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ABSTRACT Analog circuit is one of the most commonly used components in industrial equipment, and
circuit failuremay lead to significant causalities and even enormous financial losses. To address this problem,
a novel scheme based on the wavelet spectrum features, feature selection, and Naive Bayes classifier is
presented for the fault location of an analog system in this paper. The scheme mainly consists of three stages.
First, the cross-wavelet transform (XWT) method is utilized to obtain the time–frequency representations
of the raw signals of analog circuits. Second, the local optimal-oriented pattern is applied to all the XWT
spectrum images to generate the original high-dimensional feature set. Then, an integration feature selection
approach via joint Hilbert–Schmidt independence criterion and kernel Fisher linear discriminant analysis
is proposed and utilized to obtain low-dimensional fault features, which are uncorrelated and distinctive.
Finally, the training samples set is imported into the Naive Bayes classifier, and the fault diagnosis results
can be drawn through inputting the testing samples set into the trained Naive Bayes classifier. The simulation
results on two typical circuits have demonstrated that the proposed method is a promising means to detect
and classify most analog circuit faults, achieving a better diagnosis accuracy than that of the other published
works.

INDEX TERMS Analog circuit, fault diagnosis, cross-wavelet transform (XWT), local optimal ori-
ented pattern (LOOP), Hilbert Schmidt independence criterion (HSIC), kernel Fisher linear discriminant
analysis (KLDA), Naive Bayes.

I. INTRODUCTION
Analog circuit, a common component in most industrial sys-
tem, plays a critical role in the reliable operation of the entire
system. An unexpected failure of analog circuit may cause
sudden breakdown of the whole equipment, bringing about
enormous financial losses or even casualties [1], [2]. There-
fore, fault diagnosis of analog circuit is of utmost significance
for security and reliability in industrial manufacturing [3], [4].

Fault diagnosis method mainly involves two aspects:
feature extraction and classification. It is well known that
feature extraction is a vital stage that determines classifi-
cation performance [1]. Considerable scholars have devoted
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themselves on feature extraction, among which time-domain
analysis methods have been widely utilized. For instance,
Yuan et al. [5] employed kurtosis and entropy of the sam-
pled signal to locate circuit faults. Chang et al. [6] utilized
the similarity-based metric technique to detect anomalies
of light-emitting diode. Shahbazi et al. used the slopes of
inductor currents as the fault features to detect the defect
in dc-dc converters. Long et al. [7] proposed to employ six
statistical characteristics as features for diagnosis of analog
circuit. However, the features in time domain are manually
chosen which heavily depend on the prior knowledge of field
experts.

Frequency domain methods are utilized to detect the vari-
ation via spectral analysis, which are widely applied in many
works. For example, via fast Fourier transform (FFT) [8],
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sweep frequency response analysis [9], short time Fourier
transform (STFT) [10], [11] of output signal, the features
of defect circuit were fetched, and they all achieved a
better performance. Nevertheless, frequency-domain-based
approaches discard the structure information embedded in
raw data. Thus, it is difficult to find the most discriminative
features while dealing with complex circuit.

Moreover, whether use a pure time-domain or frequency-
domain method, it is incapable of providing sufficient infor-
mation for fault detection. Time-frequency analysis (TFA)
can not only reveal transient components distributed in
all frequency bands, but also identify time-variant fea-
tures [12]. Recently, various time-frequency joint analyses,
including short-time Fourier transform, wavelet transform
(WT) [13], S-transform (ST) [14], [15], Hilbert-Huang trans-
form (HHT) [16] and Gabor analysis [17], have been pro-
posed for fault diagnosis in electronic system. However,
resultant matrices, time-frequency representations (TFR) sig-
nificantly increase computation complexity due to its multi-
dimensional characteristic. Moreover, TFR usually contains
a large amount of redundant information. Therefore, it is
necessary to conduct dimensionality reduction on TFR, and
the information should be fetched as much as possible.
Traditional matrix-based method always applied suitable
projections to map the matrices in a feature subspace cap-
turing high-discriminative fault information. Various projec-
tion approaches are commonly utilized in obtaining features
of matrices such as two direction two dimensional linear
discriminative analysis (TD2DLDA) [18], two-dimensional
non-negative matrix factorization (2DNMF) [19] and two-
dimensional principal component analysis (2DPCA) [20],
and they all achieved desirable results.

