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ABSTRACT This paper settles the nonlinear merging consensus for multi-agent systems on a directed and
weighted signed network. A novel nonlinear merging control protocol is proposed to drive the states of all
agents to arrive at the same state. To be consistent with the reality, the interactions among agents can be either
cooperative or competitive and the information flow is considered to be directed. Particularly, the protocol
can still ensure the states of all agents to reach an agreement, even though the corresponding directed network
is not strongly connected. Besides, to guarantee the efficiency of multi-agent systems, the convergence rate
of agents can be sped up by adjusting the parameter of the protocol. Finally, the theoretical analysis and
simulation results are provided to verify the effectiveness of this protocol. The current results are instructive
for us to comprehend and design an efficient consensus protocol within multi-agent systems.

INDEX TERMS Nonlinear merging consensus, multi-agent systems, signed graph, weighted and directed
network.

I. INTRODUCTION
Recently, more and more attention has been drawn to com-
plex networks [1], [2]. It has attracted a great deal of con-
cern for multi-agent systems as a kind of typical complex
systems. All kinds of animal communities such as ant
swarming [3]–[10], fish school [11]–[17], etc, which exist
commonly in nature, can reach agreement on velocity and
distance without any external force. Inspired by phenomena
mentioned above, cooperative control for multi-agent sys-
tems, which manipulates multiple dynamic entities to share
tasks to arrive at a common state, is discussed by experts from
various fields such as sensor networks [18]–[24], vehicle
formation [25]–[27] and unmanned aerial vehicles [28]–[32].

As a hot topic of cooperative control, the consensus issue
which aims to make the states of all agents reach agreement
has received growing attention certainly [33]–[36]. In 1987,
Reynolds presented Boid model that met the requirements of
three laws: separation, aggregation and velocity match [37].
Then, Vicsek et al. researched the Vicsek particle swarm
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model which updated the direction of motion of each particle
based on the nearest neighbor in [38]. In 2004, Olfati-Saber
andMurray investigated the continuous-time consensus prob-
lems of first-order multi-agent systems, the undirected graph
was used to symbolize the communication among agents, and
the second smallest eigenvalue of Laplace matrix of graph
was considered as an important performance index of the
convergence rate of a system [39]. After that, Ren et al.
further extended the continuous-time consensus on the basis
of algebraic graph theory, and proved the necessary and suffi-
cient conditions, in which the system can reach an agreement
in [40].

Over the past few years, consensus problemswere explored
in a growing amount of complex dynamic systems. The
distributed consensus of second-order multi-agent systems
was also discussed in [41], [42], and higher order consen-
sus protocol for multi-agent systems was further considered
in [43]. In addition, the switching communication topologies
were taken into account to discuss the consensus problems of
multi-agent systems [44], [45].

However, most of existing works of multi-agent systems
are based on a common sense that interactions among agents
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are cooperative, which result in the nonnegative weight of
the communication topology. In fact, competitive or oppo-
site relationship are widely spread among complex net-
work in reality. For example, there are trust or distrust
relationship among users in social networks, activation or
inhibition relationship between neurons in neural networks,
cooperative or competitive relationship among agents in
multi-agent systems. Inspired by this nature, it is essential
for multi-agent systems to consider the weighted and signed
network, in which a positive weight indicates the cooperative
relationship between agents while a negative weight repre-
sents the competitive relationship between agents. Although
Feng et al. considered communication topology whose
weights were either positive or negative, there was still a weak
point that the direction of weighted links was not discussed
in [46]. To this end, the directed and weighted signed network
is considered in this paper.

Recently, many researches on consensus problems were
based on the assumption that the communication topology
was connected or strongly connected. As an example, the dis-
tributed quantized consensus problem on connected networks
was studied in [47], a consensus protocol was proposed to
coordinate the states of all agents to arrive at the same state
under a strongly connected network in [48]. While under
some realistic scenarios, it is less likely to meet such strong
requirements. Accordingly, it is challenging and innovative to
present the merging consensus protocol to guarantee all the
agents to reach agreement even though the directed commu-
nication topology is not strongly connected and there exists
the competition between interactions among agents.

The contributions of this paper are summarized in the
following three aspects,

1) The interactions among agents exhibit the coopera-
tion or competition relationship; Besides, the informa-
tion flow of communication topology is directed, which
are in line with the reality.

2) Convergence rate which is considered to be a signifi-
cant index can be greatly sped up as long as one adjusts
the parameter of the protocol.

