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ABSTRACT In this paper, we propose a parameter estimation method for multiple-input-multiple-
output (MIMO) automotive radars that consists of two stages. The first stage is a low-complexity three-
dimensional (3D) constant false alarm rate (CFAR) detection technique that exploits spatial filtering to
extend radar coverage, and it performs low-complexity peak detection. The second stage is an ESPRIT-based
direction-of-arrival (DOA) estimation technique that adopts time–frequency resource division to generate
high-quality snapshots and it performs DOA estimation of targets without the knowledge of the target num-
ber. Computer simulations reveal that the proposed method achieves the performance of the two-dimensional
ordered statistic CFAR (2D OS-CFAR) while having much lower computational complexity, and it offers
the higher resolution DOA estimation compared to the conventional MIMO radars.

INDEX TERMS MIMO radar, mmWave radar, CFAR detection, DOA estimation, ESPRIT.

I. INTRODUCTION
With the increasing number of vehicles, the probability of
road traffic accidents has consequently increased. In actual
driving situations, a vehicle safety system can provide early
warning for accidents by reminding drivers or actively con-
trolling vehicles to prevent dangerous situations and thus
protect the driver [1]. To provide the required safety func-
tionality, the system must grasp accurate real-time traffic
information of surrounding vehicles. Most vehicle safety sys-
tems employ radar as a primary sensor for target detection.
Thus, to achieve the above safety objective, signal processing
methods for automotive radars having high performance and
robustness and low complexity must be designed.

Frequency modulated continuous wave (FMCW) and
orthogonal frequency division multiplexing (OFDM) wave-
forms in automotive radars are widely discussed. They can
provide high-resolution measurements of the target’s range
and velocity [2]. Compared to other radar systems, including
pulse radar, they have low measurement time and peak-to-
average power ratio [3]. FMCW and OFDM radars obtain
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range and velocity information from the sinusoidal compo-
nents, which directly reflect the target’s propagation delay
and Doppler shift [4]. To detect the sinusoidal components of
targets in the spectrum, a peak detector is required.When con-
sidering noise, the constant false alarm rate (CFAR) detector
is widely preferred for peak detection in radar systems [5].

CFAR detectors evaluate the average power level of noise
according to cells neighboring the cell under test (CUT)
and set an appropriate detection threshold. Conventional
CFAR detectors include cell-average CFAR (CA-CFAR) and
order-statistic CFAR (OS-CFAR). CA-CFAR averages the
power of neighboring cells to evaluate the noise power.
However, neighbor cells may not represent the noise in
multi-target scenarios [6]. Thus, CA-CFAR often overesti-
mates the average noise and degrades the detection proba-
bility. In contrast, OS-CFAR determines the threshold based
on the relative magnitude of neighboring cells. The selected
order and corresponding threshold can be determined using
the OS-CFAR detector, which is more robust than CA-CFAR
in multi-target scenarios [7].

The above-mentioned CFAR detectors and some modi-
fied CFAR detectors with binary integration [8] are adopted
to handle most scenarios, but they still have drawbacks,
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including loss of detection of objects with a small radar cross
section or objects located at the boundary of the field-of-
view (FOV) of radars with a small antenna gain, and high
computational complexity in noise-level estimation.

However, to obtain reliable target information, accuracy,
and resolution in range, the Doppler velocity and direction-
of-arrival (DOA) of targets are required. Although these
requirements can be fulfilled by exploiting more resources
in the time and frequency domains and increasing computa-
tional complexity, DOA estimation is restricted by the num-
ber of antennas on the radar.

DOA estimation techniques can be divided into beam-
forming, subspace and parametric types [9]. The conven-
tional beamforming technique steers the beam towards
different directions and determine the target DOA at the
peak beam response. It has poor resolution for close tar-
gets. MVDR [10], [11], RELAX [12] and FIIB [13] are
improved beamforming techniques having higher resolution
but also higher complexity. The subspace techniques exploit
the Eigen-structure of the spatial signal correlation matrix,
two popular examples being MUSIC [14] and ESPRIT [15].
The parametric techniques exploit the spatial signal model
directly, with maximum likelihood (ML) [16] and subspace
fitting (SF) [17] being two well-known estimators. Both
the subspace and parametric techniques can achieve signif-
icantly higher resolution than the conventional beamform-
ing technique while requiring higher complexity. In general,
the subspace techniques offer the best compromise between
resolution and complexity among the three types of
technique.

Two major concerns exist in subspace-based DOA estima-
tion techniques. First, they could degrade owing to coherent
signals. In automotive radars, returns are coherent because
they originate from the same source. Spatial smoothing is
an effective means of decorrelating coherent signals for uni-
form linear array (ULA) [18]–[20]. In [21], an ESPRIT-like
technique can decorrelate coherent signals at the cost of a
50% reduction in array aperture. Second, they usually require
a priori information of the target number. Although reliable
target number detectors [22], [23] are available, they also
degrade for coherent signals. New techniques have been pro-
posed that do not require knowledge of target number. In [24],
an improved version of [21] works with a spatial spectrum
function independent of target number. In [25], a MUSIC-
like technique is realized in the framework of beamforming
and does not require target number information.