In general, the classification method based on TRF can be
considered as a kind of image recognition issues essentially.
Compared with the methods based on projection, the image
classification method based on texture features can ont only
capture the global statistics of local features, but weaken the
inference of the horizontal distribution variation [21]. The
well-known local binary pattern (LBP) has been shown to
be effective encoders of repeated local patterns for robust
discrimination in several visual recognition tasks. However,
a major limitation of LBP is the arbitrary sequence of bina-
rizationweights, that may result in poor performancewhich is
susceptible to rotation variance. Consequently, a new descrip-
tor, local optimal oriented pattern (LOOP) is proposed to
overcome the drawback of LBP, via encapsulating rotation
invariance into the main formulation of LBP [22], [23].
As a result, the processing time complexity and classification
rate can be reduced.

After feature extraction, a classifier construction is another
concerning issue. Artificial neural network (ANN) and Sup-
port vector machine are widely implemented in fault diag-
nosis. However, the ANN technique has disadvantages of
falling into local extremum, slow convergence speed and
overfitting [24]. Moreover, the SVM method has a limitation
of high computation cost in hyper-parameters optimization

procedure [25]. Owing to its simplicity structure and effective
learning ability, Naive Bayes (NB) has been successfully
applied in many fields, such as EEG recognition [26], text
classification [27] and Software defect prediction [28]. More-
over, NB is capable of providing a probabilistic interpretation
of its outputs which based on the assumptions that all prop-
erties are mutually independent and their weights are equally
important.

Nevertheless, the original feature vectors is with high
dimensionality and it not only contains relevant features
but also redundant information. If all the features are
imported into classifier directly without further process-
ing, it may result in complicated classification model with
poor performance. Therefore, it is of utmost significance
to conduct an intelligent feature selection scheme to auto-
matically determine representative features which obviously
identify the circuit condition rather than applying whole
features.

Generally, approaches for feature selection can be broadly
divided into two categories: wrapper and filter [29]. The
wrapper methods tend to achieve excellent performance
because they chose the most distinctive features with the
evaluation of classifier. Nevertheless, the wrapper methods is
time consuming, which is not suitable for fault diagnosis [30].
Compared with wrapper methods, filter methods converge
much faster and find the optimal features using an evaluation
function, which is conducive for scholars to understanding
the importance of the considered features [31]. However,
the filter method has some drawbacks, which are described
as below:1)The relationship between sets of features and the
class labels is not jointly considered, as they usually use
pairwise feature-label measurements, and 2) they do assume
linear dependence between features [32]. To cope with these
issues, a novel filter approach called Hilbert-Schmidt inde-
pendence criterion (HSIC) is introduced to evaluate statistical
dependence between features and class labels. Unlike most
of the feature selection methods, HSIC criterion have a good
ability of capturing high order relations between features and
it is easy to conduct, providing interpretable results [33], [34].
Thus, the raw features with high dimensionality is pre-
selected to a feature subset with use of HSIC. Furthermore,
kernel fisher linear discriminant analysis (KLDA) [35] is
implemented to further obtain the lower-dimension feature
vectors.

The rest of the paper is organized as follows. Section II
describes the procedure of spectrum image-oriented feature
extraction based on cross-wavelet transform (XWT) and local
optimal oriented pattern (LOOP). In Section III, a two-stage
feature selection approach via joint Hilbert-Schmidt indepen-
dence criterion (HSIC) and Kernel fisher linear discriminant
analysis (KLDA) is given. Section IV describes the theory
of Navie Bayes classifier. Section V presents the frame-
work of the proposed intelligent fault diagnosis approach.
Section VI gives the simulation results on two experimental
circuits. Finally, Section VII presents the conclusion of the
paper.
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II. IMAGE-ORIENTED FEATURE EXTRACTION
A. CROSS-WAVELET TRANSFORM (XWT)
As mentioned above, Cross-wavelet transform can be con-
sidered as an extension of wavelet-based analysis, and it can
be used to find a high common power between two time-
domain signals in time-scale plane. Via the details about
mathematical background described in the works [36], [37],
a very brief overview of cross-wavelet transform is given as
follows.