3) Comparedwith other protocolsmentioned in Section IV,
the key features of our protocol can be summarized
as follows: a) if the directed communication topology
whose weights are all positive is strongly connected,
then this protocol is capable of making the states of all
agents reach agreement more quickly than other proto-
cols; b) if the directed communication topology whose
weights are either positive or negative is not strongly
connected, then our protocol can still guarantee the
states of all agents to converge to the same state, while
most of the existing protocols can not complete this
goal.

The rest of the paper is structured as follows. The problem
description including some necessary notations and lemmas
is presented in Section II. A nonlinear merging control proto-
col and its corresponding proof are discussed in Section III.

In Section IV, we carry out the numerical simulations to ver-
ify the validity of the theoretical analysis and the effectiveness
of protocol. Finally, the concluding remarks are summed up
in Section V.

II. PROBLEM DESCRIPTIONS
A. NOTATIONS
Firstly, there are four notations should be introduced.
In = {1, 2, . . . , n} is on behalf of the set of n agents from 1
to n. x is a vector which equals to (x1, x2, . . . , xn)T . λ denotes
the real part of the eigenvalue. sign(x) is indicated by the
following piecewise function of any x ∈ R

sign(x) =


1, x > 0
0, x = 0
−1, x < 0

(1)

B. THE DIRECTED SIGNED GRAPH
A directed signed graph G = (V , ε,A) includes a set
of vertex of V = {v1, v2, . . . , vn}, a set of edge ε ⊇{(
vj, vi

)
: vi, vj ∈ V

}
, and a weighted adjacency matrix A =[

wij
]
∈ Rn×n. Here,wij can be either positive or negative, and

wij 6= 0 ⇔
(
vj, vi

)
∈ ε <

(
vi, vj

)
∈ ε. There is no self-loop

allowed, i.e., wii = 0, i = 1, 2, . . . , n. Ni =
{
vj :

(
vj, vi

)
∈ ε

}
represents the neighbors set of vertex vi. Let A1 =

[
wij1

]
∈

Rn×n, A2 =
[
wij2

]
∈ Rn×n, where

wij1 =

{
wij, wij > 0
0, wij ≤ 0

and

wij2 =

{
0, wij ≥ 0
wij, wij < 0

Ni1 =
{
vj :

(
vj, vi

)
∈ ε,wij > 0

}
, symbols the cooperative

neighbors set of vertex vi. And the competitive neighbors set
of vi is denoted byNi2 =

{
vj :

(
vj, vi

)
∈ ε,wij < 0

}
. And then

Ni = Ni1 ∪ Ni2 .
Definition 1: If there exists a directed path between any

pair of vertices vi and vj in G, then the network G is strong
connected.
Definition 2:The Laplacianmatrix L =

(
lij
)
n×n of a signed

graph G is defined as follows:

lij =


∑
k∈Ni

|wik |, j = i

−wij, j 6= i
(2)

C. LEMMAS
The lemmas introduced in this section will be used in the
proof of the protocol.
Lemma 1 [49]: Square matrix A =

(
wij
)
∈ Cn×n,

then its eigenvalues labeled λ1, λ2, . . . , λn, drop into a com-
plex plane ∪Gi(A) = ∪ {z |z− wii| ≤ Pi}, i = 1, 2, . . . , n,

Pi =
n∑

j=1,j 6=i
|wij|.
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Lemma 2 [50] : If there exists a function f (x) meets F(x) ≤
f (x) ≤ G(x) under the assumption that F(x) and G(x) are
continuous at x0, and lim

x→x0
F(x) = lim

x→x0
G(x) = a, then

lim
x→x0

f (x) = a.

III. NONLINEAR MERGING CONSENSUS
In this paper, nonlinear merging consensus problem on
directed and weighted signed networks is presented. The
dynamics of agent i are described as:

ẋi = ui i ∈ In (3)

The distributed protocol is investigated:

ui =
∑
j∈Ni

wijsign(xj − rsign(wij)xi)|xj − rsign(wij)xi|
m
n (4)

where 0 < m < n < 1. m, n ∈ Z which are relatively prime.
r > 1.
The protocol (4) can guarantee the states of all agents to

reach a common value zero, although the interactions among
agents exist competition and the communication topology is
not strong connected. i.e., xi(t) satisfies:

lim
t→∞

xi(t) = 0 i ∈ In (5)

on the basis of the following Assumption 1.
Assumption 1: A directed graph used to symbol the com-

munication topology, which is not strong connected but can
be divided into several strong connected subgraphs with more
than one vertex.
Theorem 1: Based onAssumption 1, the states of agents of

system (3) can converge to the same state zero, when m and
n are odd numbers.

