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ABSTRACT Users in a cooperative computing environment always have a tendency to free-ride. One can
employ incentive mechanisms to prevent such behavior. Some of the cooperative computing scenarios have
the same access link shared between upload and download. In such a situation, increasing upload capacity
decreases the download capacity and vice versa. Optimal partitioning of link capacity between upload and
download needs to be done by each user to maximize its gain (i.e., download) from the network. We model
this link capacity partitioning problem as a feedback control system, where feedback (resources received)
decides the number of resources to be uploaded by a user. The resulting algorithm called adaptive step
size (ASZ) dynamically adjusts the partitioning of link capacity to an optimal value. To compare this
approach with others, a metric ‘‘level of optimality (U )’’ is introduced. U achieved by the ASZ is closer
to the optimal level than the reputation-based resource allocation policy (existing scheme), thus resulting
in its better performance. The ASZ is also integrated with BitTorrent, and the simulation results show that
it increases the resources received by the users. The ASZ can provide an efficient solution to the problem
of optimal partitioning in real-life distributed networks due to its distributed implementation, robustness to
changes in network dynamics, and compatibility with the existing partitioning schemes.

INDEX TERMS Control theory, cooperative communication distributed network, free-riding, reputation
system.

I. INTRODUCTION
Many distributed networks use the concept of cooperative
computing for their operation. In cooperative computing,
members share their resources (e.g., bandwidth, computation
power, and storage space) among each other to derive the
mutual benefit. Examples of distributed networks employ-
ing this notion are file sharing, Domain Name System,
BGP-4 routing, application-layer multicast, cloud, mobile
and fog computing [1]–[4].

As of now, free-riding was the only major design issue in
implementing cooperative computing [1], [5]. Members tend
to free-ride, i.e., they do not share/upload resources because
there are inherent costs associated in uploading, e.g., cost
involved in usage of upload bandwidth. Incentive mecha-
nisms have been proposed in [1], [5], [6], which encourage
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uploading by allocating resources among members in pro-
portion to the amount they upload. Apart from free-riding,
a new challenge of capacity partitioning between upload and
download arises in the cooperative computing, due to migra-
tion of users from traditional connections like ADSL to the
wireless connections. In traditional connections, the upload
and download capacities available with the user are fixed, but
in most of the wireless networks the capacity allocated for
upload and download can be modified by the users [6]–[9].
In networks like WiFi, WLAN, LTE and WiMAX (in time
division duplex mode) users are connected to backbone net-
work using an access link. The upload and download data
flows through this common access link. The amount of link
capacity allocated for the upload and the download can be
modified by the user, with their sum being equal to access link
capacity. Thus, increasing upload will have a negative effect
on download and vice-versa. As in [6], such links are referred
as single capacity links. In single capacity links, every user
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will strive to optimally partition its link capacity between
upload and download, to maximize resources received from
the network.

A user cannot download/receive resources greater than its
download capacity. Therefore in a bid to receive maximum
resources, it will try to allocate its entire link capacity for
download. However, incentive mechanisms already being
used to prevent free-riding, forces it to upload. In such a
scenario, a user will like to fulfill the minimum contribu-
tion/upload requirement, to achieve just enough incentive to
meet all of its download requirement. The capacity parti-
tioning achieved with this minimum level of upload will be
referred as point of optimal partitioning. This is point of opti-
mal partitioning because user receives maximum resources
at this point. If a user operates below optimal point, i.e.,
it reduces it upload then its contribution level decreases,
which reduces the resources allocated to it. The other way
around, if the user operates above optimal level it has to
increase its upload capacity. This will increase its contribu-
tion level but its current download capacity will reduce w.r.t.
download capacity at optimal partitioning point. This results
is reduction in received resources. Hence, at the optimal point
a user receives maximum resources.

As optimal point provides maximum resources, a user will
strive to operate at this point. However the point of optimal
operation may change with time. Thus to continue operation
at optimal point, a user needs mechanism which continuously
monitor resources received, and accordingly adjust the link
capacity partition.

Until now most of users employed traditional connections
where capacity allocated for upload and download was fixed.
Consequently, not many mechanisms are available to opti-
mally partition link capacity. However with recent advance-
ment in technology, wireless connections can provide high
speed data service at lower costs resulting in replacement of
traditional connections with wireless connections. The wire-
less technology is being employed in office, home and hotels
to provide Internet services. The focus is shifting towards
using wireless technology to provide Internet services in the
public places like airports, railway stations, restaurants etc.,
where people might require uninterrupted Internet connec-
tivity. With widespread use of wireless networks, issue of
optimal capacity partitioning becomes significant. Thus in
this paper, we propose a mechanism which automatically
adjusts capacity partitioning in such a way that it is always
close to optimal partitioning point in a distributed setting.

Most of the existing mechanisms [7], [8] are not appli-
cable in distributed scenario, because they require central
controlling authority to divide link capacity. Till now for a
distributed scenario, Reputation-Based Resource Allocation
Policy (RRA) has been proposed in [6]. RRA strives to
achieve optimal partitioning by updating the upload band-
width in fixed step sizes (modifying upload capacity automat-
ically changes download capacity). Under stable condition
the upload bandwidth oscillates around the optimum due
to fixed sized step. These oscillations reduce the resources

received by the users across the network. To minimize these
oscillations, we propose to employ a control system.

Wemodel partitioning of total capacity between uplink and
downlink, as a feedback control problem. In this control sys-
tem, the resources received by a user from the network act as a
feedback, which decides the system output, i.e., the resources
that the user should upload back to the network. The control
system seeks to take the system to optimal partitioning level
where the bandwidth or capacity received is equal to down-
load capacity available for the current level of upload. Unlike
the existing schemes, we employ a PI controller to make size
of capacity increment or decrement adaptive such that the step
size tends to be 0 as user’s sharing level approaches the opti-
mal value. Thus, total capacity partitioning stabilizes around
the optimal point and the resource wastage is reduced leading
to enhanced efficiency compared to the existing schemes.
Main highlights of this paper are listed below.

1) A reputation metric to estimate the contribution level
of users is proposed. This metric requires less storage
space w.r.t. the existing metrics [6].

2) We model the capacity partitioning mechanism as a
control system, where users independently decide their
capacity partitioning level. This design is in line with
the basic structure of the distributed networks. It is also
demonstrated that control system based mechanism is
compatible with the existing partitioning schemes. Fur-
ther, the mechanism is made robust to entry and exit of
users from the network by using Proportional Integral
(PI) controller.

3) We also propose a metric ‘level of optimality(U )’,
to determine point of optimal partitioning. U = 1
signifies that user is optimally partitioning its capacity.

4) The performance comparison of the proposed model
with the BitTorrent [10] and the Reputation-Based
Resource Allocation Policy (RRA) [6] is presented in
the section VII. The control theoretic model of RRA is
also derived to show that resource allocation process
will be oscillatory, which was subsequently verified
during simulation.

The section II discusses the relatedwork. The systemmodel is
described in section III, whereas section IV deliberates upon
the reputation system and a generic mathematical framework
for the resource allocation process. Using this framework,
we present the model of the partitioning of access link as
a control system in section V. The section VI presents the
simulation results, while comparison with the existing capac-
ity partitioning mechanisms is carried out in section VII.
Finally section VIII concludes the paper and also discusses
the possibilities for the future work.
Notation: A symbol written in calligraphic font represents

a set (e.g. A). R+ represents the interval [0,∞).

II. RELATED WORK
Several techniques to promote cooperation have been intro-
duced in [1], [5], [10]–[12]. However, they do not provide
any mechanism for optimal capacity partitioning. Most of
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the existing capacity partitioning mechanisms proposed in
[7], [8], cannot be used to achieve optimal partitioning in
distributed networks due to the following reasons.