We propose a parameter estimation method for multiple-
input-multiple-output (MIMO) automotive radars to address
these issues. The method comprises a low-complexity
beamforming-aided CFAR detection technique and an
ESPRIT-based DOA estimation technique. ESPRIT is
adopted because it allows a flexible array geometry and
makes a simple criterion for target number determination
feasible, as described in Section IV.C. For the proposed
CFAR detection technique, we first exploit spatial filtering

to enhance the SNR of target returns. Computational cost is
then reduced by a transformation from 3D CFAR detection to
two 1D CFAR detections. For the proposed DOA estimation
technique, we first exploit time-frequency (T-F) division to
generate sufficient snapshots for DOA estimation. Spatial
and frequency decorrelation is then employed to decorre-
late coherent target returns. Finally, ESPRIT is employed to
perform DOA estimation aided by a proposed criterion for
discriminating closely spaced targets.

The remainder of the paper is organized as follows.
Section II presents the system model. Section III describes
the low-complexity 3D CFAR detection. Section IV details
the ESPRIT-based DOA estimation technique. Section V
gives the simulation results. Finally, Section VI draws the
conclusions.

II. SYSTEM MODEL
We here consider a scenario where one monostatic multiple-
input-multiple-output (MIMO) radar is equipped on a
vehicle. The desired target parameters are the range,
relative Doppler velocity, and DOA of each target to
observer. Although the proposed method in this paper can
be applied to both FMCW and OFDM radars, OFDM radar
offers the advantage of flexibility of T-F resource allocation.
Without loss of generality, the paper will concentrate on a
single monostatic OFDM radar for which the interference
from other vehicles’ radars can be treated as additive white
Gaussian noise (AWGN) [26].

A. OFDM RADAR SIGNAL MODEL
OFDM is a method of encoding digital data at orthogonal
subcarriers. In this paper, an OFDM symbol is composed of
N subcarriers, each carrying a modulation symbol. M OFDM
symbols are combined into an OFDM frame. The transmitted
modulation symbols in anOFDM frame can be represented as
a matrix called the transmitted frame matrix. The modulation
symbol at the kth subcarrier in the lth OFDM symbol of a
transmitted OFDM frame is denoted as

(FTx)k,l = ak,l . (1)

By OFDM processing [26], the received modulation symbol
at the kth subcarrier in the lth OFDM symbol of a received
OFDM frame is expressed as

(FRx)k,l

=

H−1∑
h=0

{
(FTx)k,l · bh · e

−j2πTofD.3l · e−j2πτh(k1f ) · ejϕn
}
, (2)

where FRx is the received frame matrix consisting ofH target
returns, and 1f is the subcarrier spacing. bh, fD,h, τh, and ϕh
are complex amplitude, Doppler shift, round-trip time, and
random phase rotation, respectively, associated with the hth
target returns in a frame. The details of the above parameters
can also found in [26].
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FIGURE 1. Illustration of a collocated ULA-MIMO radar.

FIGURE 2. Illustration of spectrally interleaved subcarrier allocation.

B. ULA-MIMO-OFDM RADAR MODEL
Without loss of generality, we consider a collocated MIMO
radar model, where there is a ULA with NT transmit and NR
receive antennas. The transmit antennas and receive antennas
are deployed with uniform spacing dT and dR respectively
as shown in FIGURE 1. The antenna patterns follow the
spec. of TI AWR1642BOOST-ODS evaluation board, which
comes with a patch antenna [27]. In a MIMO radar system,
the transmit antennas must radiate mutually orthogonal sig-
nals. In this paper, we propose to use spectrally interleaved
OFDM signals, in which NT mutually orthogonal signals
are generated by spectrally dividing the original OFDM
signal with interleaved subcarrier allocation illustrated in
FIGURE 2.

The orthogonality of signals from the transmit antennas
enables the receiver to distinguish signals from different
transmit antennas, so a MIMO radar can be viewed as an
augmented passive array radar [28]. Here we set dT = 2λc
as NRdR to form a contiguous NTNR-element virtual array
uniformly spaced by dR as shown in FIGURE 1. For exam-
ple, a 2×4 MIMO radar configuration is equivalent to a
virtual 8-element array radar. With spectrally interleaved
MIMO-OFDM signals, the received modulation symbol at
the kth subcarrier in the lth OFDM symbol at the ith virtual
receive antenna can be represented as

[
(FRx)i

]
k,l =

H−1∑
h=0


(FTx)k,l · bh

·e−jπ i
f0+(k−1)1f

fc
sin θh

·e−j2πTOfD,hl · e−j2πτh(k1f ) · ejϕh


+ (Wi)k,l , (3)

where f0 is start frequency, andWi is an AWGN matrix.
With the predetermined transmitted frame matrix FTx,

the channel coefficient matrix (CCM) of each Tx/Rx antenna

FIGURE 3. Illustration of CCM generation for FMCW radars.

pair can be obtained and represented as

[Hi]k,l =

[
(FRx)i

]
k,l

(FTx)k,l
=

{
H−1∑
h=0

bhe
−jπ i f0+(k−1)1ffc

sin θh

e−j2πTOfD,hle−j2πτh(k1f )ejϕh

}
+

(
W̃ i

)
k,l
, i = 1, 2, . . . ,NTNR, (4)

where W̃ i is an AGWN matrix given that all modulation
symbols have equal power, which is assumed in this paper.
Note that the CCM reflects channel effect on target returns
at different points in the T-F grid of the receiver. Moreover,
range and Doppler velocity of a target induce phase differ-
ences between rows and columns of a CCM.