Proof: Depending on the sign of wij, system (3) can be
converted into:

ẋi =
∑
j∈Ni1

wij1sign(xj − rxi)|xj − rxi|
m
n

+

∑
j∈Ni2

wij2sign(xj + rxi)|xj + rxi|
m
n

= ẋi1 + ẋi2 (6)

where

ẋi1 =
∑
j∈Ni1

wij1sign(xj − rxi)|xj − rxi|
m
n

ẋi2 =
∑
j∈Ni2

wij2sign(xj + rxi)|xj + rxi|
m
n

ẋi1 =
∑
j∈Ni1

xj11
−rxi11≤−1

wij1 (xj11 − rxi11 )
m
n

+

∑
j∈Ni1

−1<xj12
−rxi12≤0

wij1 (xj12 − rxi12 )
m
n

+

∑
j∈Ni1

0<xj13
−rxi13≤1

wij1 (xj13 − rxi13 )
m
n

+

∑
j∈Ni1

xj14
−rxi14>1

wij1 (xj14 − rxi14 )
m
n

= ẋi11 + ẋi12 + ẋi13 + ẋi14 (7)

In order to prove lim
t→∞

xi1 (t) = 0, lim
t→∞
j=1,2,3,4

xi1j (t) = 0 should

be demonstrated. Firstly, lim
t→∞

xi11 (t) = 0 will be deduced in
the following content.

∑
j∈Ni1

w1j1 (xj11 − rx111 )∑
j∈Ni1

w2j1 (xj11 − rx211 )

...∑
j∈Ni1

wnj1 (xj11 − rxn11 )


= [−L1 − (r − 1)D1]


x111
x211
...

xn11



(8)

where L1, D1 are the Laplacian matrix and degree matrix,
respectively.

According to Eq. (8) andLemma 1, Ineq. (9) and Ineq. (10)
can be obtained:

λ1i < 0 (9)

where λ1i denotes the real part of the ith eigenvalue of matrix
[−L1 − (r − 1)D1].

xi11 (t) > 0 (10)

The sign-preserving theorem is utilized to demonstrate:

lim
t→∞

xi11 (t) > 0 (11)

ẋi11 =
∑
j∈Ni1

xj11
−rxi11≤−1

wij1 (xj11 − rxi11 )
m
n

≤ −

∑
j∈Ni1

xj11
−rxi11≤−1

wij1 (12)

Taking the integral on both sides of Ineq. (12), Ineq. (13)
can be obtained.

xi11 (t) ≤ xi11 (0)−
∑
j∈Ni1

xj11
−rxi11≤−1

wij1 × t (13)

By the theorem of limitation, we can get:

lim
t→∞

xi11 (t) ≤ 0 (14)

By Ineq. (11), Ineq. (14) and Lemma 2, Eq. (15) can be
acquired.

lim
t→∞

xi11 (t) = 0 (15)

The proof of lim
t→∞

xi12 (t) = 0 which is similar to
lim
t→∞

xi11 (t) = 0 is omitted here. And then, the following
content is the deduced process of lim

t→∞
xi13 (t) = 0.
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Based on Eq. (8) and Ineq. (9), we have:

xi13 (t) < 0 (16)

The sign-preserving theorem of limitation is used to prove:

lim
t→∞

xi13 (t) < 0 (17)

ẋi13 =
∑
j∈Ni1

0<xj13
−rxi13

≤1

wij1 (xj13 − rxi13 )
m
n

≥

∑
j∈Ni1

0<xj13
−rxi13

≤1

wij1 (xj13 − rxi13 )

ẋ13 ≥ [−L1 − (r − 1)D1]x13
ẋi13 ≥ λ1i × xi13 (18)

Taking the integral on both sides of Ineq. (18), Ineq. (19)
can be got:

xi13 (t) ≥ e
λ1it × xi13 (0) (19)

By the sign-preserving of the limitation, we have:

lim
t→∞

xi13 (t) ≥ 0 (20)

By Ineq. (17), Ineq. (20) and Lemma 2, Eq. (21) can be
obtained:

lim
t→∞

xi13 (t) = 0 (21)

The deduced process of lim
t→∞

xi14 (t) = 0 which is similar
to lim

t→∞
xi11 (t) = 0 is omitted here.

