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ABSTRACT A conventional printed spiral coil (PSC) has a self-resonant frequency and its equivalent
circuit is a parallel inductor—capacitor (LC) circuit. It is desirable to use PSCs in wireless power transfer
(WPT) applications; however, these are most commonly constituted by a series-primary and series- or
parallel-secondary circuit. This paper proposes a printed conformal split-ring loop with the characteristic of
a series LC circuit at its resonance frequency. Regarding the loop as a self-resonator, a magnetic-resonance
coupled (MRC) WPT system with series-primary and secondary operating at 433 MHz in the industrial
scientific and medical (ISM) band is presented. The maximum measured power transfer efficiency is 87.9%
at a transfer distance of 22 mm, the best-reported result for such a configuration.

INDEX TERMS Wireless power transfer, split-ring resonators, printed spiral coils, near fields, magnetic

resonance coupling.

I. INTRODUCTION

Wireless power transfer (WPT) is increasingly prevalent and
popular in the modern world; it has been widely applied
in industrial areas (portable/wearable electronic devices and
electric cars) [1]-[5] and medical applications (medical sen-
sors and implanted devices) [6]-[8] to charge batteries with-
out the inconvenience of using wires.

The magnetic resonance coupling (MRC) method for WPT
has provoked widespread and profound interest due to its
various advantages, since it was reported by Kurs er al
from the Massachusetts Institute of Technology in 2007,
using self-resonant coils [9]. Wire coils are widely used in
MRC based WPT [10]-[12] because of their high-quality
factor (Q), however, they present technical difficulties in
precise fabrication and mass production [13]. Furthermore,
due to the typically large area occupied by the wire coils, they
are normally applicable for use in large electronic devices
such as electric cars. They are not usually appropriate for
use in small electronic devices such as implantable med-
ical devices, wireless sensors and devices with integrated
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circuit boards using micromachining technology. Alterna-
tively, planar printed spiral coils (PSCs) are low-profile, low-
cost and can have relatively small-dimensions. Additionally,
planar PSCs offer higher geometrical manufacturing preci-
sion and have the potential to be integrated together with
integrated circuits or within packages [14]. The ability to
manufacture PSCs on flexible substrates means that they are
suitable for use in wearable devices. There have been many
PSC designs proposed for MRC based WPT featuring vari-
ous shapes including circular, square and rectangular spiral
coils [13], [15], [16].

Frequencies such as 0.3 MHz, 6.78 MHz and 13.56 MHz
were considered in most recent works for WPT [17]. At these
frequencies, coils with large inductances, up to uH, can be
created allowing high quality factors to be achieved and
power transfer distance increased into the centimeters or
meter ranges due to the longer wavelengths of typically more
than 10 m. As electromagnetic energy absorption in human
tissues increases with frequency, for implantable applica-
tions, lower frequency bands are typically selected. However,
as received power is proportional to the rate of change of the
incident magnetic field, choosing a higher carrier frequency
improves power transfer. Therefore, a compromise between
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power transfer and field penetration into the human body
must be made.

Few works related to coils printed on PCB in the sub-GHz
region have been published, as standard spiral coils printed
on PCB have low inductances (nH) and are therefore unable
to realize high power transfer efficiencies or large transfer
distances. Also, matching networks for both the primary
(transmit) and secondary (receive) circuits are essential in
achieving a high power transfer efficiency.

The equivalent circuit of a conventional PSC is a par-
allel LC network hence using a pair to form a WPT
system would constitute a parallel-primary and parallel-
secondary system. However, the parallel-parallel topology
offers poor power transfer performance, since the voltage
source would be loaded by an open circuit at resonance if
directly connected [18]. The series-primary, series-secondary
topology and the series-primary, parallel-secondary topology
are most typically used for wireless power transfer.

In this work, a conformal planar split-ring loop is proposed
with the characteristic of a series LC circuit. Importantly,
this planar split-ring loop can be regarded as a self-resonator
and is designed for use at 433 MHz. The proposed loop is a
good candidate for WPT in applications such as Ultra High
Frequency Radio Frequency Identification (UHF-RFID), for
example in mobile devices where only the addition of the
coil would be needed. In comparison to other work, the pro-
posed system offers improved power transfer efficiency
over a transfer distance of 22 mm (less than 0.05 of a
wavelength). The design of the proposed split-ring loop is
explained in Section II. The WPT performance is presented in
Section III. The measurement setup and results are illustrated
in Section IV and conclusions are provided in Section V.
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FIGURE 1. (a) Physical layout model of conventional 6-turn PSC. (b) The
equivalent circuit of conventional 6-turn PSC.