Assuming a(t) denotes reference signal and b(t) represents
fault signal. The cross-wavelet transform is described below,

XWT ab(s, τ )

=
1
pψ

∫
+∞

−∞

∫
+∞

−∞

W a(u, v)W b∗(
u
s
,
v− τ
s

)
dudv
u2

(1)

whereW a(s, τ ) andW b(s, τ ) are thewavelet transform of a(t)
and b(t) corresponding to a mother wavelet of ψ(t). s and
τ are usual ‘dilation’ and ‘translation’ parameters. pψ is a

constant and given as pψ =
∫
+∞

−∞

|ψ(ω)|2

|ω|
dω <∞

Hence, we can plot the cross-wavelet spectrum via using
the magnitude XWT ab and phase φ = tan−1 ={W

ab
}

<{W ab}
.

B. LOCAL BINARY PATTERN (LBP)
Assuming ic denotes the intensity of an picture I at pixel
(xc, yc), in(n = 0, · · · , 7) represents the picture element
intensity in the 3 × 3 neighborhood of (xc, yc) excluding the
center pixel ic.
Then, we can obtain the LBP formulation for the pixel

(xc, yc), which can be defined as below:

LBP(xc, yc) =
7∑

n=0

s(in − ic)2n (2)

where

s(x) =

{
1 if x ≥ 0
0 otherwise

(3)

However, LBP has a limitation that the sequence of bina-
rization weights is arbitrary. According to the selected start-
ing pixel of sequence of binary weights (2n, n = 0, · · · , 7),
the 8 elements of the output 3 × 3 area are determined
subsequent weightage n order. There is not explicit logic
behind the proper weight allocation. And, the obtained results
is sensitive to rotation variance. As a result, a different binary
sequence can be generated when the same mode rotated
between pictures of the same pattern or even within different
sections of the same picture.

C. LOCAL OPTIMAL ORIENTED PATTERN (LOOP)
To overcomes the limitations of LBP, LOOP is proposed to
preserve the strengths of the sequence.

The 8 Kirsch masks are oriented in the direction of these
8 neighboring pixels in (n = 1, 2, · · · , 7), thus giving a
measurement of the strength of intensity variation in those
directions, respectively.

This leads us to propose the incorporation of this informa-
tion by assigning the binarization weight to each neighboring
pixel corresponding to the strength of Kirsch output in the
direction of that pixel. The underlying rationale behind this
approach is that the Kirschmask output in particular direction
provides an indication of the probability of occurrence of an
edge in that direction. Since the LBP indicates the intensity
variation over the neighboring pixels in the same directions,
the value of the Kirsch output is employed to assign the
decimal-to-binary weightage.

As mentioned above, the 8 responses of the Kirsch masks
are mn corresponding to pixels with intensity in, n =
0, · · · , 7. Each of these pixels are assigned an exponential
wn (a digit between 0 and 7) according to the rank of the
magnitude of mn among the 8 Kirsch mask outputs.
Then the LOOP value for the pixel (xc, yc) is explained as

LOOP(xc, yc) =
7∑

n=0

s(in − ic)2wn (4)

where

s(x) =

{
1 if x ≥ 0
0 otherwise

(5)

Thus the LOOP descriptor encodes rotation invariance into
the main formulation.

III. FEATURE SELECTION
A. HILBERT SCHMIDT INDEPENDENCE CRITERION (HSIC)
To estimate the independence between two sets of random
variables, Hilbert Schmidt Independence Criterion (HSIC) is
proposed. Supposing X and Z denote the two sequences of
random variables, from which the sample datas (x, z) can be
obtained from the probability density function X and Z . Let
the function, which projects the x ∈ X into the feature space
F , beφ(x) ∈ F . Hence, the inner product between the features
can be obtained by using a kernel function k(x, x ′) =<
φ(x), φ(x ′) >, and F denotes the associated reproducing
kernel Hilbert space (RKHS). By a similar way, assuming
G stands for the RKHS on Z with kernel l(., .) and the
projection function ψ(z). Then the cross-covariance operator
Cxz : G→ F between these two projection functions can be
described as follows:

Cxz = Exz[(φ(x)− µx)⊗ (ψ(z)− µz)]

⇒ Exz[φ(x)⊗ ψ(z)]− µx ⊗ µz (6)