In summary, we have:

lim
t→∞

xi1 (t) = 0 (22)

In the same way, lim
t→∞

xi2 (t) = 0 can be deduced.
Accordingly, the following equality can be got:

lim
t→∞

xi(t) = lim
t→∞

xi1 (t)+ lim
t→∞

xi2 (t) = 0 (23)

And then, Theorem 1 can be proved.
Theorem 2: On the basis of Assumption 1, the states of

agents of system (3) can reach a common value zero, whenm
is an odd number and n is an even number.
Proof: According to the sign of wij, system (3) can be

transformed into:

ẋi =
∑
j∈Ni1

wij1sign(xj − rxi)|xj − rxi|
m
n

+

∑
j∈Ni2

wij2sign(xj + rxi)|xj + rxi|
m
n

= ẋi1 + ẋi2 (24)

where

ẋi1 =
∑
j∈Ni1

wij1sign(xj − rxi)|xj − rxi|
m
n

ẋi2 =
∑
j∈Ni2

wij2sign(xj + rxi)|xj + rxi|
m
n

ẋi1 = −
∑
j∈Ni1

xj11
−rxi11≤−1

wij1 (xj11 − rxi11 )
m
n

−

∑
j∈Ni1

−1<xj12
−rxi12≤0

wij1 (xj12 − rxi12 )
m
n

+

∑
j∈Ni1

0<xj13
−rxi13≤1

wij1 (xj13 − rxi13 )
m
n

+

∑
j∈Ni1

xj14
−rxi14>1

wij1 (xj14 − rxi14 )
m
n

= ẋi11 + ẋi12 + ẋi13 + ẋi14 (25)

lim
t→∞
j=1,2,3,4

xi1j (t) = 0 should be proved so that we can deduce

lim
t→∞

xi1 (t) = 0. At first, the following content is to demon-
strate lim

t→∞
xi11 (t) = 0.

ẋi11 = −
∑
j∈Ni1

xj11
−rxi11

≤−1

wij1 (xj11 − rxi11 )
m
n

≤ −

∑
j∈Ni1

xj11
−rxi11

wij1 (26)

Taking the integral on both sides of Ineq. (26), Ineq. (27)
can be obtained:

xi11 (t) ≤ xi11 (0)−
∑
j∈Ni1

xj11
−rxi11

≤−1

wij1 × t (27)

According to the sign-preserving theorem of limitation,
we can get:

lim
t→∞

xi11 (t) ≤ 0 (28)

In virtue of Eq. (8) and Lemma 1, Ineq. (29) can be
acquired.

xi11 (t) > 0 (29)

By the sign-preserving theorem of limitation, we have:

lim
t→∞

xi11 (t) > 0 (30)

Because of Ineq. (28), Ineq. (30) and Lemma 2, Eq. (31)
can be got:

lim
t→∞

xi11 (t) = 0 (31)

And then, lim
t→∞

xi12 (t) = 0 will be deduced in the following
steps.

On account of Eq. (8) and Ineq. (9), we obtain:

xi12 (t) > 0 (32)

By the sign-preserving theorem of limitation, InEq. (33)
can be acquired:

lim
t→∞

xi12 (t) > 0 (33)
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ẋi12 = −
∑
j∈Ni1

−1<xj12
−rxi12

≤0

wij1 (xj12 − rxi12 )
m
n

≤

∑
j∈Ni1

−1<xj12
−rxi12

≤0

wij1 (xj12 − rxi12 )

ẋ12 ≤ [−L1 − (r − 1)D1]x12
ẋ12 ≤ λ1i × xi12 (34)

Taking the integral on both sides of Ineq. (34), we have:

xi12 (t) ≤ e
λ1it × xi12 (0) (35)

Based on the sign-preserving theorem of the limitation,
Ineq. (36) can be obtained:

lim
t→∞

xi12 (t) ≤ 0 (36)

On the basis of Ineq. (33) and Ineq. (36), Eq. (37) can be
got:

lim
t→∞

xi12 (t) = 0 (37)

The deduced processes of lim
t→∞

xi13 (t) = 0 and
lim
t→∞

xi14 (t) = 0 are similar to lim
t→∞

xi12 (t) = 0 and
lim
t→∞

xi11 (t) = 0 respectively, so we omit them here. Thus
the following equation can be demonstrated:

lim
t→∞

xi1 (t) = 0 (38)

With the same method, lim
t→∞

xi2 (t) = 0 can be deduced.
And then,

lim
t→∞

xi(t) = lim
t→∞

xi1 (t)+ lim
t→∞

xi2 (t) = 0 (39)

So Theorem 2 can be proved.
Theorem 3: According to Assumption 1, the states of

agents of system (3) can arrive at the same state zero, when
m is an odd number and n is an even number.

The proof of Theorem 3 which is similar to Theorem 2 is
omitted here.

Consequently, the states of agents of system (3) can reach
a common state, even though the communication topology is
not strong connected but can be divided into several strong
connected subgraphs.