Il. DESIGNS OF PLANAR SPLIT-RING LOOPS

A conventional PSC with 6 turns on FR-4 substrate (¢, = 4.4)
with a thickness of 1.5 mm, is shown in Figure 1(a). The width
of each track is 2 mm and the gap between the two tracks
is 0.5 mm. A discrete 50 2 port was used for simulations.
The equivalent circuit of the PSC is shown in in Figure 1(b).
The real and imaginary parts of the impedance (Z) are shown
in Figure 2. This conventional PSC is inductive at lower
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FIGURE 2. The equivalent circuit of conventional 6-turn PSC.
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FIGURE 3. (a) Physical layout model of designed loop. (b) The equivalent
circuit of designed sprit-ring loop at resonance frequency.

frequencies and becomes capacitive at higher frequencies.
At the self-resonant frequency, the parallel LC circuit
becomes open circuit (termed parallel self-resonance from
this point), which as mentioned is not suitable for the primary
side of the WPT system.

A conformal split-ring loop with small dimensions was
designed in this work using the roundabout technique,
as shown in Figure 3(a), in order to realize the character-
istics of a series LC circuit at the desired frequency. The
loop impedance was optimized by forcing Im(Z) to zero
and minimizing Re(Z) at 433 MHz. This was achieved by
setting gap5 to 0.5 mm and then sweeping parameter w from
2 mm to 3.5 mm. A second optimization stage then swept
gap5 from 0.5 mm to 2 mm, as shown in Figure 4 and
Figure 5 respectively.

It can be seen in Figure 4 that each curve has two parallel
self-resonances and an additional point exists between these
two where the loop acts as a series LC circuit (as shown
in Figure 3(b)), indicated by the impedance changing from
capacitive to inductive with increasing frequency (termed
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FIGURE 4. The imaginary part of impedance of designed loop antenna
with the varying of frequency by changing the width of each track.

series self-resonance from this point). Only when the param-
eter w is 3 mm, does the series self-resonant point exist
around 433 MHz.

The parameter gap5 was optimized by varying as 0.5 mm,
1 mm, 1.5 mm and 2 mm to bring the series self-resonant
point closer to 433 MHz. From Figure 5, it is worth noting
that varying gap5 results in a shifting of the parallel self-
resonances, they shift closer together as gap5 increases.

The imaginary part of the impedance of this split-ring loop
is greater than zero in the frequency range of interest when the
parameter gap5 is 1.5 mm and 2.0 mm. When gap5 is equal
to 1.0 mm the imaginary part of the impedance at 433 MHz
is closest to zero.

The details of the final optimized parameters for this split-
ring loop are provided in TABLE 1. The thickness of the
FR-4 substrate is 1.5 mm. The equivalent impedance of the
designed split-ring loop is shown in Figure 6. It can be
seen from Figure 6 that the simulated imaginary part of
the impedance is almost zero at 433 MHz. Therefore, this
proposed split-ring loop can be considered as a self-resonator
with one series self-resonant frequency of 433 MHz. The real
part of the impedance of the proposed split-ring loop is very
large at the two parallel self-resonances, whereas the real part
of the impedance is only 1.04 2 at the series self-resonance
point.

All optimizations are by means of full-wave simulations
performed using the transient solver of Computer Simulation
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FIGURE 5. The equivalent impedance of designed loop antenna with the
varying of frequency by changing the parameter of gap5.

TABLE 1. Dimensions of the proposed split-ring loop (units: mm).

Parameter Value Parameter Value
L 45 w 3.0
gapl 0.5 gap?2 0.5
gap3 0.5 gap4 0.5
gapsd 1.0 s 1.0

Technology (CST) Microwave Studio. According to previous
parameter optimizations, the width of each trace has a sig-
nificant influence on the self-resonance frequency, whereas,
the gap between adjacent traces has little influence. Conse-
quently, the optimization procedure to obtain a specific series
self-resonance frequency can be summarized as follows.
Firstly, initial values for w, s and the various trace gap param-
eters should be set. Secondly, the width of each trace should
be swept until the series self-resonance frequency is close to
the frequency of interest. Final optimization is achieved by
sweeping the value of each gap parameter between adjacent
traces to achieve series self-resonance at the frequency of
interest.

