted error and RMSE.

TABLE 4. RL-ARIMA-NN model predicted error and RMSE.

FIGURE 18. The RL-ARIMA-NN model has a short-term prediction with
the input dimension 7 and time delay of 1 unit.

FIGURE 19. The RL-ARIMA-NN model has a short-term prediction with
the input dimension 6 and a time delay of 1 unit.

ARIMA-NN model is worse than RL-ARIMA-NN model
(which is shown in Table 4) in general.

From the Table 3, the optimal short-term prediction uses
the parameter of 6 input dimensions and an optimal input
dimension of 8 in the long-term prediction. This may occur
because the number of input dimensions’ increase enough.
The various setting of parameter can be considered as a
simulation of a dynamic air pollution system in real world.

FIGURE 20. The RL-ARIMA-NN model has a long-term prediction with the
input dimension 4 and a time delay of 9 units.

FIGURE 21. The RL-ARIMA-NN model has a long-term prediction with the
input dimension 4 and a time delay of 4 units.

In Fig. 18, 19, 20 and 21, we listed other results using dif-
ferent input dimensions and time delay to more easily analyze
the RL-ARIMA-NNmodel. The RMSE and prediction errors
are also listed in the Table 4. According to our inference, due
to the time delay, the RL-NN model is chosen to be used to
learn the time delay of the time series.

Since the combination of input state with the time delay
can be optimized automatically with reinforcement learn-
ing mechanism, the overall prediction is better than the
ARIMA-NN model. We discovered one thing that is worthy
to discuss: in the short-term prediction, optimal input dimen-
sion is 7 while input dimension of long-term prediction is
4 with time delay of 9 units (there are more choices for the
input dimension).

Observing its prediction map of the test data, it is con-
cluded that this model better describes the nonlinear system
in the real world and compensates for the accuracy of the
ARIMA-NN model’s prediction. The combination of the RL
and NN models help capture the trend of raw data perfectly.

In Table 5, we listed the results of the training and vali-
dation error of four models. We further compared our model
with the original ARIMA-NNmodel, the models which using
Convolution Neural Network to estimate air pollution [25]
and PM2.5 [26]. RL-ARIMA successfully outperform them
in both training and validation performance.

Both two errors of RL-ARIMA-NNmodel are significantly
smaller than those of other models.

In short-term prediction, RL-ARIMA-NNmodel and ARI-
MANNmodel can both create the optimal parameter because
the NN model’s default time delay is one unit. Therefore,
the two models with the same time delay have similar per-
formance (RMSE and Predicted Error).

Overall, the optimized RL-ARIMA- NN model can select
the optimal parameters such as input dimension, temperature,
wind direction, and humidity, etc. With different input states
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TABLE 5. Training and validation error comparison.

and then the model will make the decision to obtain a predic-
tion S+ 1.
The original NN model, however, does not have this step,

and there is no way to adjust the time delays and input
dimensions (the only way is to manually adjust them as
hyperparameter). In other words, RL-ARIMANN can adapt
to different applications, and it is very easy to let the model
learn different states and find the best strategy. Instead of
manually adjusting several parameters repeatedly, RL-based
models will find the best strategy automatically. It is believed
that the increase in the time delay and the number of input
dimensions may improve the accuracy of prediction, better
stability.

V. CONCLUSION
We propose a new model based on Q-learning and Rein-
forcement Learning, which is used for time-series prediction.
It estimates the input dimension and time delay between
neural network model inputs. Our goal is to construct a NN
model which maintain the accuracy with a more and more
simple structure. Our method compensates for the lack of
nonlinearity of the ARIMA model while maintaining high
precision and reducing its computational complexity at the
same time.

We improve upon those traditional combinations of
ARIMA and Neural Network learning algorithm to predict
real time-series data. Shorter and noisier time-series data is
no longer an absolute obstacle in improving the prediction
error of the NN model.

Experimental results demonstrate the effectiveness of our
method. Our study finds that the Autoregressive Moving
Average model has good performance to predict short-term
time-series changes but loses its predictive ability in long-
term changes. This is because the ARIMA model assumes
that the relationship between the source and the response is
linear, while PM 2.5 is not linear in the long-run. While Neu-
ral Networks are good at long-term prediction, the number of
hidden layers and the number of nodes in each layer of the
Neural Network may affect the performance and efficiency
of the verification data. This study does not discuss changes
in this number.

We created a universal forecasting system that interacts
with and learns from the world, and the interaction with
the environment is the advantage of Reinforcement learn-
ing. Using Reinforcement learning empowers the agents to
better understand their surroundings in their experiments

and enables them to possibly gain insights into high-level
causality. After overcoming the applicability limitations of
each method, our model broadens the domain of predictive
technology for sensor network.

After all, this work can confidently provide a scientific and
methodological basis for the research in the prevention and
prediction of urban haze pollution. All of this is an uncharted
territory which may seem bizarre to people from this field of
work, nevertheless, we have successfully nurtured this ideal
into a new frontier for predicting air pollution.
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