IV. SIMULATION RESULTS
The simulation results of three examples are described in
this section. Example 1 is given to illustrate that protocol (4)
can make the states of all agents in the multi-agent system
converge to the same state more quickly than other protocol
in [51] when the communication topology is strong con-
nected. Example 2 is considered to demonstrate that protocol
(4) can guarantee the agents in the multi-agent system reach
agreement even though the communication topology is not
strong connected, while other protocol in [52] can not do.
Example 3 is presented to verify that the convergence rate
of agents can be sped up by adjusting the parameter r of
protocol (4).

FIGURE 1. The communication topology is strong connected, and the
interactions among agents are all cooperative.

FIGURE 2. Fig. 2(a) and Fig. 2(b) exhibit the trajectories of agents with
communication topology shown in Fig. 1 by applying protocol (4) and the
protocol in [51], respectively. We can observe that our protocol can make
all the agents in the multi-agent system converge to the same state more
quickly than other protocol in [51].

A. EXAMPLE 1
The communication topology is shown in Fig. 1. It is obvious
that the communication topology is strong connected and the
information flow is directed.

The parameters of protocol (4) are chosen as m = 1, n =
2, r = 5, x(0) = [−1, 2, 5, 14, 5,−6]T . The parameters of
protocol in [51] are taken as α = 0.5, β = 0.7, a = b = 1.
Fig. 2(a) and Fig. 2(b) respectively exhibit the trajectories of
six agents by applying protocol (4) and the protocol in [51].
We can observe that our protocol can make the states of all
agents in the multi-agent system converge to the same state
more quickly than other protocol in [51].

B. EXAMPLE 2
The communication topology is shown in Fig. 3. It is evident
that the communication topology is not strong connected,
the information flow is directed and the relationships among
agents are either cooperative or competitive.

The parameters of protocol (4) are taken as m = 1, n = 2,
r = 5, x(0) = [−1, 2, 5, 14, 5,−6]T . The parameters of
protocol in [52] are taken as α = 0.5. Fig. 4(a) and Fig. 4(b)
respectively describe the trajectories of agents by applying
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FIGURE 3. The communication topology is not strong connected, and the
interactions among agents are cooperative or competitive.

FIGURE 4. Fig. 4(a) and Fig. 4(b) display the trajectories of agents with
communication topology shown in Fig. 3 by applying protocol (4) and the
protocol in [52]. It is easy to see that our protocol can guarantee all the
agents in the multi-agent system reach agreement, while other protocol
in [52] can not do.

TABLE 1. The agreement reaching time of protocol (4) with r = 1.50,
r = 2.50, r = 5.40, r = 9.05.

protocol (4) and the protocol in [52]. It is easy to see that our
protocol can guarantee all the agents reach agreement even
though the communication topology is not strong connected,
while other protocol in [52] can not do.

C. EXAMPLE 3
Firstly, the communication topology is shown in Fig. 3. And
this example is given to illustrate that the convergence rate
of agents can be sped up by adjusting the parameter r of
protocol (4).

We choose the parameters as m = 1, n = 2, x(0) =
[−1, 2, 5, 14, 5,−6]T . The parameters r are taken as r =
1.50, r = 2.50, r = 5.40, r = 9.05, respectively. And
the corresponding trajectories of the six agents are displayed
in Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d) when r = 1.50,

FIGURE 5. Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d ) exhibit the trajectories
of agents with communication topology shown in Fig. 3 by applying
protocol (4) with r = 1.50, r = 2.50, r = 5.40 and r = 9.05, respectively.
We can observe that the convergence rate of agents can be sped up by
increasing the parameter r .

r = 2.50, r = 5.40, r = 9.05. The agreement reaching time
which is illustrated in Table. 1 is about 4.0766 with r = 1.50,
2.3948 with r = 2.50, 1.4920 with r = 5.40, 0.8610 with
r = 9.05. It is evident that the convergence rate of agents
gets faster by increasing the parameter r .

V. CONCLUSION
In this paper, the nonlinear merging consensus for multi-
agent systems on a directed and weighted signed network is
addressed. A merging control protocol is designed to guar-
antee the system to reach agreement. Firstly, the relation-
ships among agents can be either cooperative or competitive,
meanwhile, the information flow is considered to be directed,
which is coincident with the real scenarios. Secondly, the con-
sensus can be ensured even though the communication topol-
ogy is not strongly connected, which is more general under
the realistic circumstances. Finally, the convergence rate of
agents can become faster by increasing the parameter r of the
protocol.

However, the settling time of protocol is not deduced to be
an exact mathematical expression, but estimated in the way
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of numerical simulations. Therefore, we will make further
extensions on the proof of an accurate mathematical expres-
sion of the settling time of protocol in the future.
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