1) These mechanisms require a central authority like net-
work administrator to modify the link capacity parti-
tioning according to the current traffic flow. However,
a distributed network lacks any central authority.

2) The objective of these mechanisms is not to enhance
resources received by optimal partition. Their main aim
is to maximize link capacity utilization based upon
network traffic, i.e., if currently download requests
are more in the network, the above mechanism
will increase capacity allocated for download and
vice-versa.

In the past many theoretical analyzes have been undertaken
to understand the problem of optimal capacity partition. Iosi-
fidis and Koutsopoulos in [13] have modeled total capacity
partitioning between upload and download as a utility maxi-
mization problem. However, they did not provide any formal
framework to utilize the entire link capacity available with
the user. Singha and Singh in [14] calculated equilibrium
point for capacity partitioning, where no user can enhance
its received resources by unilaterally changing its capacity
partitioning. Anyway, they did not propose a mechanism to
achieve this partitioning equilibrium.

As per our knowledge, there are only two mechanisms
which strive to divide the total capacity in a distributed setting
optimally. Meo and Milan in [9] contemplated network as
market and proved that if users are greedy and employ second
price auction, then network reaches an equilibrium stage
where the capacity partition converges to a specific value.
They also proved that no user in the network could maintain a
download rate higher than mini∈N

Ci
2 , where N corresponds

to set of all the users, and Ci is the total capacity of the
user i. Clearly the slowest link present in the network acts
as the bottleneck. Another limitation with this model was
that a user can perform only a single upload and download
at a given point of time. Limitations in [9] were overcome
by Reputation based Resource Allocation (RRA) mechanism
proposed by Satsiou and Tassiulasin in [6]. RRA strives to
attain the optimal point of resource sharing by dynamically
modifying a user’s upload capacities in fixed step sizes. Due
to fixed step size, total capacity distribution never settles
down and keeps on oscillating around the optimal point.

The mechanism presented in this paper tries to alleviate
above discussed shortcomings. Using this mechanism, a user
can operate more closely to the operating point than the
earlier discussed mechanisms. This increases the resources
received by a user.

III. NETWORK MODEL
We consider a distributed network of N users, where files
are the resources being shared and downloaded by its mem-
bers. The sharing and downloading of resources contribute
to uplink and downlink data flow respectively. Members
are connected using single capacity links, where uplink and

FIGURE 1. Network model.

downlink data of every user flows through the common access
link. The access link is a connection, which connects a user
to the backbone network (refer Fig. 1). Such connections
exist in networks like WiFi, WLAN, LTE and WiMAX (in
time division duplex mode). The capacity Ci of access link
for any user i is fixed, but the user can modify the division
of Ci between upload (Si) and download (Di) capacities.
Increase in Si results in decrease in Di and vice-versa, such
that Si + Di = Ci. The uplink and downlink data utilizes Si
and Di respectively for their flows. A given data flow cannot
be more than its corresponding capacity, i.e., if downlink flow
ri is more than Di then ri − Di resources will get wasted and
only Di amount of resources will be received. If ri≤Di, then
entire downlink data can be received by the user. The data
received by a user i is equal to its utility and is given by

utilityi = min{ri,Di}. (1)

This paper aims to maximize utility, by proposing a partition-
ing mechanism which optimally divides link capacity. The
focus of our analysis is on allocation of the resources among
users in the presence of the partitioning mechanism.

It is assumed that the network is fully connected mesh,
such that once a user figures out the members from which
the resources need to be requested, it directly connects with
them. Resource lookout and connection setup mechanisms
are out of the scope of this paper. We rather assume that every
member in a network has something of interest for every other
member. This is in line with the existing resource allocation
models used in [6], [9], [14]. Such an assumption is valid
for most of the practical distributed networks in use. These
networks usually employ techniques like the distributed hash
table [15] or flooding [16] for resource lookout. To reduce
lookout latency, these techniques make users store data files
in demand across the network in their memory. Thus for
most of the time, a file to be downloaded is usually available
with the other members in the network. This situation can be
frequently observed in popular file-sharing applications like
BitTorrent. In BitTorrent, a single file is further divided into
the large number of chunks [17]. A requester may download
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the chunks of the same file from different users containing
that file. Generally, a requester is interested in download-
ing more than one file at a given time. Therefore, it needs
to download a considerably large number of chunks from
the network. Users first download those chunks which are
rare in the swarm (The set of users actively uploading and
downloading data). This technique called ‘rarest first‘ [10]
ensures that each user usually has data chunks which the other
downloaders in the swarm desire. A typical swarm consists
of a small number of users (around 50) with a requester
requiring a large number of chunks and other users containing
a diverse variety of chunks due to rarest first technique. All
these factors together lead to a situation in BitTorrent, where
for most of the network lifetime, a user will always have
something of interest for other users across the swarm. Hence
a random request in these network will return a chunk of
interest. To receive data a requester needs to establish the
connection with the other members. A requester iwill send gi
requests to the other members for establishing the connection.

After establishing a connection, a requester starts down-
loads the file from the other user. The user receiving requests
for the resources will be referred to as serving user. A serving
user j will allocate its resources (Sj) among the requesters
as a function of their contribution level. There are different
ways to carry out contribution level based resources allo-
cation, e.g., allocating resources in decreasing order of the
contribution of the requesters. The actual allocation depends
on the resource allocation technique employed by the serving
user. The capacity partition mechanism proposed can work
with any of the existing allocation techniques [6], [18].

At the end of interaction with a serving user, a requester
estimates its contribution level/reputation based upon the
resources received. It then updates the reputation of serving
user in the global reputation table. Requester also calcu-
lates the aggregate utility received. Depending on the utility
received, a requester may readjust its link capacity partition,
to operate at the optimal partitioning level. This process of
downloading and uploading continues for the users until they
remains in the network. Using this model, we analyze the
resource allocation process in the next section.

IV. RESOURCE ALLOCATION ACROSS P2P NETWORK
The resource allocation process in single capacity links is
based on the principle that users will adopt a strategy to derive
maximum resource from the network by minimizing their
upload. The proposed resource allocation system takes care
of this constraint. We expect this resource allocation system
to ensure the optimal operation of the system. The resource
allocation system can be divided into three components as
follows.

1) A mechanism to achieve optimal distribution of total
link capacity between upload and download.

2) A mechanism to distribute the upload capacity allo-
cated by the first component among the requesters
based on their contribution level.

3) Finally, a reputation metric to estimate the co-operative
behavior of various members.

Our main focus is to design a control system which can
achieve an optimal partition of the link capacity. To derive
transfer function for this control system, we require a math-
ematical framework of reputation based resource allocation
process. Therefore, we first propose a reputation metric, then
discuss the resource allocation based upon this metric and
derive the transfer function in the next section.

A. REPUTATION METRIC
To make the proposed control system, compatible with the
existing reputation metrics, we use a modified version of a
common reputation metrics proposed in [6], [12]. Even if
in future, somebody proposes altogether a new reputation
metric, even then the approach to build the overall control
system will remain the same. Thus with the manageable
changes, the control system can work with any metric. The
used reputation metric is described as follows.

