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ABSTRACT In the distributed integrated modular avionics (DIMA), it is desirable to assign the DIMA
devices to the installation locations of the aircraft for obtaining the optimal quality and cost, subject to
the resource and safety constraints. Currently, the routine device assignments in DIMA are conducted
manually or by experience, which becomes more and more difficult with the increasing number of devices.
Especially, in the face of large-scale device assignment problems (DAPs), the manual allocation will become
an almost impossible task. In this paper, a bi-objective safety-constraint device assignment model in DIMA
is formulated with the integer encoding for better scalability. A two-phase multiobjective local search
(2PMOLS) is proposed for addressing it. In the first phase of 2PMOLS, the fast convergence of the population
toward the Pareto front (PF) is achieved by the weighted sum approach. In the second phase, Pareto local
search is conducted on the solutions delivered in the first phase for the extension of the PF approximation.
2PMOLS is compared with three decomposition-based approaches and one domination-based approach on
DAPs of different sizes in the experimental studies. The experimental results show that 2PMOLS outperforms
all the compared algorithms, in terms of both the convergence and diversity. It has also been demonstrated that
the solution obtained by 2PMOLS is better in terms of both objectives (mass and ship set costs), compared
with the solution designed by the domain expert. The experimental results show that 2PMOLS performs
increasingly better with the increase of the problem size, compared with other algorithms, which indicates
it has better scalability.

INDEX TERMS Distributed integrated modular avionics, device assignment, Pareto local search,
multiobjective optimization.

I. INTRODUCTION
Integrated modular avionics (IMA) is the product of the
standardization of avionic software and hardware. IMA is a
computing platform made up of general integrated modules,
on which multiple aircraft tasks (atomic concepts separated
by aircraft system functions) can reside. The key concept is
to share resources provided by standardized hardware with
the standardized software interfaces allowing the parallel
integration of aircraft systems on fewer devices than before.

The associate editor coordinating the review of this manuscript and
approving it for publication was Genny Tortora.

As the concept of IMA can greatly reduce the weight of the
avionic system, it becomes the mainstream direction for the
development of the avionic system. However, IMA requires
very precise design of the system as a whole (e.g, the device
configuration in the physical space), which is more prominent
in the distributed architecture-based IMA (DIMA). In DIMA,
the standardized equipments can be distributed in multiple
locations of the aircraft, thus such an architecture can further
reduce the cable length and the task response time relative to
IMA. Nevertheless, how to design the overall architecture of
the DIMA is a very difficult task with the following factors
taken into consideration:
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1) the device used by DIMA,
2) the topological structure consisting of devices,
3) resources provided by device for aircraft tasks,
4) aircraft hardware installation position,
5) aircraft avionic integrated design process in the sys-

tem resources, security, reliability and other constraints
based on some metric (e.g., the total weight and cost of
avionics systems).

The current avionic system mainly relies on the designing
experience of the domain experts. With the rapid growth
of the aircraft functions and modules, system resource
requirements, as well as the requirements on the sys-
tem reliability, safety and other aspects continue to grow.
Under this circumstance, the manual design and verifica-
tion become both inaccurate and difficult, modeling, valida-
tion and the optimal design of DIMA become an inevitable
trend.

As the avionic system contributes significantly to the ship
set cost, and mass of an aircraft, the optimal design of the
DIMA architecture gradually becomes an active research
field. For example, the mathematical models have been estab-
lished for promoting and improving the design through the
validation and evaluation of the model-based avionic archi-
tecture in [1]. The feasibility of the optimal design of hard-
ware mapping has been demonstrated in [2]. Compared to the
manual design, significant improvements of the model-based
design has been presented in [2].

Sagaspe et al. proposed an allocation approach of avion-
ics shared resources in [3] to analyze the safety of the
avionic systems with the considerations of the computational
and communication resources. They further proposed an
constraint-based shared resource allocation approach in [4]
to help decide whether a set of systems can be implemented
on an IMA architecture while enforcing safety require-
ments. However, their approach can neither be applied to the
multi-objective avionic model, nor suitable for large-scale
problems.