The above procedure for obtaining the CCMs also applies
to FMCW radars because FMCW radars share nearly the
same signal processing framework with OFDM radars as
illustrated in FIGURE 3. It has been shown that the CCMs
of FMCW radars are equivalent to those of OFDM radars
when the frequency slope of FMCW chirps is sufficiently
large [29].

C. 2D FFT OPERATION
The objective of the two-dimensional (2D) FFT operation is
to acquire target information (i.e. range and Doppler velocity)
from radar target returns. For the case of identifying sinusoids
in a discrete-time signal, 2D FFT is the optimal solution
if the sinusoids in the signals are well resolved. A CCM
range-Doppler (RD) map is generated by 2D FFT for the
CCM at the ith antenna, which can be represented as

2D FFT (Hi) (n,m)

=

NFFT−1∑
k=0

MFFT−1∑
µ=0

(Hi)k,l e
−j2π lm

MFFT

 ej2π
kn

NFFT ,

i = 1, 2, . . . ,NTNR, (5)

where NFFT and MFFT are the FFT lengths in the subcarrier
and OFDM symbol domains respectively, and are given by
NFFT = N and MFFT = M .
A CCM RD map is composed of NFFT × MFFT CCM

RD bins. Maximum-ratio-combining (MRC) is achieved at
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FIGURE 4. 2D CCM RD map with range = 100 m, Doppler velocity =
1.4 m/s, N = 256, M = 256, NFFT = 4096, MFFT = 4096, and
SNR = 0 dB.

CCM RD bins when range and Doppler velocity of targets
match both discrete sinusoidal components in both domains.
They are calledMRC-CCM RD bins, and yield local maxima
in the CCM RD map as illustrated in FIGURE 4. There
are remaining phase differences of the MRC-CCM RD bins
between different antennas due to inter-antenna spacing and
DOA of targets. Based on the phase differences, DOA of
targets can be estimated. More importantly, a processing gain
of 10log10(NM) dB can be achieved byMRC to enhanceDOA
estimation performance.

D. CFAR DETECTION IN MIMO RADARS
The idea of CFAR is to evaluate the average power of noise
level according to neighboring cells surrounding the CUT and
set an appropriate threshold for the detection. Moreover, for
a given noise level and threshold, CFAR detection improves
with high receive SNR of target returns (i.e., a high detection
rate can be obtained). The receive SNR is defined as SNR
observed at the receive antennas before the 2D FFT operation.

For noise level estimation with multiple antennas, a con-
ventional way is to take the average of magnitude of CCM
RD maps at different antennas. This is called non-coherent
combining and it yields a non-coherently combined RD map
as illustrated in FIGURE 5(a). The value at a certain RD bin
in the non-coherently combined RDmap is the average of the
magnitudes of the values at the same RD bin of the individual
RD maps at different antennas.

For target detection, as an alternative to the non-coherently
combined RD map, a coherently combined RD map can
improve CFAR detection with spatial filtering. The spatial
filtering operation focuses CCM RD maps at different anten-
nas to specific beam directions to enhance the power of target
returns. It does not increase noise power because noise is non-
directional. Ideally, the receive SNR of target returns can be
enhanced by a factor of the number of antennas. The spatially
filtered RD map at the sth beam direction is defined by

SFMs(n,m) =
NTNR−1∑
i=0

2D FFT (Fi)(n,m)e
jπ i f0+(n−1)1ffc

sin θs ,

s = 1, . . . , S, (6)

FIGURE 5. Illustration of (a) non-coherent combining and (b) spatial
filtering in a MIMO radar system.

where S is the number of beam directions. With spatial filter-
ing employed, CFAR detection can improve its detection rate
because the receive SNR of target returns is enhanced by a
factor of NTNR. FIGURE 5(b) gives the illustration of spatial
filtering.

The above process requires that targets are detected based
on S spatially filtered RD maps, leading to 3D CFAR detec-
tion, as illustrated in FIGURE 5(b). Compared to the process
with a non-coherently combined RDmap, which is 2D CFAR
detection, 3D CFAR detection incurs higher complexity. This
prompts the development of a low complexity version of 3D
CFAR detection.

E. BASIC ASSUMPTIONS
The validity of the above signal models implies five assump-
tions as follows:

(E1) No distortion other than AWGN is induced by the
transmit and receive front-ends.

(E2) The OFDM cyclic prefix (CP) duration is larger than
the round-trip propagation time of the farthest target.

(E3) The subcarrier spacing is at least one order of magni-
tude larger than the largest Doppler shift.

(E4) The Doppler shift is the same at all subcarriers.
(E5) The target’s distance and relative velocity to observer

remain constant during the transmission of a single frame.