The reputation of user i considers all the transactions where
i acts as the resource provider. A transaction is an interaction
between two users for the resource download. For a single
transaction, the measure of the cooperative behavior is called
trust. The trust (tji) calculated by the requesting user j for the
serving user i is defined as the ratio of the bandwidth (rji)
received by the user j to what it has actually demanded (Bji)
from the user i during that transaction, i.e.,

tji =
rji
Bji
. (2)

Reputation of the user i at any time instant is calculated using
the exponential moving average [19] of old reputation value
with the average of current trust values as

Ri = (α)Roldi + (1− α)

∑
j∈Zi

tji

|Zi|
, (3)

whereRi is the reputation of the user i andRoldi is the last repu-
tation value of i available in the network.Zi is the set of users
which have requested for the resource from the user i after
Roldi was calculated.Zi is reset every time the reputation Ri of
user i is calculated. |Zi| is equal to li, the number of requests
received by i after its last reputation evaluation. We have set
α = 1

2 , to assign equal weight to the present as well as past
reputation values. This encourages a user to have consistent
behavior. If past behavior is not considered, then a user can
indulge in free-riding by being non-cooperative when it does
not require resources and abruptly become cooperative when
it requires resources. The reputation value for α = 1

2 becomes

Ri =
Roldi +

∑
j∈Zi

rji
Bji

li

2
. (4)

This reputation value will be stored in the global reputa-
tion table, which is available to every user in the network.
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FIGURE 2. Block Diagram of Control System at user i .

The reputation aggregation (for calculating global reputation)
can be achieved using gossiping [20] which has very low
complexity in terms of memory, space, and time. Hence
without much overhead global reputation can be maintained
by the members in the network. We now derive a generic
resource distribution mechanism based upon the reputation.

B. REPUTATION BASED RESOURCE DISTRIBUTION
AMONG REQUESTERS
To design a control system independent of an underlying
reputation based resource distribution technique, we present
a generalized mathematical analysis for the resource distribu-
tion. This generic framework estimates the amount of band-
width available to a user from the network. The bandwidth
allocated to any requesting user i from j is proportional to
its reputation (Ri), bandwidth demanded (Bij) from j and
a proportionality constant kijovd which caters for change in
received bandwidth due to overloading1 at j. Thus the band-
width received by i from j is given as

rij = kijovd×Ri×Bij. (5)

The value of kijovd lies in the interval
[
0, 1

Ri

]
. The kijovd = 0

denotes the worst case of overloading at serving user j, where
the receiving user i will not receive any bandwidth. When
kijovd =

1
Ri
, the bandwidth requirement of user i will be

completely satisfied by the user j. The value of proportion-
ality constant kijovd varies in each period depending upon the
degree of overloading at the serving user. At the same time,
for another requester say x requesting the same serving user,
the value of kxjovd will vary depending upon its reputation. The
mechanism to estimate kijovd is out of the scope of this paper.
We just need to ensure that the control system remains stable,
even for the maximum possible value of kijovd .
The total bandwidth (Ti) allocated to a user i for the trans-

actions after the estimate of Ri is

Ti = Ri ×
∑
j∈Ai

kijovdBij, (6)

where Ai is the set of the users from which i has demanded
the resources.

In the subsequent section, we utilize the total bandwidth
(Ti) and the reputation (Ri) to derive a control system model

1Overloading represents the situation when overall bandwidth demanded
by all the requesters from the serving user j is more than what j has shared.

at any user i, which optimally divides total capacity between
upload and download.

V. MODELING OF LINK CAPACITY PARTITION
AS A CONTROL SYSTEM
The partitioning of link capacity between upload and down-
load at the user can be modeled as a classical feedback
control system (refer Fig. 2a). This system follows a reference
point, which is the optimal point of capacity partitioning,
whereas feedback is the ratio of resources allocated to what is
demanded by the user. Based upon the feedback, control sys-
tem dynamically adjusts the total capacity partitioning in such
a way that the system starts operating at the optimal point.

The following subsection propose a metric ’level of opti-
mality’ (U ) for determining the reference point of the control
system.

A. REFERENCE OR SET POINT IN CONTROL SYSTEM
1) LEVEL OF OPTIMALITY (U)
The level of optimality (U ), signifies the resources received
by a user in proportion to what it can actually utilize. For a
user i, level of optimality is defined as

Ui =
Ti
Di
, (7)

where Ti is the total data rate given by all the users that
are currently serving the requester i, and Di is the current
download capacity of i.

At the outset, U may resemble the popular concept of
utility (refer (1)) in the computer networks, although it is
quite different. The utility corresponds to the total resources
received by a user from the network, whereas U is dependent
upon the total resources allocated to the user from the net-
work. Sometimes, the user’s capacity may not be sufficient
to utilize all the allocated resources, therefore these extra
resources which are considered in U cannot be received by
the user and therefore do not contribute towards the utility
of the user. For example, if the user i is offered bandwidth
Ti such that Ti > Di. This scenario is possible because
users usually demand more2 [6] than their download capacity
to increase their chances of getting the resources from the
network. The user i can only utilize the bandwidth equal
to its current download capacity Di and the rest of the

2Demanding in excess is usually beneficial when network is overloaded
with requests.
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offered bandwidth (Ti − Di) gets wasted. The Ui takes Ti −
Di into account, whereas utility does not. We now try to
determine the value of Ui which will be optimal point of
operation-where a user receives maximum utility.

2) REFERENCE POINT DETERMINATION
A control system always strives to bring the system to the
reference point.We set the reference point of the system equal
to the point where a user receivesmaximumutility-maximum
resources from the network at the minimum upload. To deter-
mine the reference point in terms of ’level of optimality (Ui)’,
we have divided the feasible region R+ of variable Ui into
three subsets U1,U2,U3 as follows.

Ui ∈


U1 = [0, 1), when Ti < Di,
U2 = {1}, when Ti = Di,
U3 = (1,∞), when Ti > Di.

1) (Ui∈U1): During this state, Ti < Di, therefore entire Ti
can be received by the user. Therefore, both utility and
Ui derived by the user i from the network increases with
increase in Ti. As user always has scope of increasing
its utility, so this region does not contain point of maxi-
mum satisfaction level. Hence, reference point doesn’t
lie in set U1.

2) (Ui∈U3): Increasing upload capacity (Si) in this region,
results in allocation of more resources (Ti) from the
network. However, increased Ti will not be beneficial
for the user because it exceeds the maximum data
rate Di a user can handle. Thus when Ui∈U3, with
increase in Si, Ui increases but the utility decreases.
The decrease in utility occurs because Di decreases
due to increase in Si, which further reduces resources
received. Consequently, user i is at loss when its Ui
increases beyond 1. Hence, U3 will not contain the
reference point.

3) (Ui∈U2): This point corresponds to minimum Si with
which a user can be allocated resources equal to
its download capacity, i.e., Ti = Di. Minimum Si
implies maximum Di. Therefore, maximum resources
are received at this point by minimum upload. Hence
Ui = 1 corresponds to the optimal point (point of
maximum utility) and serves as the reference point for
the control system.

B. CONTROL SYSTEM COMPONENTS
Fig. 2a presents the control system model. The different
components of this model are described blow.

1) CONTROLLER
It is used to stabilize the system output to the reference
point. Based upon the difference between the reference point
(Uref ) and the current level of optimality (U ), the controller
drives the actuator to regulate the output. Generally, PID
controller is preferred as controller [21]. In PID, ‘P’ implies
the proportional action which helps a user to reach the steady

state faster. A user i has reached the steady state, when it is
operating at optimal point, i.e., Ui = Uref . ‘I’ implies the
integral action, which reduces the steady state error. Steady
state error is the perturbations arising in the system after
it has reached the steady state. ‘D’ implies the derivative
action, which is required to counter sudden changes in the
output. In the current system differential action is not needed,
because once the network reaches the steady state, the output
does not change abruptly. Most of the users during network’s
steady state are operating at optimal partitioning point, and
they cannot enhance their utility by changing their upload
capacity. As users adhere to their upload capacity, so total
shared resources across the network do not change suddenly
and neither does output (U ) as a consequence. Hence, the PI
controller with the transfer function

G(s) = Kp

(
1+

Ki
s

)
, (8)

is sufficient to model the link capacity partitioning process.
Kp and Ki are the proportional and integral gain respectively
of the PI controller. The values of these gain parameters are
calculated in section V-E.