Lohse et al. used heuristic methods to optimize the
IMA distribution [5]. As a result, the weight of the small
avionic systems can be significantly reduced. However, their
approach did not consider the safety and reliability con-
straints for designing the avionic system.

Annighofer and Thielecke [2] models the DIMA by map-
ping the devices to the installation locations in an air-
craft. The binary programming is employed to optimize
the total weight on the model. Later, they have extended
their work to multiobjective modeling and optimization
in [6].

Zhang and Xiao [7] modeled the DIMA system as a cyber-
physical system (CPS) containing a physical layer and a
function layer. The improvement of the system is conducted
through the conventional lexicographic optimization with the
binary encoding.

While the optimal design of the model-based IMA/DIMA
architecture becomes a promising research field, neverthe-
less, the following issues have not been well-addressed. First

of all, the avionic system has high requirements for the
reliability and safety. Most of the aforementioned works do
not consider these features in the design. Second, the scala-
bility of the existing IMA/DIMA models is poor due to the
use of the binary encoding. This leads to the fact that the
existing work of model-based IMA/DIMA design is limited
to small subsystems. Third, the model-based IMA/DIMA
architecture design faces the complex constraints, large-
scale of systems and multiple objectives (e.g., total weight
and cost of the avionics system) to be optimized, how to
design an effective algorithm to adapt to its needs is of great
importance.

In this paper, the device assignment problem in DIMA is
modeled with the safety constraints using the integer encod-
ing for better scalability. A two-phase multiobjective local
search (2PMOLS) is further proposed for addressing it. The
rest of this paper is organized as follows. In Section II,
the background with regard to multiobjective optimization
and decomposition methods are introduced. The local search
and Pareto local search for combinatorial multiobjective
optimization problems (CMOPs) are also presented in this
section. Section III elaborates the mathematical model of
the device assignment problem. Section IV presents the
proposed algorithm for addressing DAP. The experimental
setups are presented in Section V. The systematic exper-
iments are conducted to verify the effectiveness of pro-
posed algorithm in Section VI. The DIMA architecture
obtained is also analyzed in this Section. Finally, a summary
alongside with the future research direction are provided
in Section VII.

II. BACKGROUND
A. MULTIOBJECTIVE OPTIMIZATION
In DIMA architecture design, the device assignment problem
has multiple possibly conflicting objectives (e.g., mass and
costs) to be optimized. Such a problem is called a multiob-
jective optimization problem (MOP), which can be stated as
follows:

minimize F(x) = (f1(x), . . . , fm(x))

subject to x ∈ �

where � is the decision space, F : � → Rm consists of m
real-valued objective functions. The attainable objective set
is {F(x)|x ∈ �}. In the case when� is a finite set, (1) is called
a combinatorial MOP (CMOP).

Let u, v ∈ Rm, u is said to dominate v, denoted by u ≺ v,
if and only if ui ≤ vi for every i ∈ {1, . . . ,m} and uj < vj
for at least one index j ∈ {1, . . . ,m}.1 A solution x∗ ∈ �
is Pareto-optimal to (1) if there exists no solution x ∈ �

such thatF(x) dominatesF(x∗).F(x∗) is then called aPareto-
optimal (objective) vector. In other words, any improvement
in one objective of a Pareto optimal solution is bound to
deteriorate at least another objective. The set of all the
Pareto-optimal solutions is called the Pareto set (PS) and the

1In the case of maximization, the inequality signs should be reversed.
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image of (PS) on the objective vector space is called Pareto
front (PF) [8].