Here ⊗ denotes a tensor product. The HSIC is determined
as the squared Hilbert Schmidt norm of (6). In view of ker-
nel [38], the empirical estimate of the HSIC can be described
as below:

HSIC(Z ,F,G) = (m− 1)−2tr(K C L C) (7)

wherem represents the number of samples,C,K ,L ∈ <m×M ,
Kij = k(xi, xj),Lij = l(zi, zj),Cij = δij − m−1(δij = 1 if i =
j ,zero otherwise) denotes the centering matrix, and tr stands
for the trace operator. By using Eq. 7, the independence
between the two samples set in the Hilbert space can be given.
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B. KERNEL FISHER LINEAR DISCRIMINANT
ANALYSIS (KLDA)
Assuming 8 represents a nonlinear mapping to a ker-
nel space F . Let S8W and S8B be the within-class and
between-class scatter matrixes, respectively. {(x, y), x ∈ Rd ,
y is the class label} stands for a sample. ni represents the
samples number in the ith class and C denotes the number
of classes; m8i is the mean vector for the ith class and m8

represents the mean vector for all the classes in F , where 8
separates the variables in F from those in Rd . Hence, S8B and
S8W are defined as

S8B =
c∑
i=1

ni(m8i − m
8)(m8i − m

8)T (8)

S8W =
c∑
i=1

ni∑
j=1

(8(xij)− m8i )(8(xij)− m
8
i )

T (9)

Here,m8i = 1/ni
∑ni

j=18(x
i
j ). Then, in order to find the linear

discriminant in F , we maximize

J (W ) =
W T S8B W

W T S8WW
(10)

Owing to the solution w must lie in the span of all training
samples, w is defined as a linear combination of training
samples 8xi

w =
l∑
i=1

αi8(xi) = 8α (11)

According to Eq.11 into Eq. 10, the following equation can
be given

J (α) =
αT8T SαB8α
αT8T SαW8α

=
αTMα
αTNα

(12)

In order to maximize the function J (α), the eigenvector
problem ofN−1M should be addressed. The optimal function
can be explained as below

α∗ = arg max
α

αTMα
αTNα

(13)

where, α∗ is a leading eigenvector with the largest eigenvalue.
Hence, the projection of an input vector x onto w can be
calculated by the following formulation.

xp = (w ·8(x)) =
l∑
i=1

α∗i k(xi, x) (14)

where xp is the projection, k(·, ·) stands for the kernel
function.

IV. NAIVE BAYES CLASSIFIER
On the basis of Bayesian theory, each feature of a partic-
ular class is irrelevant to any other features. Thus, Naive
Bayes (NB) is proposed as a probabilistic classifier. Com-
pared with other classification modes, NB consumes much
less training time, and it can solve small samples learning
problem effectively. Supposing D represents a training sam-
ples set for n-patterns with class labels, Y stands for event
vector. The event Y , which is owned by the pattern with
highest posterior probability, can be explained as below:

P(Ci|Y ) > P(Cj|Y ) for 1 ≤ j ≤ n, j 6= i (15)

where

P(Ci|Y ) =
P(Y |Ci)P(Ci)

P(Y )
(16)

where P(Ci) stands for the class prior probability. P(Y ) is
the prior probability of Y . P(Ci|Y ) represents the posterior
probability. P(Y |Ci) denotes the posterior probability of Y
conditioned on Ci.
It should be pointed out that P(Y ) is constant for all classes,

so it is only necessary to maximize the numerator of P(Ci|Y ).
When class prior probabilities can be calculated, the P(C1) =
P(C2) = · · · = P(Cn) and P(Y |Ci) is maximized. Otherwise,
the class prior probabilities can be obtained via P(Ci) =
|Ci,D/|D|, where |Ci,D| denotes the number of a training set
of the class Ci in D.
In order to decrease the computing complexity of estimat-

ing P(Y |Ci), the events that are independent conditionally of
each other is utilized to construct classifier. Then

P(Y |Ci) =
n
5
k=1

P(yk |Ci)

= P(y1|Ci)× P(y2|Ci)× · · ·P(yn|Ci) (17)

The probabilities P(y1|Ci),P(y2|Ci), · · · ,P(yn|Ci) are cal-
culated from the training set and yk denotes the value of an
event for the data set Y .
To obtain the class label of Y ,P(Y |Ci)P(Ci) is estimated

for each class Ci. According to the condition in Eq. 18,
the class label of event Y can be considered as Ci by using
NB classifier.