2) ACTUATOR
The role of the actuator [21] in the control loop is to update
physical entity based upon the controller output (y). In the
system under consideration, the actuator changes the upload
capacity of the user by y units in the next period.

3) PLANT
The plant represents the distributed network, which decides
the amount of the resources allocated to requesters on the
basis of their reputation. The output of the plant pertaining
to a user i is the level of optimality Ui, received by i from the
network.

4) MONITOR
The function of the monitor is to sense the output and convert
it into a formwhich can be compared with the reference point.
In the current system (refer Fig.2a), as the output (Ui) can be
directly compared with reference point (Uref ), so both input
and output from the monitor are Ui. Thus the gain of the
monitor is 1.

C. ACHIEVING REFERENCE LEVEL
The monitor in the loop (see Fig. 2a) will senseUi.Ui will be
then compared with the reference point (Uref = 1), and the
error (Uref − Ui) will be fed to the controller. The output of
the controller drives the actuator. The actuator modifies the
upload capacity which subsequently alters the user’s reputa-
tion, thereby changing the resources allocated to it. All these
changes are directed in the direction so that the Ui received
by the user i becomes equal to the Uref . This results in a user
always working close to the optimal point.
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To complete the design of the proposed control system,
we derive the transfer function of the various components in
the subsequent subsection.

D. THE CONTROLLED SOFTWARE SYSTEM MODEL
In Fig. 2a, let C(s) denote the transfer function of controlled
software system (which includes actuator and Plant) andG(s)
represents the transfer function of the controller. Represent-
ing various blocks in Fig. 2a with their corresponding transfer
functions, we obtain Fig. 2b.

We know derive the transfer function for controlled soft-
ware system, i.e., C(s). Its input is y (the output of controller)
and the output is level of optimality (U ). To evaluate C(s),
we need to first calculate the output (U ).

1) LEVEL OF OPTIMALITY (UI) RECEIVED BY THE USER I
Reputation of user i determines its Ui. Equation (4) gives the
reputation of the user i as

Ri =
Roldi +

∑
j∈Zi

rji
Bji

li

2
, (9)

where Roldi is the last reputation value of the user available
in the network. rji and Bji are the bandwidth received and
demanded respectively by the requester j from i. Zi denotes
the set of users requesting service from iwhile li is the number
of requests catered by i. The total bandwidth (Ti) allocated to
the i using (6) is

Ti = Ri×
∑
k∈Ai

kikovd×Bik=
Roldi +

∑
j∈Zi

rji
Bji

li

2
×

∑
k∈Ai

kikovd×Bik ,

(10)

where kikovd is a constant which take into account overloading
at the serving user k . The serving users allocate resources
in proportion to the demands of the requesters. Normally a
requester should request according to its download capacity,
but it may receive much lesser resources than what it had
requested. This may happen because of the overloading of
the serving user with a large number of requests. A serving
user may not have enough upload capacity to cater to all the
requests. In the worst case of overloading, a serving user may
be unable to provide any resource to some of the requesters.
To optimize for themselves, requesters may follow greedy
strategy [6] where they demand more than the download
capacity. Therefore, i will place a bandwidth request for the
worst case, where only one serving user is reciprocating
towards its request. In such scenario, iwill place request equal
to its current download capacity (Di), i.e., Bik = Di and
equation (10) becomes

Ti =
Roldi +

∑
j∈Zi

rji
Bji

li

2
× Di

∑
k∈Ai

kikovd . (11)

To overcome the problem of requester demanding more than
its feasible capacity, the serving user estimates the feasible
capacity of the link with the requester [6]. Feasible capacity
is the minimum capacity required to support the data rate
feasible across the link. Serving user estimates the feasi-
ble capacity from the rate of acknowledgments of the TCP
flows. Suppose a serving user j sends message packets at
the rate of 8 Mb/s to the requester i. However, if the down-
load capacity of link with i is 2 Mb/s, then j will receive
the acknowledgment packets at the rate of 2 Mb/s. Thus j
decrease the capacity allocated to i accordingly, such that the
data rate of 2 Mb/s can be supported. To counter the requests
from requesters which are more than their feasible capacity,
serving user allocates resources corresponding to the feasible
capacity instead of the capacity demanded by the requesters.

As a given link cannot support data rate greater than the
feasible capacity and requesters are always demanding more
than the feasible capacity, so we assume use of feasible
capacity for the reputation evaluation by the requester instead
of the capacity demanded. IfBfesji is the feasible capacity of the
link between user i and j, then (11) becomes

Ti =
Roldi +

∑
j∈Zi

rji

Bfesji
li

2
× Di

∑
k∈Ai

kikovd . (12)

Putting value of Ti in (7), level of optimality received by the
user i is

Ui =
Ti
Di
=
Roldi +

∑
j∈Zi

rji

Bfesji
li

2
×

∑
k∈Ai

kikovd . (13)

In the next subsection we use the value of Ui to derive the
transfer function C(s).

2) TRANSFER FUNCTION OF CONTROLLED
SOFTWARE SYSTEM
For ease of analysis in evaluating C(s), we linearize the
non-linear model3 of the process which optimally partitions
total capacity between uplink and downlink. Any non-linear
system can be linearized if it works under narrow operating
range [21]. This condition is also true for the proposed system
where every user for maximum duration, operates around
the optimal point i.e. U = Uref . This happens due to the
following reasons:

1) A new entrant can swiftly achieve U = Uref due to the
proportional action of the controller.

2) Once U = Uref is achieved, the integral action main-
tains U ’s value close to Uref during perturbations aris-
ing due to change in network dynamics. For details
refer to section VI-C.

3) Later in section VI-B we prove that it is more profitable
for the new entrants to initially share their total link

3Many complex nonlinear systems like web servers, servomotor, tachome-
ter, synchros have been studied using linearization.
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capacity equally between upload and download. This
approach also helps new entrants to operate near Uref
as soon as they enter the network.

In addition to the above stated arguments, we further sub-
stantiate the accuracy of the linearized model using simu-
lation results in section VI-B. Results demonstrate that the
linearized version of the proposed system closely follows
the output of actual nonlinear system. Hence, the proposed
system can be modeled as a linear system. We now derive the
transfer functions C(s).
As discussed later in section VI-B, capacity partitioning

already starts near the optimal point, so we can neglect the
process dynamics4 and C(s) can be modeled as the static
gain c. On linearizing [21], this gain, c can be obtained as
the derivative of the output (U ) with respect to the input (y).
Using (13), the gain ci corresponding to user i is given by

ci =
dUi
dy
=

d


Roldi +

∑
j∈Zi

rji
Bji

li
2

× ∑
k∈Ai

kikovd


dy

. (14)

The ci is also called the process gain and is equal to the
product of gain of actuator and plant (i.e., C(s)) with the gain
of monitor (i.e., H (s)). However as monitor gain is unity, ci

corresponds to C(s). ci signifies system’s sensitivity and is
defined as relative distance process variable (U ) travels in
response to change in the controller output (Y ). It is used
to design the controller in the system. If the controller is
designed for the maximum process gain, then it will ensure
the stability of the system for all the gain values [22], [23].
Therefore to design a robust controller for the proposed sys-
tem, we derive the ci corresponding to maximum process
gain (cmax) and later use it in the section V-E to design the
controller.

The maximum gain cmax occurs when Bfesji = Bfesmin and

kikovd =
1

Rmin
. Bfesmin is the minimum value of the Bfesji , among

all the possible values of i and j, i.e., Bfesmin = mini,j B
fes
ji .