B. DECOMPOSITION METHODS
Over the past decades, multiobjective evolutionary algo-
rithms (MOEAs) [9]–[12] have been recognized as a
major methodology for approximating the PFs in the
MOPs [13], [14]. Based on their selection mechanism, they
can be further divided into the domination-based (e.g., [11],
[15]–[20]), indicator-based (e.g., [21]–[25]) and decomposi-
tion approaches (e.g., [12], [26]–[33]). In the decomposition-
based approaches, an MOP is usually decomposed into a
number of single objective subproblems and solve them in
a collaborative manner. A representative of such approaches
is multiobjective evolutionary algorithm based on decom-
position (MOEA/D) [12]. The commonly used decomposi-
tion methods [8] include Weighted Sum, Tchebycheff and
Penalty-based Boundary Intersection, which can be defined
as follows.

Let λi = (λ1, . . . , λm)T be a direction vector for i-th
subproblem, where λj ≥ 0, j ∈ 1, . . . ,m and

∑m
j=1 λj = 1.

1) Weighted Sum (WS) Approach: The i-th subproblem
is defined as

minimize gws(x|λi) =
m∑
j=1

λijfj(x),

subject to x ∈ �. (1)

Its search direction vector is defined as λi.
2) Tchebycheff (TCH) Approach: The i-th subproblem

is defined as

minimize gtch(x|λi, z∗) = max
1≤j≤m

{|fj(x)− z∗j |/λ
i
j},

subject to x ∈ �. (2)

where � is the feasible region, but λj = 0 is replaced
by λj = 10−6 because λj = 0 is not allowed as
a denominator in (2). Its search direction vector is
defined as λi.

3) Penalty-based Boundary Intersection (PBI)
Approach: This approach is a variant of Normal-
Boundary Intersection approach [34]. The i-th subprob-
lem is defined as

minimize gpbi(x|λi, z∗) = d i1 + βd
i
2,

d i1 = (F(x)− z∗)Tλi/||λi||,

d i2 = ||F(x)− z
∗
− (d i1/||λ

i
||)λi||,

subject to x ∈ �. (3)

where ||.|| denotes L2-norm and β is the penalty
parameter. Its search direction vector is defined
as λi.

C. LOCAL SEARCH AND PARETO LOCAL SEARCH
By using decomposition-based approaches, such asMOEA/D,
a single-objective local search heuristic can be easily

applied to a CMOP. Thus the local search heuristics and/or
meta-heuristics (e.g. iterative local search [35], guided
local search [36], tabu search [37], variable neighborhood
search [38], ant colony optimization [39] and simulated
annealing [40]) have been widely adopted to approximate the
PFs of CMOPs.

Pareto local search (PLS) can be considered as an
extension of the single objective local search [41]–[43].
It explores the neighborhood of a set of nondominated
solutions for approximating PF [44], [45], which can be
used as either stand-alone algorithms [46], [47] or even as
components of the hybrid algorithms [42], [48]. Usually,
a classical PLS can be divided into the following three
components [49].

1) Selection step determines how to select the start-
ing solutions for neighborhood exploration. In the
PLS [41], these solutions are selected uniformly at
random among the unexplored ones.

2) Acceptance criterion determines which solutions can
be stored into the external archive. In the PLS, all the
nondominated solutions identified in the neighborhood
exploration are accepted.

3) Neighborhood exploration is conducted on the start-
ing solutions. In particular, it defines the neighborhood
of a solution, which is to be explored before switching
to a different solution. The PLS always explores the
entire neighborhood of a solution.

III. MATHEMATICAL MODEL OF DEVICE ASSIGNMENT
PROBLEM
In the distributed integrated modular avionics (DIMA), it is
desirable to assign the DIMA devices to the installation loca-
tions of the aircraft for obtaining the optimal quality and
cost, subject to the resource and safety constraints. This is
called device assignment problem (DAP) in this paper. The
inputs of DAP are the device types, the number of devices,
the resources required for the device and the installation
locations [6].