P(Y |Ci)P(Ci) > P(Y |Cj)P(Cj) for 1 ≤ j ≤ n, j 6= i (18)

V. PROPOSED DIAGNOSTIC SCHEME
The implementation of the proposed diagnostic scheme is
depicted in Fig.1. The whole fault diagnosis procedure is
divided into four steps: data acquisition, feature extraction,
feature selection and fault location, which are described as
follows:

Step I: The fault signals and reference signal are sampled
from the CUTs, and the sample set is divided into two sets:
training set and testing set.

Step II: The cross-wavelet transform is employed to con-
vert the original samples set into the time-frequency repre-
sentations (TFR), then we utilized the Local Optimal oriented
Pattern (LOOP) on TFRs to generate the original features set.
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FIGURE 1. Implementation of the proposed fault diagnostic technique.

Step III: For feature selection, Hilbert Schmidt Indepen-
dence Criterion (HSIC) is utilized to determine the most
sensitive LOOP characteristics which have not high corre-
lation. Then, with the use of KLDA, the low-dimensional
representations are obtained from training and testing
sample set.

Step IV: The low dimensional training feature set is uti-
lized as the input vector of Naive Bayes classifier. Then, low-
dimensional testing feature set is applied to conduct fault
location via trained Naive Bayes classifier.

To validity the effectiveness of the proposed model, the
K-fold cross validation (K-CV)is adopted to evaluate the
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performance of presented scheme. The fundamental idea of
K-CV is to divide the data-set into K groups, K-1 groups are
the training samples and the other is the validation samples.
Here, we set K = 5.

VI. RESULTS AND ANALYSIS
A. EXPERIMENTAL CIRCUITS
In this section, two circuits under test (CUTs) including
a four opamp biquad highpass filter and a duffing chaotic
circuit, are utilized to illustrate the diagnosis procedure of
the proposed scheme. Multisim software is implemented to
simulate circuits, and the proposed algorithm is conducted
by using Matlab tool in a personal computer with a 2.5 GHz
processor and 8-GB random access memory. Each fault class
of testing circuits is conducted 60 Monte-Carlo analysis.

FIGURE 2. Opamp biquad filter circuit.

1) CUT 1:FOUR OPAMP BIQUAD HIGHPASS FILTER
The four opamp high-pass filter circuit depicted in Fig.2 is
utilized as the first experimental circuit. The nominal value
and the tolerance of each component are all labeled in the
figure. As shown in Fig.2, the test pulse signal was designed
as the excitation source. Meanwhile, the sampling time of
output signal was assumed as 1ms. Table 1 lists the whole
single- and multiple- faults cases of opamp circuit. The nor-
mal working state of CUT was named as F0, which is not
listed in Table 1. This test is labeled Case 1. Additionally,
the incipient fault means that the parameter of components
just beyond tolerance range and the performance of circuit
begins to degrade from its normal working state [39]. Com-
pared with abrupt fault (hard and soft fault), it is difficult to
conduct incipient fault diagnosis because much more over-
lapping exists [7], [40]. Therefore, incipient fault diagnosis
is also implemented in this section, and the incipient faults
are also shown in Table. 2. This case is referred to as Case 2.
Moreover, the size of raw signals is 1020. Among these
samples, 50% are used for training and the last 50% are used
for testing.

TABLE 1. Single and multiple faults of the opamp filter circuit.

TABLE 2. Incipient faults of the opamp filter circuit.

2) CUT 2:DUFFING CHAOTIC CIRCUIT
To investigate the performance of proposed method in fault
diagnosis of nonlinear circuit, a test of the duffing chaotic
circuit shown in Fig.3 is conducted in this section. In this case,
a excitation signal with the frequency of 0.155159Hz and the
amplitude of 0.7414148V is chosen. The normal tolerance
of resistor and capacitor is also assumed as 5%. We only
collected the signals at output node, and a 30% deviation of
nominal value was considered as a fault condition. The fault
modes are listed in Table 3. In this work, the test is denoted as
Case 3. After data acquisition, we obtain the original samples
set with size of 1260. The size of training samples set and
testing samples set are all equal to 630(30× 21).