Another factor kikovd as discussed in section IV-B, attains its
maximum value when reputation of user is minimum. Rmin
is the minimum value of the reputation at which a user is
eligible for resource allocation in the network. Therefore,
the maximum value of kikovd such that a user can receive data
is 1

Rmin
. Apart from these variables, the total capacity currently

allocated by user i, i.e.,
∑
j∈Zi

rji is equal to its previous shared

capacity Soldi plus the controller’s current output (y). We put
all the above parameters in (14) to calculate the maximum

4Process dynamics play a significant part during transient phase ( U,1)
of the system. The transient state analysis is an interesting problem and will
be taken up by the authors in future.

gain. It is given as

cmax =

d


Roldi +

(Soldi +y)

li×B
fes
min

2

× 1
Rmin
×
∑
k∈Ai

1


dy

, (15)

where
∑
k∈Ai

1, represents the cardinality of the set Ai and is

equal to gi, the number of the users from which requester i is
currently requesting the resources. In a network, the average
generated (gi) and received (li) requests by any user i settles
down to the same value after some time i.e. gili → 1. This hap-
pens because a network cannot store data packets. Therefore
average upload and download should be equal to maintain
the network balance. Besides reputation system forces users
to download in proportion to their contribution or upload.
Consequently, the requests generated for average upload and
download by a user should be the same. Thus we substitute
gi
li
= 1 in equation (15) and get

cmax =
d
[
1
2 ×

(
Roldi +

(Soldi +y)

li×B
fes
min

)
×

gi
Rmin

]
dy

=
1

2RminB
fes
min

.

(16)

Apart from gain cmax , change in the upload capacity does
not change the output immediately. The change in output
is observed after some delay (say T ). For example, in dis-
crete times systems which operate in discrete time periods,
the resources are awarded to a user on the basis of its reputa-
tion (or the upload capacity) in the last period. This delay in
output results in the introduction of an additional term dead
time (delay) in the transfer function C(s). Thus,

C(s) = cmax · e−sT =

(
1

2RminB
fes
min

)
e−sT . (17)

The overall transfer function of the control loop consisting of
controller, actuator, plant, and monitor (refer Fig. 2b) is

T (s) = C(s)G(s) = cmax · e−sTKp

(
1+

Ki
s

)
. (18)

For the ease of analysis, we have converted the above equa-
tion into the Fourier form as follows (Refer Appendix for
details).

T (w) = cmax · e−jwTKp

(
1+

Ki
jw

)
. (19)

This T (w) is used in the next subsection to calculate the gain
parameters Kp and Ki of the PI controller.

E. TUNING PI CONTROLLER
The proposed PI controller is tuned w.r.t. C(s) on the basis
of gain margin specification. The gain margin (G) [24] is the
amount of increase or decrease in gain required to make the
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loop gain T (s) equals to 1 at the phase crossover frequency
(wp), i.e.,

G =
1

|T (wp)|
=

1

|cmax |
∣∣∣(e−jwpT )(Kp) (1+ Ki

jwp

)∣∣∣ , (20)

where wp is defined as the frequency where phase angle
(∠T (wp)) is −π . Thus,

∠T (wp) = −wpT − tan−1
(
Ki
wp

)
= −π. (21)

In the industrial PI controllers, it is common practice to tune
the controller phase i.e −tan−1

(
Ki
wp

)
to −π6 [22], [25], thus

tan−1
(
Ki
wp

)
=
π

6
. (22)

Using (22) in (21) we get the value of phase crossover fre-
quency as wp = 5π

6T =
2.618
T rad/s.

We substitute the value of wp in (22) to calculate Ki as

Ki =
1.512
T

. (23)

The above computed values of wp and Ki are used in (20) for
obtaining the expression for Kp as

Kp =
0.866
cmaxG

. (24)

The parameter G and T are set by the designer and cmax is
calculated using (16). The equations (23) and (24) provide the
generic value of the model parameters. The actual parameter
values used during simulations are calculated in the next
section. All the component values namely Uref , G(s) and
C(s) constituting the proposed control system in Fig. 2b, have
also been evaluated. The subsequent section provides details
about the practical realization and evaluation of the proposed
system.

VI. PERFORMANCE EVALUATION
In the previous section, we have calculated gain parameters
Kp and Ki. Due to ease of analysis, we have considered
a continuous system for calculating these gain parameters.
However in practical systems, the parameter (i.e., capacity)
used for performance analysis changes in discrete steps at
discrete time instants. Therefore we have simulated a discrete
time network for analyzing the performance of the proposed
model. In this discrete model, we have used the values of gain
parameters calculated for the continuous case. The simulation
results presented in subsection VI-B show that the output
obtained by using these gain parameters in the discrete time
model closely follows continuous system response. Further,
simulation results in subsections VI-C andVI-D illustrate that
the discrete system using these values successfully operate at
the optimal partitioning level. As there is no significant loss
of data or introduction of spurious information at the output,
so use ofKp andKi values derived for a continuous case, in the
discrete system are acceptable.

TABLE 1. Simulation parameters with their values.

We consider a discrete system which advances in periods
of fixed time duration. Each period is assumed to last for
10 sec as in [6]. As changes initiated by controller appears
at the output with delay of 1 period, so dead time T (refer
(19)) is taken as 10 sec in the current simulation. At the
start of a period using the partitioning mechanism, every user
divides its total link capacity between upload and download.
After that, requesters send the requests to the other users
and if they get selected for the service allocation then their
requests get fulfilled within the same period. Based on the
service provided by the serving user, the requester calculates
its reputation at the end of the period, while new entrants
are provided with an initial reputation (Rin = 0.07) for their
survival. Depending on the reputation value, a user will be
awarded services in the next time period. However if a user’s
reputation falls below the threshold reputation (Rmin = 0.01),
then it is rendered ineligible for receiving services. After
the reputation of all the users is updated, the next period
will start. For the next period, the whole process will be
repeated again.

To ascertain the performance of the capacity partitioning
schemes, authors in [6], [10], simulated a network of 50 or
100 users. However, to demonstrate that the proposed system
will work fine even for a larger number of users, we have
simulated a network with 1000 users. To facilitate readability,
various simulation parameters along with their values are
listed in Table 1. As in [24], the gain margin of the system
is set to G = 3, whereas the remaining parameter values are
taken from themodels used in [6], [10]. Directly using param-
eter values from the existing models allows us to compare our
results with theirs. Finally we use these parameter values in
(23) and (24) to calculate Kp = 0.00577 and Ki = 0.151149
respectively.

Using the above-mentioned specifications together with
the mechanism for resource discovery and exchange dis-
cussed under section III, we have developed a customized
simulator for evaluating the performance of different par-
titioning mechanisms in the distributed network. We now
present implementation of the proposed capacity partitioning
mechanism in the real world network.
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A. IMPLEMENTATION OF THE CONTROL MODEL
The proposed partitioning mechanism based on a control the-
oretic approach is an algorithm, which we name as adaptive
step size (ASZ). A user runs ASZ to dynamically adjusts
its upload and download capacity, so that it operates around
optimal point of partitioning.

If i has just joined the network, ASZ will allocates its link
capacity equally between upload and download, i.e., S0i =
D0
i =

Ci
2 . Here superscript 0 denotes the period of operation.

Such division results in better reception of resources from the
network (refer next subsection for details). Otherwise in any
other period p, ASZ divides the Ci such that it minimizes
the deviation of the of current partitioning level (Up

i ) from
the optimal level (Uref ). The deviation for the period p is
stored in a variable Epi = Uref − Up

i . E
p
i along with the

summation of all the deviations that have occurred till period
p − 1, i.e., TEp−1i is used to compute the output (ypi ) of the
PI controller. The output of the PI controller automatically
corrects the system output such that it minimizes deviation
Epi [21], i.e., it makes the system partitioning level approach
the optimal level. Due to the proportional action (Kp×E

p
i ) of

the PI controller a user quickly achieves the optimal level of
partitioning. When the system reaches optimal partitioning
state, integral action (Ki × (Epi + TEp−1i )) maintains user’s
level of optimality around the optimal value. Initially when
the deviation is more, ypi is large, but as the user reaches
optimal state deviation → 0 and so does the ypi . In the
current system, the controller achieves the auto-correction by
modifying the upload capacity in terms of its output (ypi ).
The capacity allocated for the upload in the next iteration,
i.e., (Sp+1i ) gets modified by amount ypi . However, if the
change in upload capacity reduces the download bandwidth
(Dp+1i ) below a threshold value (1thr ), then the upload and
the download capacities are set to values Ci − 1thr and
1thr respectively. This is done so that user is capable of
receiving at least a minimum level of resources (1thr ) from
the network. Finally, the new partition values, i.e., Sp+1i and
Dp+1i are updated by the user for the next period p + 1. The
above process is repeated as long as the user remains in the
network.