For DAP, a solution can be encoded as follows.

xD = {xD1 , xD2 , . . . , xDi , . . . , xDt }, xDi ∈ [1, n]. (4)

In this vector, Di stands for the i-th device; and t is
the number of the devices in DIMA architecture. n is the
number of the installation locations. Each entry in the solu-
tion vector consists of the variable from 1 to n represents
a possible assignment. The value of the variable xDi indi-
cates that the device i is assigned to a installation location,
e.g. xDi = z means that the i-th device is assigned to
z-th installation location. The DIMA device types include
the core processing module (CPM) and the remote data
concentrator(RDC). When these devices are installed, they
require the installation locations to provide the resources,
such as slots, peripherals, cooling facilities, and power
supply.
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In the model, we use a resource vector

Rj = {Rj1,R
j
2, . . . ,R

j
s, . . . ,R

j
S}. (5)

to describe the type of resources and the amount of resources
available to the installation location j. Correspondingly,
we use another resource vector

r i = {r i1, r
i
2, . . . , r

i
s, . . . r

i
S}. (6)

to represent the type of installation resource and the quantity
necessary for device i to run.

For each valid device assignment, the amount of resources
for each resource type consumed by all devices at each
installation location does not exceed the total number of
resources of that type at that installation location. This is
illustrated by aResource Constraints expression, for a given
location j, ∑

xDi=j

r is ≤ R
j
s, s = 1, . . . , S. (7)

which means that all types of resources consumed by the
devices on the installation location j do not exceed the
limit.

In the DIMA architecture, the safety of the avionic sys-
tems must be taken into account. Thus, in the model, each
system has a redundant backup. But the mutual redundancy
between the system devices cannot be placed in the same
installation location, must be isolated. Such that Segregation
Constraints is expressed as follows:

xDi 6= xDj , i 6= j. (8)

It is revealed that the device i and the device j that
are redundant with each other cannot exist at any
same position. The expression can also represent other
devices that need to be isolated in addition to redundant
devices.

The following two objectives are considered for optimiza-
tion in DAP.

Mass is one of the most important objectives for evaluating
the entire aircraft. Since Mass has a significant impact on
the fuel consumption of the aircraft, which further affects the
efficiency of the aircraft. The Mass of the avionics system
is mainly composed of hardware modules, cables and instal-
lation facilities. In the device assignment problem, the Mass
is mainly composed of the weight of the cables. The cable
mass is the weight of the connecting cable between the task
hosted on the device and the desired peripheral. In the objec-
tive function fMass, it calculates all the cables Mass Mi,xDi
produced by each assignment possible xDi . If the cable is not
required, the cable Mass is 0. Finally all the cables mass is
accumulated. Such that,

fMass =
t∑
i=1

Mi,xDi
. (9)

Ship set costs (SSC) is another important object con-
sidered in DIMA field. In the avionics system, SSC is a

recurrent expense in the production process of each aircraft.
In device assignment problem, SSC is total cost of peripheral
used in each assignment. which means the SSC objective
is

fSSC =
t∑
i=1

Ci,xDi . (10)

where Ci,xDi is produced by each possible assignment xDi .

IV. A TWO-PHASE MULTIOBJECTIVE LOCAL SEARCH
ALGORITHM
To solve DIMA device assignment problem, a two-phase
multiobjective local search (2PMOLS) is proposed. In the
first phase, the weighted-sum approach is adopted for the fast
convergence of the population towards PFs. In the second
phase, PLS is conducted on the obtained solutions in the first
phase for the extension of PFs.

Algorithm 1 shows the workflow of 2PMOLS for DAPs.
2PMOLS maintains:

• the starting population SP, which consists of the starting
solutions for LS;

• the external population EP, in which all the obtained
nondominated solutions are stored;

• a uniformly generated set of weight vectors W =

{λ1, . . . , λN }.

The symbol ↓ represents the input while ↑ represents
the output, l represents both the input and output of a
algorithm.

Algorithm 1 2PMOLS
Input: a stopping criterion;
Output: EP.