III. LOW-COMPLEXITY 3D CFAR DETECTION
In 3D CFAR detection, with more beam directions, there is
a higher probability of pointing at the true target direction
and achieving higher receive SNR of target returns. How-
ever, this will increase complexity according to (6). As a
remedy, we propose a new technique to reduce complex-
ity of 3D CFAR detection. The technique transforms a 3D
CFAR detection into two simple 1D CFAR detections and
a cross validation operation. It is described in three steps
as follows:
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FIGURE 6. Illustration of sorting operation on non-coherently combined
RD map.

A. STEP 1: THRESHOLD DETERMINATION
We sort the values of the non-coherently combined RD map
in descending order along each row and column of the map
respectively into (NFFT +MFFT) sequences, as shown in (7)
and FIGURE 6 for an example.{
Xi(1) ≥ · · · ≥ Xi(MFFT), i = 1, . . . ,NFFT

Xi(1) ≥ · · · ≥ Xi(NFFT), i=NFFT+1, . . . ,NFFT+MFFT.

(7)

Then the estimated noise level Ei and threshold Ti are
defined as in (8) for the ith sequence:{

Ei = Xi(ki)
Ti = G× Ei,

, i = 1, . . . ,NFFT +MFFT, (8)

where G is a scaling factor to maintain a constant false alarm
rate for target detection. The index ki is chosen to be the
smallest number that satisfies

ki+β−1∑
n=ki

u
(

Xi(n)
Xi+1(n)

−α

)
=0, i=1, . . . ,NFFT+MFFT, (9)

where u(•) is the unit step function, α is the ratio threshold
between adjacent values in a sequence, and β is a predeter-
mined stop threshold. The goal of (9) is to select an index
that represents the elbow point of a sorted sequence [30].
Specifically, a sorted sequence associated with target returns
is composed of a steep sequence and a smooth sequence.
An elbow point is defined as the end and start point of a steep
and smooth sequences, respectively, as shown in FIGURE 7,
in which β = 3 consecutive ratios of adjacent values are
lower than α. The steep sequence usually contains power of
target returns. Hence, based on the characteristic of smooth
variation of noise power in a sorted sequence, choosing
proper α and β can prevent the noise level Ei from being
overestimated by taking power of target returns into account.
For the considered environment, choosing α = 1 dB and
β = 10 yields robust noise level estimation. Finally, we can

FIGURE 7. Illustration of CFAR threshold determination.

FIGURE 8. Illustration of (a) maximum operation (b) two 1D CFAR
detections in candidate target set determination.

obtain the thresholds for all rows of the non-coherently com-
bined RD map as {T1,T2, . . . ,TNFFT} and all columns as
{TNFFT+1,TNFFT+2, . . . ,TNFFT+MFFT}.

B. STEP 2: CANDIDATE TARGET SET DETERMINATION
After determining the threshold for each row and column
of the non-coherently combined RD map, candidate target
sets in range and Doppler domains can be determined. First,
we take the maximum value of S spatially filtered RD maps
for the CCM RD bin at the r th row and cth column and
record the corresponding beam direction index, and denote
them as (Pr,c, idr,c), where r = 1, . . . ,NFFT and c =
1, . . . ,MFFT. As shown in FIGURE 8(a), amaximumRDmap
is constructed.

The above maximum taking operation helps retain spatial
improvement of receive SNR of target returns, and reduce the
complexity of 3D CFAR detection. For further complexity
reduction, the same operation is applied to the maximum RD
map in range and Doppler domains to acquire two sequences
{P̄1, . . . , P̄NFFT} and {P̄NFFT+1, . . . , P̄NFFT+MFFT}, whose ele-
ments are maximum values of rows or columns of the max-
imum RD map. Their corresponding beam direction index
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sets are {id1, . . . , idNFFT} and {idNFFT+1, . . . , idNFFT+MFFT}.
The procedure outline in III.A and III.B transforms a 3D
CFAR detection into two 1D CFAR detections with much
lower complexity. For the 1D CFAR detection, as shown
in FIGURE 8(b), a target is declared at the ith CUT if
Pig > Ti is true, where r = 1,. . . , ,NFFT+ MFFT. Assuming
there are I and J targets declared in range and Doppler
domains respectively, their range and Doppler velocity can
be expressed as {d̂1, . . . , d̂I } and {v̂1, . . . , v̂J }. Their corre-
sponding beam direction index sets are {ĩdd,1, . . . , ĩdd,I } and
{ĩdv,1, . . . , ĩdv,J }.

C. STEP 3: CROSS VALIDATION
The final target list is confirmed by a cross validation to
check CUTs with index pair (di,vj) using of the 2DOS-CFAR
technique [8], where i = 1,. . . ,I andj = 1,. . . , J . There are
IJ candidate targets to be checked. Assuming U targets are
declared by the cross validation, the final parameter set of
targets is {(d̂1, v̂1, θ̂1),. . . , (d̂U , v̂U , θ̂U )}.

D. SUMMARY
The proposed CFAR detection converts the high complexity
3D CFAR detection into (1) maximum RD map generation,
(2) two 1D CFAR detections and (3) DOA estimation (to
be discussed in the next section). The overall complexity is
greatly reduced. There may be a certain increase in latency
due to themore steps involved. Fortunately, the two 1DCFAR
detections can be performed in parallel, and the other two
steps are single-shot operations and do not incur much extra
latency to the proposed method.