Thus, ASZ changes the upload capacity in the step size (ypi )
which is a function of deviation from the level of optimal-
ity from the reference point. Due to dynamically adjusting
step size, the upload capacity and thereby the user’s level
of optimality stabilizes around the optimal point, unlike the
existing mechanisms [6] where fixed step size causes shared
capacity to oscillate around the optimal point. The ASZ algo-
rithm is presented in Algorithm 1. In the subsequent sections,
we study the performance of the ASZ algorithm in different
operational scenarios.

B. STUDY OF CONTROL SYSTEM PERFORMANCE
In this section, we compare the performance of the con-
tinuous time linear model of partitioning process with

Algorithm 1 ASZ: Bandwidth Allocation Algorithm
Initialization:
Initialize Kp, Ki and Ci from Table 1
Set S0i =

Ci
2 , 1thr =

Ci
10 , E

0
i = 0, TE−1i = 0 and Uref = 1

p← 0
Shared Capacity Evaluation:
repeat

Compute Up
i as in equation (7) and update

Epi ← Uref − U
p
i

ypi ← Kp × E
p
i + Ki × (Epi + TE

p−1
i )

TEpi ← TEp−1i + Epi
Sp+1i ← Spi + y

p
i

if Ci − S
p+1
i ≤ 1thr then

Sp+1i ← Ci −1thr
end if
Dp+1i ← Ci − S

p+1
i

p←p+ 1
return Sp+1i and Dp+1i

until User i is in the network

the actual discrete time distributed network, to verify the
following: Accuracy of the transfer function, and appreciable
change in output when parameter derived for the linear model
are used in the actual distributed system.

Using transfer functions G(s) and C(s) derived in
section V, we have simulated a linear model of capacity par-
titioning process in SIMULINK. Fig. 2b presents the block
diagram model used in SIMULINK. The components values
used in this model, i.e., transfer functions G(s) and C(s)
are evaluated from (8) and (17) respectively. The param-
eter values used in these equations are listed in Table 1.
Apart from the linear model, we have also simulated two
distributed network viz., Nwk 1 and Nwk 2, where ASZ is
used to decide the partitioning of the link capacity. These
distributed networks differ in the link capacity partition-
ing followed by the newcomer when it joins the network.
At the outset in the Nwk 1, a new entrant allocates 0 and
entire link capacity for the upload and download respec-
tively, whereas in the Nwk 2, a new entrant allocates its half
of the link capacity for both upload and download. After
that, members of both the networks use ASZ to adjust their
link capacity.

The level of optimality achieved by the linear model,
Nwk 1, and Nwk 2 are represented by UTransfer Function,
UNwk 1, andUNwk 2 respectively in Fig. 2b. Initially, there is a
slight mismatch in the level of optimality obtained by users in
these three systems. This happens because users in the linear
model and the Nwk 1 initially share nothing, while users in
Nwk 2 share half of the link capacity for upload. Therefore
members in the linear model and Nwk 1 initially receive the
level of optimality equal to 0, whereas in Nwk 2 members
initially receive the level of optimality close to the optimal
level of partitioning (Uref ). It takes some time for users in the

3560 VOLUME 8, 2020



N. Singha et al.: Adaptive Capacity Partitioning in Cooperative Computing to Maximize Received Resources

FIGURE 3. Performance evaluation of ASZ.

linear model and Nwk 1 to reach Uref . This perturbation is
more prominent in Nwk 1, where initially UNwk 1 is 0, then
it overshoots Uref and after some time return back to Uref .
Initially, as all the users in Nwk 1 share nothing, so they
receive 0 resources resulting in UNwk 1 = 0. The error input
(Uref −UNwk 1) to controller becomes very high. This causes
PI output to reach very large value for the next period, which
leads to users allocating very larger part of their link capacity
for upload. After some time, resources to be downloaded
are available in abundance across the network. So UNwk 1
overshoots Uref . The PI controller again readjusts its output
to modify the shared capacity so thatUNwk 1 stabilizes around
Uref . The initial deviation in Nwk 1 is more than in the
linear model because we had assumed a linear system while
deriving controller (Kp and Ki) parameters, which is not the
case with Nwk 1. In spite of these initial deviation, for most of
a user’s lifetime output of the three systems are in argument
with each other. Hence these deviations can be tolerated.
This confirms the accuracy of the transfer function. It also
validates that the PI controller tuning parameters (Kp and Ki)
derived earlier for the continuous case (linear model) can be
successfully applied for the discrete time systems (Nwk 1 and
Nwk 2). The linear model is just for evaluating Kp and Ki,
while the practical systems are modeled using Nwk 1 and
Nwk 2.

Among Nwk 1 and Nwk 2, users in Nwk 2 initially parti-
tion their link capacity equally between upload and down-
load. So unlike Nwk 1, level of optimality of members of
Nwk 2 reaches Uref at the starting of the network. Thus
as in Fig. 2b, linearity condition of a user which is always
working around the optimal point is never violated in Nwk 2.
Hence, when compared with members of Nwk 2, initially
users of Nwk 1 are at a loss because they do not operate at the
optimal partitioning point. Any user will prefer Nwk 2 over
Nwk 1. Therefore we use Nwk 2 in the remaining portion
of the paper for simulation and comparison purpose. This
justifies the following assumptions- Linearization of the sys-
tem around the optimal point for deriving transfer function
(section V-D.2), and the initialization of the upload and
download capacity of a new user as half of the link capacity
(Algorithm 1).

C. ASZ’S ADAPTIVENESS ANALYSIS
In this section, we study the adaptiveness of ASZ to the
changing network dynamics. Network’s dynamic changes
when either the new users entering or the existing users
leaving the network or becoming free-riders–this changes
resources available for download across the network–which
may change the optimal point for a user. Through simulation,
we determine ASZ ability in handling the change in the
optimal point.

We first determine how a user’s level of optimality changes
in the presence of ASZ changes, when the new entrants arrive
in the network. A networkwith 100 users initially is simulated
to study this change. After the end of the periods which are
multiples of 100, 100 new users are assumed to arrive in the
network. It implies that when 100th and 200th period ends,
the total number of users in the network become 200 and 300
respectively. This process continues till 900th period, where
total count of members in network reaches 1000. All the users
in the network use ASZ to partition their link capacity. With
ASZ , a new user i start uploading (Ci2 ) as soon they enter
the network. This ensures that the net resources demanded is
equal to resources available across the network. As equilib-
rium between demand and resources available is maintained,
so there should not be appreciable change in the output of this
system (UNew_Nodes_Nwk ). Simulation result in Fig. 3b also
substantiates this claim. UNew_Nodes_Nwk almost remain close
to the optimal level (Uref ) as the new users join the network.
Hence, the new users entering the system do not disturb the
optimal point of operation of the other users.