5070 VOLUME 8, 2020



W. He et al.: NB-Based Fault Diagnosis Approach for Analog Circuit

FIGURE 3. Duffing chaotic circuit.

TABLE 3. Fault modes of the duffing chaotic circuit.

B. FEATURE EXTRACTION VIA XWT AND LOOP
Fig.4 depicts the XWT time-frequency spectrums of fault
class F3, F7, F11 and F16 of opamp circuit in Case 1 experi-
ment. And Fig.5 shows the TFRs of normal condition F0 and
fault class F16 for duffing chaotic circuit in Case 3 exper-
iment. As shown in Fig.4 and Fig.5, it is clear that the
phases- and energy- distribution of TFRs in different fault
cases are significant differences. Nevertheless, it also poses
a challenging task to accurately recognize massive spectrum
images of fault signals in various fault types. Hence, it is
indispensable to develop an advance feature extraction tool
to fetch sufficient information from TFRs.

With the utilization of LOOP implementation, spectrum
images of fault signals are further processed to obtain a
sequence of LOOP descriptors with size of 256. Fig.6 demon-
strates the LOOP features of fault types F1 and F16 in Case 1.
For case 2, the LOOP features of F3 and F13 are shown
in Fig.7. And, Fig.8 illustrates the LOOP characteristics of
normal condition F0 and fault class F12 in Case 3. Therefore,
the size of original training feature set for Case 1, Case 2 and
Case 3 are 510×256, 510×256 and 630×256, respectively.
If these feature sets are imported into the classifiers directly
without any further feature reduction, it will increase high
computational complexity and storage capacity. Hence, it is
necessary to develop a feature selection approach to find the
most discriminative and concise feature candidates in the next
step.

C. FEATURE SELECTION
As an novel filter method, HSIC can be used to estimate
the independence score of each feature and preselect M
high score feature to construct a candidate subset for next
dimensionality reduction. Hence, the preliminary candidate
feature set with low dimension can be drew from the original
high dimensional feature set. Due to the different scales of
each feature, which may bring out bias in fault location,
z-scores are implemented on training samples set to eliminate
the influence of bias. The Z-score mathematical formula is
described below

x∗ =
x − µ
σ

(19)

where x∗ denotes the normalized value. x is the original
feature value.µ represents themean value of feature. σ stands
for standard deviation of feature. In addition, the test samples
set is also normalized referring to the mean and standard
deviation of the train sample sets.

Fig.9 shows the scores of the 256 features for Case 1.
It implies that as many as 63 scores are larger than 0 which
indicts that these features have a great influence on clas-
sification. Fig.10 demonstrates the scores of the 256 fea-
tures for Case 2. As shown in Fig.10, we can observe that
54 feature candidates are greater than 0. Fig.11 depicts the
scores of 256 features for Case 3. It is clear to find that
47 feature scores are larger than 0. Considering that retaining
useful information as much as possible, the 63 features for
Case 1, 54 features for Case 2 and 47 features for Case 3 are
all chosen as the features reselection candidates. Then, 63,
54 and 47 greater score features for these three Cases are
separately selected to construct three preliminary feature sub-
sets. Consequently, the original 510 × 256, 510 × 256 and
630 × 256 high dimensionality can be reduced to 510 × 63,
510×54 and 630×47. However, the obtained feature subsets
cannot guarantee desirable classification performance and the
dimensions are still very high. In view of these issues, a tra-
ditional dimensionality reduction method, kernel linear dis-
criminant analysis (KLDA) is conducted on the pre-selection
feature subsets to obtain low dimensional representation.
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FIGURE 4. The XWT spectrum image of opamp circuit for Case 1. (a) F3. (b) F7. (c) F11. (d)F16.

FIGURE 5. The XWT spectrum image of duffing circuit for Case 3. (a) F0. (b) F12.

The final feature vectors of training sample set obtained
by KLDA are implemented as the input of Naive Bayes
classifier. With regard to the classification performance of
feature numbers, the simulations of total features generated
via KLDA on recognition accuracy are conducted. Addi-
tionally, serial existing feature reduction methods including
locality sensitive discriminant analysis (LSDA) [41], princi-
pal component analysis (PCA) [42] and isometric projection
(IsoP) [43] are also implemented on data-sets.