IV. ESPRIT BASED DOA ESTIMATION
After the above CFAR detection, U estimated target param-
eter sets (i.e. (d̂u, v̂u, θ̂u) ∈ �U ) associated with UMRC-
CCM RD bins can be obtained. The accuracy and resolution
of d̂u and v̂u depend on the aperture size in frequency and
time domains respectively (i.e., number of subcarriers, N ,
and number of OFDM symbols in a frame,M ). With modern
OFDM and Sample-and-Hold circuits, N andM are typically
large enough to achieve high accuracy and resolution of range
and velocity. In comparison, the resolution and accuracy of
DOA estimation is restricted by the limited aperture size in
the spatial domain. It is thus possible that more than one target
is present at the sameMRC-CCMRD bin and not detected by
the low-complexity 3D CFAR detection.

In this section, we propose a T-F division signal pre-
processing operation to generate multiple snapshots for
DOA estimation. Spatial and frequency decorrelation is then
exploited to decorrelate coherent target returns. Next, a mod-
ified ESPRIT based DOA estimation technique without pre-
liminary knowledge of target number is proposed. For brevity,
in this section, the processing flow will be demonstrated for
the uth target parameter set (d̂u, v̂u, θ̂u) at the uth MRC-CCM
RD bin. The technique can be divided into three steps as
illustrated in FIGURE 9, and are introduced in the following
subsections.

FIGURE 9. Block diagram of proposed ESPRIT based DOA estimation
technique.

A. STEP 1: TIME-FREQUENCY DIVISION AND SNAPSHOT
GENERATION
NTNR CCMs are acquired from a frame of OFDM radar
signal return with bandwidth B. A CCM is evenly divided
into Ndivide and Mdivide parts in frequency and time domains,
respectively, and generate NdivideMdivide channel coefficient
sub-matrices (CCSMs) in the CCM. The mth CCSM associ-
ated with the ith antenna is denoted as

Di,m ∈ CN/Ndivide×M/Mdivide , m = 1, 2, . . . ,NdivideMdivide,

(10)

and Di,m belongs to the pth sub-band form = (p -1)Mdivide+

1,. . . , pMdivide. Following the same concept in II.D, an CCSM
RD map is composed of (N/Ndivide) × (M/Mdivide) CCSM
RD bins. U MRC-CCSM RD bins of a CCSM RD map
can be found by a 2D FFT operation. For each antenna,
NdivideMdivide snapshots are defined as the values of the uth
MRC-CCSM RD bins in NdivideMdivide CCSM RD maps,
leading toNdivideMdivide 2D FFT operations to obtain target
parameter sets associated with the CCSM RD maps. High
computational cost is thus induced.

To reduce the computational cost, with assumption (E5),
we exploit the target parameter sets given from the previous
stage (CFAR stage) to generate the snapshots. For the uth
MRC-CCSM RD bins in CCSM RD maps, we can substitute
the target parameter set (d̂u, v̂u, θ̂u) and the mth CCSM at
ith antenna into (11) to acquire the ith element of the mth
snapshot vector at low computational cost, where the snap-
shot vector is defined by (12).

su,i,m =
N/Ndivide−1∑

k=0

M/Mdivide−1∑
l=0

(Di,m)k,l · e
−j2π v̂u

vmax
l


ej2π

d̂u
dmax

k
, (11)

su,m = [su,1,m, su,2,m, . . . , su,NTNR,m]
T . (12)
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FIGURE 10. Illustration of T-F division operation.NdivideMdivide CCSMs are
obtained by equally dividing each CCM at each antenna according to the
selected Ndivide and Mdivide.

Then, we can have a snapshot matrix for the uth target in
the pth subband given by

Su,p = [su,1+(p−1)Mdivide , su,2+(p−1)Mdivide , . . . , su,pMdivide ]

∈ CNTNR×Mdivide . (13)

Consider a ULA with NTNR identical antennas {1,. . . ,
NTNR} divided into overlapping subarrays of size Nsub
(where Nsub ≤ NTNR) with antennas {1,. . . , Nsub} form-
ing the first subarray, antennas {2,. . . , Nsub + 1} forming
the second subarray, etc. The snapshot sub-matrix of the lth
sub-array for the uth detected target can be defined as

Su,p,l
= [0Nsub×(l−1)|INsub×Nsub |0Nsub×(L−l)]

H
Nsub×NTNR

·[su,1+(p−1)Mdivide ,su,2+(p−1)Mdivide,. . .,su,pMdivide ]NTNR×Mdivide

= A(fp, θu)Xu,p,l + Zu,p,l
=
[
xu,p,l(1), xu,p,l(2), . . . , xu,p,l(Mdivide)

]
. (14)

where IQ×Q and OQ×W are the identity and zeros matrices
of a proper size, and L = NTNR − Nsub + 1. A(f , θu) is the
Nsub × D direction matrix composed of D steering vectors
at frequency f associated with the DOAs, where D is the
number of targets at the uth MRC-CCM RD bin. Xu,p,l is the
D × Mdivide signal matrix composed of D rows of coherent
signal vectors, and Zu,p,l is the Nsub×Mdivide AWGNmatrix.
The spatial covariance matrix in the pth subband at the lth
subarray can be represented as

Ru,p,ll = E
[
xu,p,l(n)xHu,p,l(n)

]
' Su,p,lSHu,p,l/Mdivide. (15)

For the choice of Ndivide and Mdivide,a rule of thumb is
that NdivideMdivide should be at least 2NTNR to ensure accu-
rate estimation of the covariance matrix. Ndivide should be
large enough to maintain the narrowband assumption for
each CCSM. For a larger Mdivide, more effective snapshots
can be obtained, which will be elaborated in IV.B. FIGURE
10 illustrates the proposed T-F division operation.