We now ascertain the robustness of ASZ in handling
free-riders and the users leaving the network. A user
becoming free-rider is more harmful than the departing
users. Departing users will neither contribute nor consume
resources, whereas free-riders in spite of no contribution, will
try to consume resources. So users becoming free-rider will
create a greater demand and resource availability imbalance
in comparison to the users leaving the network. Thus, a parti-
tioningmechanism capable of maintaining an optimal level of
partitioning in presence of free-riders can successfully handle
the departure of users. So we check ASZ’s performance only
for free-riding users.
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In the simulation model, the percentage of free-riders is
gradually increased from 0% to 99.99% of the total users.
Network starts with 1000 user with no free-riders. At the end
of periods, which are multiple of 100, free-riders percentage
is increased by 10% of the initial number of users. Thus,
after 100th period 10% contributing users become free-riders,
it becomes 20% after 200th period and so on. At the end of
1000 periods, 90% of the users free-ride. Finally to model
worst- case scenario, after 1050 periods, 99.99% of the total
users in the network are considered to be free-riding.

Fig. 3b, shows that the contributing users (non free-riders)
domaintain their level of optimality (UFree_Riders_Nwk ) around
optimal value (Uref ), even when some of the users are turn-
ing free-riders. UFree_Riders_Nwk do get perturbed and stabi-
lizes again when a spurt of conversion to free-riders happen.
During such a spurt, the supply of resources sees a sudden
reduction while the demand remains the same, causing a
decrease inUFree_Riders_Nwk . As the reputation system reduces
the reputation of the users converted to free-riders, after a
while demand-supply balance is restored andUFree_Riders_Nwk
achieves Uref . At the same time, genuine users also try
to increase the supply of resources to compensate for the
deficit of uploaded resources caused by free-riders. This
leads to a brief oscillatory behavior inUFree_Riders_Nwk whose
magnitude increases with increase in the fraction of free-
riders. However, oscillation settles down after some time,
and UFree_Riders_Nwk stabilizes around Uref . Thus, simulation
demonstrated that ASZ is adaptive to dynamics changes in
the network.

D. COMPATIBILITY ANALYSIS OF CONTROL SYSTEM
In a distributed network, every user is free to use its own
partitioningmechanism. Each partitioningmechanism should
be compatible with the other mechanisms or strategies being
used to achieve optimal partition. It is important to analyze the
effectiveness of ASZ when it is deployed together with other
partition strategies. We assume that ASZ is implemented at
each user independent of the partitioning strategies employed
by the other users. It will optimize on the basis of resources
received from the other users in the network. Therefore,
analyzing performance of ASZ w.r.t. efficient partitioning
strategies5 [6], [9] is almost similar to analysis, where all
the users are employing ASZ. In such a scenario, all the
users will be able to easily achieve and subsequently maintain
their level of optimality close to the optimal point. The real
performance issue lies in more adverse scenario where net
resources available across network is less than resources
demanded. Therefore we consider a scenario with scarcity
of resources, i.e., other users are either free-riders or employ
inefficient strategies, which always allocate greater part of
its link capacity for download, independent of the resources

5The strategies in which average bandwidth allocated for upload and
download are close to optimal partition are referred as efficient partitioning
strategy

received by the user. The simulation model to analyze the
performance of ASZ is described below.

Every user is connected to the network with a single capac-
ity link of 18 Mb/s as in [6]. In the network, 20% of users are
normal users, who partition their capacity using ASZ. Their
corresponding received bandwidth is denoted by BWnrm. The
users employing inefficient partitioning strategies are mod-
eled as follows. 20% of users completely free-ride, i.e., they
use their entire link capacity of 18 Mb/s for download, other
20% users will contribute at most 2 Mb/s of their capacity
for uploading, while another 20% will provide maximum 6
Mb/s for upload and the remaining 20% users, will provide
maximum 8Mb/s of their link capacity for upload. The corre-
sponding bandwidth received by these set of users is denoted
by BW0−18, BW2−16, BW6−12, and BW8−10 respectively. All
these users are designated as free-riders, as they request more
and share less.

From Fig. 3c, it is evident that members who use ASZ
receive maximum bandwidth from the network. The amount
of bandwidth received by them does get affected, as there
is a scarcity of resources across the network because of
the high level of free-riding (80% of the users free-ride
in some form). Due to the resource scarcity, initially allo-
cating half of their link capacity for upload is not enough
for users to achieve optimal partitioning. Hence, an initial
oscillatory behavior is observed in BWnrm for users employ-
ing ASZ, which eventually settles down. As other users
are not using ASZ for capacity partitioning, so they do not
exhibit oscillatory behavior. However, these users are at a
loss as the bandwidth received by them decreases with the
decrease in the allocation for the upload capacity—due to
a decline in their contribution level—although they have
more download bandwidth available at their disposal. Thus,
there is no advantage for users in allocating more towards
download. Since users employing ASZ receive highest
resources, so all the users in the network will gradually start
using it.

Clearly, ASZ is compatible with other partitioning strate-
gies, and users will eventually shift towards using it.

VII. COMPARISON WITH EXISTING SCHEMES
Until now, we evaluated ASZ in the general setup for
distributed networks and explored its effectiveness in
achieving optimal capacity partitioning. In this section,
the existing schemes: BitTorrent [10] and Reputation-Based
Resource Allocation (RRA) Policy [6] are compared
with ASZ.

A. COMPARISON WITH BITTORRENT
BitTorrent is a popular file sharing protocol which is also
based on the concept of cooperative computing. It lacks
capacity partitioning algorithm [6] to partition link capac-
ity between upload and download in single capacity links.
We study the change in received resources when ASZ is
integrated with BitTorrent.
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FIGURE 4. Comparison of ASZ with Existing schemes.

1) SIMULATION SETUP
We simulate an elementary version of BitTorrent based on
Azures, a popular BT Client [6], [10]. Since a typical swarm
(Set of users actively uploading and downloading data) in
BitTorrent consists of around 50 users, we have also simu-
lated the same sized network for comparison of ASZ with
the BitTorrent. All the users in this network are connected by
a single capacity link of 18 Mb/s. As this paper focuses on
evaluating the performance in terms of efficient link capacity
partitioning, so we overlook the chunk selection algorithm
and assume that a user is always interested in chunks of files
available with its neighbor. The users request for chunks at
the starting of a period. After receiving requests, a user x
implements choking algorithm [10] for its resource distri-
bution. Top four requesters who have provided the highest
download rate to x are selected for service. Apart from this,
after every third period, x randomly selects a requester for
service regardless of its download performance. This allows
new entrants to obtain initial chunks, and user x to explore
other users in the network. Once x finalizes the requesters,
then it allocates its upload capacity equally among them.

2) BITTORRENT LIMITATIONS AND RESULT COMPARISON
We now illustrate how the absence of capacity partitioning
algorithm in BitTorrent leads to a reduction in resources
received by users. A network is simulated, where users are
equally divided into five groups. Members in group 0 − 18,
2 − 16, 6 − 12, 8 − 10 and 9 − 9 allocate 0, 2, 6, 8, and
9 Mb/s respectively for upload. It is evident from Fig. 4a
that users receive very less amount then what they upload.
Average resources received by users across the network is
equal to 4.9 Mb/s.
To enhance the received resources, ASZ is integrated with

BitTorrent. At the start of a period, every BitTorrent user
uses ASZ for deciding the division of its link capacity. The
ASZ strategically divide the link capacity between upload and
download so that a user receives maximum resources from
the network. This is also validated by the simulation results
in Fig. 4a, where the average bandwidth received increases
from 4.9 to 8.5 Mb/s.

B. ASZ COMPARISON WITH REPUTATION-BASED
RESOURCE ALLOCATION (RRA) POLICY
RRA [6] is a capacity partitioning algorithm for distributed
systems which dynamically divides link capacity between
upload and download so that a user can receive maximum
resources from the network. We know compare the perfor-
mance of RRA with ASZ. The performance comparison is in
terms of the resources received by the users.