1 Initialization(EP l,W ↓);
/* first phase */

2 Phase_1(SP ↓,EP l,W ↓);
/* second phase */

3 Phase_2(SP ↓,EP l);
4 If the stopping criteria is satisfied, stop and output the
EP. Otherwise go to Step3.

Algorithm 2 Initialization

Input: EP = {x1, . . . , xN }
Output: EP, W

1 Decompose a DAP into N subproblems by the weight
vectors W = {λ1, . . . , λN }. For each i = 1, . . . ,N ,
solution x i is generated randomly or by a heuristic and
associated with i-th subproblem.

2 Compute the Euclidean distance between any two
weight vectors and obtain T closest weight vectors to
each weight vector. For each i = 1, . . . ,N , set
B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest
weight vectors to λi.
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A. INITIALIZATION
The initialization procedure is presented in Algorithm 2.
First, a DAP is decomposed into N subproblems by the
uniformly generated weight vectors W . EP is initialized ran-
domly or by a heuristic. For each i ∈ {1, . . . ,N }, a solu-
tion x i is associated with the i-th subproblem. After that,
the Euclidean distance between any two weight vectors is
calculated. For each weight vector, its T closest vectors are
chosen as the neighborhood.

B. PHASE ONE
The Algorithm 3 seeks the fast convergence of the population
for obtaining a good PF approximation. For each solution
x ∈ SP, the local search (LS) is conducted by generating
its neighboring solutions N (x). After that, each solution y ∈
N (x) is used to update the neighborhood of x by the weighted-
sum approach based on Eq. (1).

Algorithm 3 Phase_1

Input : SP = {x1, . . . , xN }, EP, W
Output: EP.

1 Set TP = EP, SP = EP.
2 while SP is not empty do
3 foreach x i ∈ SP do

/* N (x) is the neighborhood of x
*/

4 foreach y ∈ N (x i) do
5 if j ∈ B(i)&&gws(y

∣∣λj) ≤ gws(x j∣∣λj) then
6 set x j = y;
7 end
8 end
9 end
10 SP = EP\TP.
11 end

C. PHASE TWO
In Algorithm 4, Pareto local search(PLS) is conducted on
each solution x ∈ SP by generating its neighborsN (x), which
is then used to update EP as follows. For each y ∈ N (x),
if there is no solution in EP which can dominate it, then y
will be added into EP and all the solutions in EP that are
dominated by y will be removed. All the new generated non-
dominated solutions that successfully update EP are stored
in SP as the starting solutions for the next round of the local
search.

V. EXPERIMENTAL SETUPS
A. CASE STUDY
A320-like aircraft is used for our empirical study. In the
A320 aircraft, it has seven installation locations, namely
AVIONICS-BAY, NOSE-LEFT, NOSE-RIGHT, MID-LEFT,
MID-RIGHT, TAIL-LEFT and TAIL-RIGHT. Different
installation locations have different access time, and differ-
ent types or numbers of the resources, which will lead to

Algorithm 4 Phase_2
Input : SP,EP
Output: EP.

1 Set TP = EP, SP = EP.
2 while SP is not empty do
3 foreach x ∈ SP do

/* N (x) is the neighborhood of x
*/

4 foreach y ∈ N (x) do
5 add y to EP, if there is no solution in EP

which can dominate y, remove all the
solutions in EP that are dominated by y.

6 end
7 end
8 SP = EP\TP.
9 end

differences in constraints and objectives. The mass and cost
of cable routes will result in the differences in the Mass
and SSC objective. The goal is to assign the devices to
these seven installation locations so that the two objectives
(Mass and SSC) are optimized. An instance named 14-7 indi-
cates that 14 devices are to be installed into 7 locations.
In this paper, seven instances of different scales are selected,
i.e., 14-7, 28-7, 40-7, 50-7, 60-7, 100-7, 140-7.

B. PARAMETERS SETTINGS
• 2PMOLS: In phase 1, the weighted sum method is
adopted to decompose the multiobjective problem into
a number of single objective optimization subproblems.
The number of subproblems is set to 60 and the size
of the neighborhood of each subproblem is set to 20.
In phase 2, PLS is adopted for obtaining more approxi-
mated Pareto optimal solutions.