B. STEP 2: TARGET DECORRELATION
For the uth target, with Ndivide snapshot matrices in each
subband, we can acquire a full-size sample spatial covari-
ance matrix of size (NTNR) × (NTNR), and employ a
high-resolution subspace based DOA estimation technique.
However, such a technique would fail to resolve multiple
targets whose returns are coherent due to that they are emitted
from the same radar transmitter. In the following, we adopt a
preprocessing operation to decorrelate the coherent returns,
which includes spatial smoothing, frequency smoothing, and
forward-backward averaging [18]–[20].

1) SPATIAL SMOOTHING (SS)
We first partition the array into L subarrays and then generate
the average of the subarray spatial covariance matrices to
decorrelate coherent target returns [18]. The spatial covari-
ance matrix after spatial smoothing in the pth subband for the
uth target is formed by

Ru,p =

L∑
l=1

R̂u,p,l/L, (16)

where R̂u,p,l = Su,p,lSHu,p,l/Mdivide.

2) FREQUENCY FOCUSING (FF)
When working with a large signal bandwidth, the direction
matrix may vary with frequency. In this case, we can focus
the direction matrix at frequency fp into the one at frequency
fc by designing a focusing matrix T(fp) that satisfies

T(fp)A(fp, θ) = A(fc, θ), p = 1, 2, . . . ,Ndivide. (17)

A plausible solution to focusing is the Rotational Signal
Subspace (RSS) given by T(fp) = U(fp)VH (fp)[18], where
the columns of U(fp) and V(fp) are the left and right sin-
gular vectors of A(fc, θ̄ )A(fp, θ̄ )H . θ̄ is a set of preselected
angles consisting of preliminary coarse DOA estimates θ̂u
associated with the uth MRC-CCMRD bin and two auxiliary
angles (θ̂u± 0.25 BW3dB) [31], where BW3dB is the 3-dB
beam width of the array. The focused covariance matrix is
defined as

Ru =

Ndivide∑
p=1

T(fp)Ru,pTH (fp). (18)

Frequency focusing is also shown to be effective in decorre-
lating coherent signals [31].

3) FORWARD-BACKWARD AVERAGING (FBA)
To further enhance decorrelation, the FBA operation [19]
is adopted, which leads to the FBSS-FF spatial covariance
matrix given by

Ru,FBA =
1
2

(
Ru + JR∗uJ

)
, (19)

where J is a matrix containing ones in its anti-diagonal and
zeros elsewhere.
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C. STEP 3: DOA ESTIMATION AND TARGET NUMBER
DISCRIMINATION
In practice, it is unlikely that more than two targets with
different DOAs share the same range and Doppler velocity
estimates (i.e., falling into the same CCM RD bin) because
of the limitation of FOV of radars, and the size of vehi-
cles. Assuming that there are at most two targets at each
MRC-CCM RD bin, we propose a modified ESPRIT based
technique as follows.

Denote as D̄ a guess of target number. By applying ESPRIT
with D̄ = 1, we obtain (qu, λu), where qu and λu are the esti-
mated DOA and corresponding eigenvalue respectively. With
D̄ = 2, we obtain (qu,1, λu,1) and (qu,2, λu,2). By comparing
the results with D̄ = 1 and D̄ = 2, the target number D̂ and
DOA can be jointly determined by the following criterion as
summarized in (20). The detailed derivation of the criterion
which is available online can be found in [32].

D̂ = 2, takequ,1 and qu,2,
if
(∣∣λu − λu,1∣∣ ≥ ε1, ∣∣λu − λu,2∣∣ ≥ ε1)

or
(∣∣λu − λu,1∣∣ ≤ ε2, ∣∣λu − λu,2∣∣ ≤ ε2)

or
(
||λu| − 1| ≤ ε3,

∣∣∣∣λu,1∣∣− 1
∣∣ ≤ ε3, ∣∣∣∣λu,2∣∣− 1

∣∣ ≤ ε3)
D̂ = 1, take qu, otherwise,

(20)

where ε1, ε2 and ε3 are predetermined thresholds.
Finally, an additional confirmation of D̂ = 2 is conducted.

qu,1 and qu,2 are taken as DOA estimates (i.e., D̂ = 2) if one
of the following two requirements is satisfied.

(R1) the angle difference |qu,1− qu,2| is smaller
thanBW3dB.

(R2) the angle difference |qu,1− qu,2| is larger thanBW3dB,
andqu,1 and qu,2 correspond to peaks of beam response at the
uth MRC-CCM RD bin.