1) SIMULATION SETUP
The simulation model used for comparing RRA with ASZ
is based on the model in [6]. A 100 member distributed
network is simulated. Let Ci, S

p
i and Dpi represent the total,

upload and download capacity of the user i during time period
p. Users initially upload nothing; during subsequent periods
they change their upload capacity in fixed step size 1 = Ci

10 .
The increase in upload capacity increases user’s chances of
getting more resources. When the resources allocated (T pi )
to user i is less than its download capacity (Dpi ), it increases
its upload capacity (Sp+1i ) by 1 amount in the next period.
Otherwise if T pi ≥ Dpi , then RRA further try to maximize
resources received by increasing itsDp+1i by1 at the expense
of decreased Sp+1i . To model RRA algorithm as a control
system, ‘‘If ’’ conditions in original RRA algorithm [6] are
re-written in terms of level of optimality (Ui) for a user i.
If T pi < Dpi , level of optimality (Up

i = T pi /D
p
i ) is less

than 1; so for Up
i < 1, Sp+1i is incremented by 1. Similarly

if T pi > Dpi , then U
p
i ≥ 1, resulting in decrement in Sp+1i by

1. The RRA in its new form is represented by Algorithm 2.

2) RRA MODELING AS CONTROL SYSTEM
The capacity partitioning process using RRA as control sys-
tem is shown in Fig. 2c. The transfer function (C(s)) derived
in the section V-D.2 is reused to represent the actuator and the
plant. As the controller’s output changes the upload capacity
and thereby the capacity partitioning of a user, so the con-
troller is specific to the partitioning algorithm being used. The
input of the RRA controller is the error signal: Uref − Ui.
For Ui < 1 error signal is positive, and for Ui > 1 it is
negative. From algorithm 2, the output of RRA controller
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Algorithm 2 RRA Bandwidth Allocation algorithm
Initialization:
Initialize Ci from Table 1
Set S0i = 0, 1 = Ci

10 and Uref = 1
p← 0
Shared Capacity Evaluation:
repeat

Compute Up
i as in equation (7) and update

if (Up
i < 1) AND (Spi < Ci −1) then
Sp+1i ← Spi +1

else if (Up
i ≥ 1) AND (Spi > 1) then

Sp+1i ← Spi −1
end if
Dp+1i ← Ci − S

p+1
i

p←p+ 1
return Sp+1i and Dp+1i

until Node i is in the network

for positive and negative error is +1 and −1 respectively.
Hence GRRA(s), the transfer function of RRA controller is
(1×signum function) as shown in Fig. 2c. Laplace transform
of signum function is given by 2

s [26], so

GRRA(s) =
21
s
. (25)

Since the derived controller is not tuned keeping system’s
stability under consideration (Gain and Phase margin are
not used to derive the controller), so the simulation of the
linear model (i.e., T (s) = GRRA(s)×C(s)) of the system
using SIMULINK, leads to unbounded output Ui, oscillating
between (−∞,∞). In the actual network simulation, as the
link capacities are finite, so Ui does not reach ∞, but it
saturates and oscillates around the optimal point with a finite
amplitude. This reduces resources received by a user when
it implements RRA instead of ASZ. Reduction in the perfor-
mance will be explained in detail in the next subsection.

3) RRA RESULT COMPARISON AND LIMITATION
Let URRA and UASZ denote the level of optimality received
by users when they use RRA and ASZ respectively.
Fig. 4b and 4c presents the results comparing RRAwith ASZ.
While Fig. 4b shows level of optimality (U ) observed at a
single user, Fig. 4c plots level of optimality

(
UAvg

)
which is

averaged out across all the users in the network.
One user is randomly selected from the network and URRA

and UASZ is plotted in Fig. 4b. Simulation results show that
URRA never becomes equal to Uref , but oscillates around it.
This behavior results from the fact that RRA uses a fixed
step size 1 for modification in the capacity partitioning.
Thus URRA never settles down and continues oscillating
around Uref with amplitude proportional to 1. However,
ASZ employs the integral action [21] of the PI controller
to adjusts the step size and reduce the steady state error.6

6 Steady state error is equal to the difference between Uref and level of
optimality received, when the system is operating near Uref .

Due to adaptive step size, a user maintains its UASZ close to
Uref . Satsiou and Tassiulas [6] who proposed RRA studied
average bandwidth allocation for the overall network. They
summed the bandwidth received by all the users and then
found the average. Since the results provided only the mean
and not the higher order moments like variance, they were
unable to show the unsettled behavior in the network. It physi-
cally implies that the average across the overall network gives
a false impression that bandwidth has stabilized. It happens
because users whose capacity increases get compensated by
the users whose capacity decreases.

The unsettled behavior in the received bandwidth for a sin-
gle user is also reflected in the simulation results averaged out
across the network. In Fig. 4c, the average level of optimality
(UAvg

RRA) achieved using RRA algorithm stabilizes at a point
lower than Uref . U

Avg
RRA is unable to achieve Uref because of

the greater wastage of resources in the network implementing
RRA. Bandwidth wastage occurs because users do not oper-
ate close toUref . WhenURRA > Uref for a user, it is allocated
more resources than its download capacity. This user cannot
utilize the resources greater than its download capacity. At the
same time, a needy user with URRA < Uref receives less than
its download capacity, and will be deprived of the resource.
ASZ minimizes bandwidth wastage by using adaptive step
sizes, and UAvg

ASZ remains around Uref for most of network
lifetime (refer Fig. 4c). Therefore in terms of the received
resources, the performance of ASZ is better than RRA.

4) COMPLEXITY COMPARISON
The PI parameters calculation is a one time process: Its time
complexity isO(1). The number of arithmetic operations and
storage variables required in ASZ is more than in RRA, but
their asymptotic bound is same: The time and space complex-
ity for both the algorithms is O(n). Hence, ASZ algorithm
gives better performance than RRA, without any significant
increase in the system’s complexity.

VIII. CONCLUSIONS
We have presented a complete framework to analyze and
solve the problem of optimal partitioning of link capacity in
single capacity links. A metric ‘‘level of optimality (U )’’ is
introduced to determine how close to the optimal partitioning,
a given partition mechanism operates. U = 1 corresponds to
the optimal partitioning level (Uref ). To achieveUref , we have
modeled capacity partitioning as a feedback control problem
and proposed an algorithm (ASZ). This algorithm is adaptive
to network changes, and users can maintain their U close to
Uref in the presence of the arrival and the departure of other
users from the network. ASZ is also compatible with existing
partitioning schemes. When a portion of users in the network
employ some other partitioning technique, it is still able to
optimally divide the link capacity for a user.

We have also evaluated ASZ performance with other dis-
tributed protocols, viz., BitTorrent and Reputation-Based
Resource Allocation(RRA). BitTorrent lacks any mechanism
to partition link capacity optimally. ASZ was integrated with
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BitTorrent and users were able to receive more resources by
operating at the optimal partitioning level. The ASZ was also
compared with RRA. Since ASZ operates closer to the opti-
mal partitioning point compared to RRA, resources received
by a user employing ASZ were more.

APPENDIX
LAPLACE TO FOURIER CONVERSION
OF TRANSFER FUNCTION
The Laplace transform of any function f (t) is

∫ t
0 f (t)e

−stdt =∫ t
0 f (t)e

−(σ+jw)tdt , where s = σ + jw. The real part σ
contributes to the term e−σ t . This term decays to zero during
steady state (t →∞) and only the jw part which gives the
sinusoidal steady state response (i.e., e−jwt = cos(wt) −
jsin(wt)) remains. Life time of a user in the network is very
large when compared with its initial bootstrapping period.
Hence it can be assumed, that a user mostly operates in the
steady state. Therefore σ can be neglected, and s = jw can be
substituted in the overall transfer function of the control loop.
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