• MOEA/D-LS: MOEA/D [12] based on three decom-
position methods, weighted sum (WS), Tcheby-
cheff (TCH) and penalty boundary intersection
(PBI) is adopted. For a fair comparison, MOEA/D
(WS, TCH, PBI) is combined with local search heuristic
(MOEA/D-LS). The number of subproblems for these
algorithms are set to 60 for all instances and the size of
the neighborhood of each subproblem is set to 20. For
PBI, the penalty parameter θ is set to 5.

• NSGA-II-LS: NSGA-II [11] is a classical Pareto-
dominance based algorithm and NSGA-II-LS is the
combination of NSGA-II and local search heuristic. The
population size in NSGA-II-LS is set to 60.

The neighborhood N (x) of a solution x is generated as
follows: Randomly remove 2 devices from x and then add the
devices one by one to the locations considering the resource
at each location and segregation constraints between devices.
Repeat the process until all the possible assignments are taken
into account.
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TABLE 1. The c-metric (%) values between 2PMOLS and MOEA/D-LS (WS, TCH and PBI), NSGA-II-LS on seven DAP instances of different scales.

TABLE 2. The performance of 2PMOLS, MOEA/D-LS (WS, TCH, PBI) and NSGA-II-LS in terms of average IH values on seven DAP instances of different
scales.

Stopping criterion: Each of the compared algorithms is
terminated when there is no newly added solutions for local
search.

For a fair comparison, all the compared algorithms are
run independently for 20 times on each test instance. All
the compared algorithms use the same method to initialize
populations and use the same parameter settings as in the
original paper. All the compared algorithms are coded in Java
and the experiments are conducted on a PC equipped with
Intel 3.4 GHz CPU and 16G RAM.

C. PERFORMANCE METRICS
Two performance metrics are used to measure the perfor-
mance of the comparedmultiobjective algorithms, as follows.

1) Hypervolume indicator(IH ) [50]: Let z∗ = (f ∗1 , . . . , f
∗
m )

be a reference point in the objective space which is
dominated by all Pareto optimal objective vectors. Cal-
culating the area from z∗ to Pareto front of the objective
space to obtain the IH . The higher the IH , the better the
approximation. It can be defined as

IH (P) = volume(
⋃
f ∈P

[f1, zr1]× . . . [fm, z
r
m]). (11)

In our experiments, the reference points are set
as 1.1 times of the largest objective values of the
nondominated solutions obtained by all the compared
algorithms.

2) Set coverage (c-metric) [50]: Let A and B be two
approximations to the PF of anMOP.C(A,B) is defined
as the percentage of the solutions in B dominated by at
least one solution in A:

C(A,B) =
|u ∈ B|∃v ∈ A : v dominates u|

|B|
× 100%

(12)

C(B,A) is not necessarily equal to 1 − C(A,B).
C(A,B) = 1 indicates that all solutions in B are
dominated by solutions in A while C(A,B) = 0 means
that no solution in B is dominated by a solution in A.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. COMPARISONS WITH MOEA/D-LS (WS, TCH AND PBI)
AND NSGA-II-LS
In this section, 2PMOLS is compared with MOEA/D-LS
(WS, TCH, PBI) and NSGA-II-LS on DAP instances. We can
observe from Table 1 that 2PMOLS has the best performance
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FIGURE 1. The nondominated solutions obtained by 2PMOLS, MOEA/D-LS (WS, TCH and PBI) and NSGA-II-LS on different DAP instances.

FIGURE 2. Device assignment designed by a domain expert.

except for 28-7 in terms of c-metric. This indicates that
2PMOLS has the best overall convergence. It is interest-
ing to see that 2PMOLS performs increasingly better with

the increasing scale of DAP instance compared with other
algorithms, which indicates that 2PMOLS has much better
scalability.
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FIGURE 3. A solution of the device assignment obtained by 2PMOLS.