Otherwise, qu is taken as the DOA estimate (D̂ = 1).
If (R2) is confirmed, qu,1 and qu,2 are taken as preliminary
coarse DOA estimates and the procedure in step 2 is repeated,
which yields better focusingmatrices to further enhanceDOA
estimation. The proposed ESPRIT based DOA estimation
technique is summarized in PSEUDO CODE I.
As a final remark, if the assumption of no more than two

targets at each MRC-CCM RD bin is not met, then the target
number will be most likely decided as 2, and the resulting
DOA estimates will be some weighted averages of the target
DOAs, according to the property of ESPRIT. To cope with
the rare case of more than two targets, extra conditions and/or
multiple frames can be incorporated in the criterion [32].

V. SIMULATION RESULTS
The simulation environment is based on MATLAB 2018a on
a computer with an Intel i7-3770 CPU Core and 32GB of
memory. In all simulations, a 2× 4MIMO-OFDM radar sys-
tem as depicted in FIGURE 1 with an SRRwaveform charac-
teristic is considered according to commercial SRR designs
and hardware specifications [34], [27]. TABLE 1 shows the
general parameter setting.

Pseudo Code 1 Proposed ESPRIT Based DOA Estimation
Technique

Inputs: Fi, i = 1, . . . ,NTNR, (d̂u, v̂u, θ̂u), u = 1, . . . ,U
Outputs: (d̂w, v̂w, ϑ̂w),w = 1, . . . ,W
∗ STEP 1 starts and setW = 0
Acquire Di,m by Fi
FOR u = 1, . . . ,U

Calculate su,i,m, su,m, Su,p, Su,p,l by (11)-(14);
END
∗STEP 1 ends;
FOR u = 1, . . . ,U (defaultW = 0)
flag_ReDO = 0;
∗STEP 2 starts
Calculate Ru,p,l , Ru,p, Ru and RFBA,uby (16)-(19);
∗STEP 2 ends / STEP 3 starts
Acquire (qu, φu, λu), (qu,1, φu,1, λu,1) and

(qu,2, φu,2, λu,2);
Obtain D̂ and target DOA(s) by (20)
IF D̂ = 2
IF ((R2) is true) & (flag_ReDO = 0)
flag_ReDO = 1;
go back to STEP 2 and refocus at qu,1 and qu,2;

ELSE D̂ = 1;
END

END
FOR w = W + 1, . . . ,W + D̂
w′ = w−W ;
IF D̂ = 2, θ̄w′ = qu,w′ ;
ELSE θ̄w′ = qu;
END
ϑ̂w = θ̄w′; (d̂w,v̂w) = (d̂u, v̂u);

END
W = W + D̂;
∗STEP 3 ends

END

A. LOW-COMPLEXITY 3D CFAR DETECTION
In this subsection, we evaluate the performance of the pro-
posed CFAR detection technique under the Weibull distri-
bution clutter model [33]. For each simulation, we conduct
10,000 Monte Carlo experiments.In the following simula-
tions, we compare the proposed 3D CFAR and conventional
2D OS-CFAR techniques [8] in terms of detection rate and
computational complexity. Note that 2D OS-CFAR needs
to exhaustively check all CUTs in the maximum RD map.
The simulation settings are given in Table 2. There are two
scenarios with different target range-Doppler distributions,
as shown in FIGURE 11(a) and FIGURE 11(b). Targets are
easier to be detected with random distribution as illustrated in
FIGURE 11(a). On the other hand, rectangular distribution as
shown in FIGURE 11(b) induces masking effect [35], leading
to degradation in detection rate.

Denote as SNRO the SNR observed at an MRC-CCM
RD bin with spatial filtering, and SNRI the receive SNR
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TABLE 1. General parameters used in computer simulations.

TABLE 2. Simulation Parameter Settings for Evaluating the Computational
Complexity and Detection Rate of Proposed CFAR Detection Technique.

as defined in Section II.D. We have SNRO ≈ SNRI
+ 10log10(NMNTNR) ≈ SNRI + 63 dB. CNR is the
ratio of clutter power over noise power at each RD bin.
FIGUREs 12 and 13 show the comparison of detection rate
with different target numbers and CNR for the two target
distribution scenarios. As a rule of thumb, a target can be
successfully detected when SNRO is higher than 30-35 dB
[36], and a typical value of CNR is 10 dB [37]. For all
cases, the performance of the proposed technique can achieve
that of 2D OS-CFAR with SNRO higher than 30 dB. When
SNRO is lower than 30 dB, the proposed technique tends to
overestimate noise level and hence has a lower detection rate
than 2D OS-CFAR, and this is more significant when clutter
is present. In the presence of clutter, both techniques degrade
slightly and the proposed technique can still achieve the
performance of 2D OS-CFAR with SNRO higher than 30 dB.
On the other hand, for the distribution shown in FIGURE
11(b), although severe masking effects occur, the proposed
technique can still reach the performance of 2D OS-CFAR.

FIGURE 11. Target distribution scenarios: (a) random distribution
(b) rectangular distribution.

FIGURE 12. Detection rate in the random distribution scenario. Solid line:
proposed technique; Dash line: 2D OS-CFAR. (a) CNR = −∞ dB
(b) CNR = 10 dB.

FIGURE 13. Detection rate in the rectangular distribution scenario. Solid
line: proposed technique; Dash line: 2D OS-CFAR. (a) CNR = −∞ dB
(b) CNR = 10 dB.