IIl. PLANAR SPLIT-RING LOOPS AS SELF-RESONTORS
FOR WIRELESS POWER TRANSFER

A. THE PERFORMANCE OF WIRELESS POWER LINK

For wireless power transfer, two resonant objects of the same
resonant frequency conduct power exchange at that resonant
frequency, which is magnetic resonance coupled wireless
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FIGURE 6. The equivalent impedance of designed split-ring loop with the
varying of frequency.

distance (d

FIGURE 7. 3-D view of wireless power transfer.

power transfer. Two proposed split-ring loops with the same
self-resonant frequency are used to constitute a WPT system
of series-primary and series-secondary circuits. Two identical
split-ring loops can be used as the Tx and Rx, respectively.
A 3-D view of the loop as applied in WPT is shown in
Figure 7. The distance between Tx and Rx is 25 mm.

The simulated scattering parameters of the final loop
design are shown in Figure 8 for a fixed distance of 25 mm
between the Tx and Rx loops. A reference impedance of 50
has been assumed at both ports. It can be seen from Fig-
ure 8 that the proposed antenna operates at 433 MHz covering
a bandwidth of at least 27 MHz (421-448 MHz) for 11 <
—10 dB, which covers the 433-434 MHz ISM (Industrial
Scientific Medical) band. Additionally, at 433 MHz, the scat-
tering parameters are |S11| = —24.04 dB, |S21| = —0.74 dB,
and [S22| = —23.9 dB.
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FIGURE 8. Simulated scattering parameters of proposed antennas for
wireless power transfer.
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FIGURE 9. Simulated power transfer efficiency between two proposed
antennas for wireless power transfer with the distance of 25 mm.

Both source impedance (Z;;,) and load impedance (Zr4q)
are designed to be 50 €2, to allow practical measurements of
the power transfer efficiency (1) between the split-ring loops
obtained using [19]:

_ Power delivered to the load Zj oad — 155112 x 100%

ey

The trend of power transfer efficiency against frequency
is shown in Figure 9. It can be seen that the peak of the
power transfer efficiency is 84.33% at 433 MHz. The power
transfer efficiency is over 80% over the frequency band
430 MHz to 440 MHz, and hence is not highly sensitive
to operating frequency shift. However, the power transfer
efficiency dramatically decreases to 40% from 80% within
narrow bands from 417 MHz to 430 MHz and from 440 MHz
to 455 MHz. In other words, the power transfer efficiency
reaches its maximum at the resonant frequency (433 MHz),
then decreases greatly within a narrow band.

 Available power from the source
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B. PARAMETERS ANALYSIS

The influence of the split-ring loop’s series self-resonant
frequency on maximum power transfer efficiency has been
investigated. The parameters w and gap5 were swept again to
obtain plots of simulated power transfer efficiency over the
same ranges of the parameters used previously.
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FIGURE 10. Simulated power transfer efficiency of proposed split-ring
loop for wireless power transfer in dB by changing of the parameter w.

Figure 10 shows the simulated power transfer efficiency
for variation in parameter w (with gap5 fixed at 0.5 mm).
It is clear to see from Figure 10 that the parameter w has a
great influence on the loop self-resonant frequency at which
the power transfer efficiency reaches its peak. The resonant
frequency decreases as parameter w increases, which can also
be inferred from Figure 4.

Even though the power transfer efficiency of each curve
reaches a peak at the resonant frequency, the maximum power
transfer efficiency of each curve is not always over 80%.
The main reason for this is that for MRC the power transfer
efficiency is dependent on the mutual inductance of the loops,
which is distance dependent and changes with the width
of the track w. Therefore, each antenna will have its own
optimal distance based on the loop inductance at the operating
frequency.

Figure 11 shows the simulated power transfer efficiency
for variation in parameter gap5 (with w fixed at 3 mm). It can
be seen that the parameter gap5 has little influence on the
resonant frequency where the power transfer efficiency has
its peak value. This is because gap5 has little influence on
the series self-resonant frequency where the zero crossings
of the imaginary part of the impedance are closer together
than for w variation, as also shown in Figure 5. The resonant
frequency where the power transfer efficiency reaches a peak
is inversely proportional to the value of the parameter gap5.

The maximum power transfer efficiency of each curve is
over 80%, whereas the power transfer efficiency is highest at
433 MHz when the parameter gap5 is 1 mm. Variation in the
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FIGURE 11. Simulated power transfer efficiency of proposed split-ring
loop for wireless power transfer in dB by changing of the parameter gap5.
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FIGURE 12. Simulated power transfer efficiency for different transfer
distances.

gap5 parameter effects the resistance and inductance of the
loop. The change in resistance results in a variation in max-
imum power transfer efficiency through increased mismatch
and losses. Changes in inductance lead to the same situation
as for varying parameter w, in which power transfer efficiency
is related to the transfer distance due to the mutual inductance
of the antennas.