Fig.12(a) and 12(b) depict the classification rate for
Case 1 and Case 2 varying from the first two features to
all features. It can be observed that the performance of
HSIC-KLDA is superior than that of other methods for these
two cases. The classification rate of the proposed method for
Case 1 with first eight features achieves 99.80% which is the
highest. It indicates that only one sample is classified into

wrong class.Meanwhile, for Case 2, as the number of features
increasing, a higher recognition accuracy is obtained and the
highest rate of 98.8235% is achievedwhile the number of can-
didates is 16. Fig.12(c) shows the results with changing num-
bers of features when implementing diagnosis task of Case 3.
With increasing number of principal features, the classifica-
tion rate of these methodologies continue to increase, and
the proposed scheme achieves the highest classification rate
97.9365% when the number of features equals to the 16.
It demonstrates that the proposed framework based on HSIC
and KLDA outperforms the other existing methods on the
same data-set with considerably higher accuracy for Case 3.

For better visual presentation, the testing dataset 3-D distri-
bution for Case 1 in the above feature selection and reduction
scheme are plotted in Fig.13. As depicted in Fig. 13, it
illustrates that the normal and fault conditions are well
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FIGURE 6. Two sample distributions of loop features in Case 1. (a) F1. (b) F16.

FIGURE 7. Two sample distributions of loop features in Case 2. (a) F3. (b) F13.

separated and is conducive to accurately classify. However,
there also exist some weakly overlapping sections between
some fault classes. Therefore, it is obvious that the proposed
scheme can fetch the most discriminative features of the fault
signals when dealing with single- and multiple- faults in
opamp circuit.

D. CLASSIFICATION RESULTS
To investigate the advantage of Navie Bayes classifier, com-
parisons based on Navie Bayes and support vector machine
(SVM) are discussed in this section. Fig.14, Fig.15 and Fig.16
show the confusion matrix of the proposed method for the
Case 1, Case 2 and Case 3. The fact that most of diagonal

elements in different fault classes in Case 1 are close to
1 suggests that the use of proposed method can improve the
possibility of classifying the patterns into its actual class and
lower the possibility of confusing between different classes.
Moreover, the performance of SVM-based classification is
inferior to that of Navie Bayes. Because of the fact that
much more overlapping exists between different incipient
fault classes in Case 2, the classification accuracies of 97.06%
and 96.47% are achieved by using Naive Bayes and SVM
classifiers. Although the rates are lower than that of Case 1,
they are still desirable. Furthermore, when dealing with duff-
ing chaotic circuit, there also exists performance degradation.
It implies that proposed approach can not effectively fulfill
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FIGURE 8. Two sample distributions of loop features in Case 3. (a) F0. (b) F12.

FIGURE 9. HSIC scores of all features for Case 1.

FIGURE 10. HSIC scores of all features for Case 2.

the task of fault diagnosis in complex nonlinear circuit, but
still achieve satisfactory performance.

In order to compare the performance of proposed
framework with other scheme, 5 extra feature extraction
methods which have been reported in other works, are
conducted to fault diagnosis, and described as follows:

(1) XWT+uLBP+PCA: Uniform LBP is employed on
XWT spectrum to obtain features. These features are
utilized as inputs of classifier with PCA processing.
(2) XWT+B2DLDA: The B2DLDA is performed on the
resultant spectrums to generate four dimensional features
for each sample. (3) ST+LOOP+KLDA: We implement
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FIGURE 11. HSIC scores of all features for Case 3.

FIGURE 12. Classification accuracy(%)for different approaches with varying numbers of features of (a) Case 1. (b) Case 2.
(c) Case 3.

Stockwell transform (ST) on raw signal of defect circuit
to obtain TFRs, then LOOP is performed to construct
original high-dimensional feature set. Afterward, KLDA is

conducted to determine the lower-dimensional representa-
tions. (4) WT-energy features: the wavelet transform (WT)
based decomposition node energy index are designed as
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TABLE 4. Performance comparison with other fault diagnosis scheme.

TABLE 5. Diagnosis results based on different size of training samples.