FIGUREs 14 and 15 show the comparison of computa-
tion time with different SNRO and CNR for the two target
distribution scenarios. The proposed technique requires only
about 1% of the computation time of 2DOS-CFAR in the low
SNR regime. In the high SNR regime, more candidate targets
would be declared because of the relatively lower noise level.
Thus, higher computational complexity is required to conduct
more cross validations for the targets. In the presence of
clutter, the proposed technique requires a longer computation
time because more candidate targets would be declared.

B. ESPRIT BASED DOA ESTIMATION
In this subsection, we compare the performance of the pro-
posed DOA estimation technique with existing techniques.
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FIGURE 14. Computation time in the random distribution scenario. Solid
line: proposed technique; Dash line: 2D OS-CFAR. (a) CNR = −∞ dB
(b) CNR = 10 dB.

FIGURE 15. Computation time in the rectangular distribution scenario.
Solid line: proposed technique; Dash line: 2D OS-CFAR. (a) CNR = −∞ dB
(b) CNR = 10 dB.

TABLE 3. Simulation parameter settings for evaluating the resolution
probability and RMSE of proposed technique.

We consider five different cases with two targets having
the same range and Doppler velocity and separated by
1, 2, 3, 4 and 5 degrees. The simulation settings are given
in Table 3. We conduct 1000 Monte Carlo experiments for
each case to evaluate the performance of each technique. In all
simulations, 1θ stands for the difference between the two
targets’ DOA.

1) EFFECT OF T-F RESOURCE DIVISION
As suggested in Section IV, for an 8-element array,
a proper choice for the number of snapshots is 16. Dif-
ferent combinations of Ndivide and Mdivide lead to differ-
ent degrees of decorrelation of SS and FF operations.
FIGUREs 16 and 17 show the target resolution probability

FIGURE 16. Comparison of resolution probability performance with
different T-F division settings. SNRI = −17 dB (SNRθ = 25 dB).

FIGURE 17. Comparison of RMSE performance with different T-F division
settings. SNRI = −17 dB (SNRθ = 25 dB).

FIGURE 18. Comparison of resolution probability performance of
different DOA estimation techniques with SNRI = −27 dB (SNRθ = 15 dB).

FIGURE 19. Comparison of resolution probability performance of
different DOA estimation techniques with SNRI = −17 dB (SNRθ = 25 dB).

and root-mean-square-error (RMSE) of the proposed
DOA estimation technique with five different combina-
tions and SNRI = −17 dB. For all cases, a process-
ing gain of 10log10(NM/NdivideMdivide) ≈ 42 dB can be
achieved, so the effective SNR (SNRθ ) for DOA estima-
tion is 25 dB. It is found that Ndivide = 8, Mdivide = 2
gives the best performance. In this case, the eight sub-
bands satisfy the narrowband assumption with a moderate
focusing error.
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FIGURE 20. Comparison of RMSE performance of different DOA
estimation techniques with SNRI = −27 dB (SNRθ = 15 dB).

FIGURE 21. Comparison of RMSE performance of different DOA
estimation techniques with SNRI = −17 dB (SNRθ = 25 dB).

2) PERFORMANCE COMPARISON WITH
EXISTING TECHNIQUES
Here we compare the proposed DOA estimation technique
with the MVDR [11], ESPRIT-like [24] and MUSIC-like
[25] techniques. These techniques are chosen for compari-
son because they all provide high-resolution DOA estima-
tion without knowledge of target number. For all techniques,
the proposed T-F division and decorrelation operations are
employed with Ndivide = 8, Mdivide = 2. As a benchmark,
we also include the result of the proposed technique with
perfect knowledge of target number, which we denote as
proposed-ideal.

FIGUREs 18-21 show the target resolution probability and
RMSE of the four techniques with different SNRI. We can
observe that the proposed technique outperforms the other
three techniques with an angular resolution of 2 degrees and
lower RMSE. As expected, the MVDR technique has the
poorest performance compared to the other three subspace
based techniques. The ESPRIT-like technique exhibits poorer
resolution than the MUSIC technique because of reduction in
effective array aperture. The MUSIC-like technique exploits
the same array aperture as the proposed technique. However,
its resolution degrades due to that only one noise eigen-
vector is used for computing the spatial power spectrum.
Finally, the proposed technique performs equally well with
and without knowledge of target number. This confirms the
effectiveness of the proposed target discrimination criterion
presented in Section IV.C.

VI. CONCLUSIONS
In this paper, we propose a parameter estimation method
for MIMO radars. The method comprises a low-complexity
CFAR target detection technique and an ESPRIT-based DOA

estimation technique that does not require knowledge of the
target number. The CFAR detection technique leverages a
spatial filtering operation to extend its coverage and performs
low-complexity peak detection by converting the original
3D detection task into two 1D tasks. The DOA estimation
technique adopts a proposed T-F division preprocessing oper-
ation to generate high-quality snapshots, as well as a cri-
terion enabling ESPRIT to conduct DOA estimation with-
out knowledge of the target number. The simulation results
show that the proposed method significantly outperforms the
conventional detectors in terms of complexity and angular
resolution. In particular, it requires only 1% of the compu-
tational time of traditional 2D OS-CFAR with approximately
the same detection rate.
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