TABLE 3. The CPU time (s) spent by 2PMOLS, MOEA/D-LS (WS, TCH and
PBI) and NSGA-II-LS on seven DAP instances of different scales.

To further validate the performance of 2PMOLS,
the hypervolume values obtained by all five compared algo-
rithms are presented in Table 2. It can be observed clearly
that 2PMOLS performs significantly better than all the other
compared algorithms, which indicates that 2PMOLS has
the best overall performance in terms of both convergence
and diversity. For 28-7 instance, although the convergence
performance of 2PMOLS in terms of c-metric is worse than
that of other compared algorithms, its over performance in
terms of hypervolume is significantly better than that of all
the other compared algorithms. This indicates 2PMOLS has
the superior performance in terms of diversity.

To better visualize the performance of all the compared
algorithms, the nondominated sets delivered by five com-
pared algorithms in the run with the median hypervolume
value on seven DAP instances with different scales are given
in Fig. 1. It can be observed that 2PMOLS has the best
performance on all the instances.

In addition, the final CPU time in seconds for all the five
compared algorithms are given in Table 3. It can be observed
that MOEA/D-LS (WS) has the fastest convergence speed,
followed by MOEA/D-LS (TCH). The convergence speed
of 2PMOLS is very close to that of MOEA/D-LS (PBI)
on 14-7, 28-7, 40-7, 50-7 and 60-7 instances. However, in the
two large-scale problems (100-7 and 140-7), the computa-
tional time of 2PMOLS is more than other compared algo-
rithms due to the use of PLS.

In 14-7 instance, a manually designed DIMA device archi-
tecture by a human expert is given in Figure 2. For com-
parison, a solution obtained by 2PMOLS and selected by a
human expert is decoded and presented in Figure 3. This
solution is (2, 2, 2, 2, 3, 4, 3, 4, 2, 6, 6, 2, 5, 2). It can be
observed that all the computing devices (CPM) are assigned
to AVIONICS-BAY, since that the cooling resources needed
by the computing device are only available in the AVIONICS-
BAY. In addition, the mass of the manual assignment is
7.69 kg (its SSC is 715), whereas the optimal mass of the
device assignment obtained by 2PMOLS is 7.07 kg (its SSC
is 678). The results show that the model-based optimal design
by 2PMOLS makes a significant improvement over manual
design by a human expert on both objectives.

B. COMPUTATIONAL COMPLEXITY OF 2PMOLS
Let us assume the number of subproblems isN ; the neighbor-
hood size for each subproblem is T ; the size of the external
population is M and on average each initial solution will
generate Y solutions by local search. In the idealization pro-
cess (Algorithm 2), computing T closest neighboring weight
vector requires O(NlogN ), where sorting N weight vectors
requires O(NlogN ) and finding T closest neighboring weight
vectors requires O(TN ). In phase 1 (Algorithm 3), the local
search for each solutions requires O(Y ) computations; thus
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updating T neighboring subproblems for N subproblems
requires O(TNY ) computations. In phase 2 (Algorithm 4),
the local search for the external population requires O(MY )
computations and updating the external population requires
O(M2Y ) computations. Therefore, the total computational
complexity of 2PMOLS is O(M2Y ).

VII. CONCLUSION
In this paper, the device assignment problem in DIMA
is modeled with the safety constraints using the integer
encoding for better scalability. A two-phase multiobjective
local search (2PMOLS) is further proposed for addressing
it. 2PMOLS is compared with three decomposition-based
approaches and one domination-based approach on DAPs of
different sizes in the experimental studies. The experimental
results show that 2PMOLS outperforms all the compared
algorithms, in terms of both the convergence and diversity.
It has also been demonstrated that the solution obtained by
2PMOLS is better in terms of both objectives (mass and ship
set costs), comparedwith the solution designed by the domain
expert.
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