FIGURE 13. Visualization of the first three components for Case 1.

feature descriptors, and we extract the energy of nodes
coefficient containing the most dominant fault information
to construct the feature vectors. (5) FFT+PCA: the Fast
Fourier Transform (FFT) is applied to extract the main
information of the fault signal, then we propose Principle
Component Analysis (PCA) to obtain a lower dimensional
feature. Subsequently, they are imported into classifiers.

The classification rate of these 5 methods for comparison
and the proposed approach are displayed in Table 4. The
influence of sample size on the performance of proposed
methods is investigated in Table 5. Besides classification
accuracy, the computation cost is another important measure
used to evaluate the proposed scheme, especially when a large
number of training samples are involved. The consuming
times of the proposed algorithm and other methods in Table 4
for each case are reported in Fig.17.

It can be summed up that
1) In Table 4, the proposed approach is effective in fault

diagnosis for these three cases. And it all achieve desir-
able performances with lower feature dimensionality.
Thus, we can consider that the proposed approach is
promising, which is not limited to linear circuit but could
be employed in fault diagnosis of nonlinear circuit.

2) In Table 5, the accuracies of proposed method main-
tain increasing and eventually settle around 99.41%
for Case 1, 97% for Case 2 and 97% for Case 3.
Hence, the proposed method can effectively avoid over-
fitting. In general, larger size of the training samples
will achieve better performance associated with testing
accuracies.

3) As shown in Fig.17, we observe that the proposed
method consumes longer calculation time than other
methods. However, the majority of consumption is
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FIGURE 14. The Confusion matrixes for Case 1 via (a) Naive Bayes. (b) SVM.

FIGURE 15. The Confusion matrixes for Case 2 via (a) Naive Bayes. (b) SVM.

FIGURE 16. The Confusion matrixes for Case 3 via (a) Naive Bayes. (b) SVM.

devoted to the feature extraction. The reason is that the
feature extraction algorithm based image requires much
more computation resources. Besides, the computation

cost is still in an acceptable range while the pro-
posed algorithm achieves the highest classification
rate.
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FIGURE 17. The consuming time of proposed algorithm for three cases.

In addition, big O notation is also adopted to analysis
the time complexity of the proposed feature extraction algo-
rithm. Naive Bayes classifier is not considered because it
only consumes much fewer time. In this algorithm, XWT
is utilized with the cost of O(n2 log(n)). Then The time
complexity to apply LOOP operation isO(n2 log(n)). Finally,
HSIC is employed to select the sensitive features with the cost
of O(n2).

VII. CONCLUSIONS
This work has proposed an effective fault diagnosis scheme
based on spectrum image processing and feature selection
to achieve the optimal classification performance. The sim-
ulation results of two cases demonstrate the superiority of
the presented methodology. The conclusions can be drawn
as below:

(1) To obtain the sufficient information of defect circuits,
we propose a time-frequency image feature extraction
framework. In view of the above, XWT is applied
on the raw fault signal to generate the TFRs, then
LOOP is utilized to pick up characteristics. As a result,
a high dimensional feature set, which contains both
representative characteristics and useless information,
is obtained for each fault signal. Therefore, it is nec-
essary to implement further process on these high
dimensional features to adaptively select the most
discriminative ones.

(2) To address the above issues, HSIC is employed to pre-
select the features with high scores. These preselected
features are utilized as candidates for further feature
process phase. In this phase, KLDA is conducted on
candidates set. By using the integration method of
HSIC and KLDA, the final feature set with lower
dimension and better, can be obtained.

(3) The simulation results of experimental opamp circuit
and duffing circuit reveal that the proposed diagno-
sis framework can effectively and accurately classify
different fault types. Comparative study demonstrate

that the presented scheme can achieve a desirable
performancewith lower feature dimension. Therefore,
it can be summed up that this methodology would
be suitable and efficient for fault diagnosis of analog
circuit.

However, the utilization of the proposed approach still has
two fundamental limitations. First, the algorithm by using
image-oriented feature extraction is time-consuming, that
presents exceptional challenge to the real-time application
of the proposed method. The second drawback is that the
proposed method is unable to extract the most discriminative
features from nonlinear circuit. In view of this, We should
focus on these issues in the future work.
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