C. EFFECTS OF TRANSFER DISTANCE

The effect of transfer distance on WPT performance should
be considered in taking measurements and in designing prac-
tical applications. The transfer distance d relates to the dis-
tance between Tx and Rx, as shown in Figure 7. The transfer
distances investigated by simulation are 15 mm, 22 mm,
25 mm, 30 mm, 35 mm, 45 mm and 55 mm. The power
transfer efficiency can be calculated by equation (1) for each
transfer distance, as shown in Figure 12.
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It is worth noting that the simulated power transfer effi-
ciency reaches its peak of 95.7% at a transfer distance
of 22 mm. The power transfer efficiency decreases signifi-
cantly from 95.7% to 5% as the transfer distance increases
from 22 mm to 55 mm, which results from the coupling
coefficient decreasing exponentially with increasing trans-
fer distance. The power transfer efficiency remains at over
50% up to transfer distances of less than 30 mm. When
the transfer distance is 15 mm, the power transfer effi-
ciency has two peaks, one at 420 MHz and the other
at 452 MHz, respectively, which results from the frequency
splitting phenomena [20]. The power transfer efficiency is
66.33% at 433 MHz, which is not at a peak and is less than
that at the transfer distance of 25 mm. Therefore, in general,
power transfer efficiency between two antennas reaches a
peak at a certain transfer distance.

IV. MEASUREMENT SETUP AND RESULTS

The proposed antenna was fabricated on FR-4 substrate
as shown in Figure 13(a) using a PCB milling machine.
Figure 13(b) shows the measurement setup, where a Vector
Network Analyzer (VNA) is used with a reference impedance
of 50 Q. The two antennas are directly soldered with sub-
miniature version A (SMA) connectors and then connected
to two VINA ports, respectively.

1)k
£

i G . F" o —

1em SO

(a) (b)

FIGURE 13. (a) Fabricated antennas. (b) Measurement of proposed
antennas for wireless power transfer.

The measured scattering parameters are shown in
Figure 14, in which a slight frequency shift is seen to exist
between the simulation and measurement results. The value
of S11 drops below —10 dB over a smaller frequency range,
from 425 MHz to 445 MHz, but the proposed antenna still
has enough bandwidth to cover the MedRadio band and
the 433-434 MHz ISM band. At 433 MHz, the values of
measured |Si1|, |S21], |S22] are —16.2 dB, —1.03 dB and
—17.9 dB, respectively. Overall, the measured results show
good agreement with the simulated results.

The self-resonance of the antenna relies on the parasitic
capacitance formed between the conductive tracks of the
loop; therefore, it is necessary to consider possible effects
of surrounding mediums on the capacitance value that would
lead to a shift in resonance frequency. Practical scenarios in
which non-metallic mediums such as plastic, foam and paper
are placed in the direct vicinity of, as well as in between,
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FIGURE 14. Simulated and measured scattering parameters of proposed
antennas for wireless power transfer (a) reflection coefficient in dB
(b) transmission coefficient in dB.

the Tx and Rx resonators have been investigated. The per-
formance of wireless power transfer is not visibly affected by
the presence of these external subjects. A similar process was
followed using metal materials such as copper sheet, which
was also seen to have no clear influence on performance even
within several millimeters of the resonators.

The trends of numerical and experimental power transfer
efficiency against transfer distance are shown in Figure 15.
It can be observed from Figure 15 that the numerical and
experimental power transfer efficiency first increases and
then decreases greatly as the transfer distance rises from
15 mm to 55 mm at 433 MHz. This initially lower effi-
ciency over shorter distances is due to the frequency splitting
phenomenon [20].

The measured power transfer efficiency is seen to be lower
than seen in the simulation results. The first reason for this
is due to axis misalignment or rotation of the transmitter
with respect to the receiver during experiments. What’s more,
the parasitic resistance of the fabricated loop (typically larger)
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TABLE 2. Comparisons of this antenna with other work.

] Transfer
Ref. Types (Mfl(ilz) Tx Size (mm) Rx Size (mm) Distance Simulated PTE Measured PTE
(mm)
[21] Rectangular coils on 110 10x10 10x10 3 30% /
PCB (0.0011))
[22] Square Printed 50.25 120x120 120x120 100 / 43.62%
Spiral Coils (0.01675))
[23] H-slot Resonators 1450 20x20 20x20 35 90% 85%
(0.01692)\)
This Planar Split-ring 433 45x45 45x45 22 95.7% 87.9%
work Resonators (0.03175))
100 matching circuits, which makes the system simpler, more
~—— Simulated

~—@— Measured

80

Power tranfer efficiency(%)

10 20 30 40 50 60
Transfer distance (mm)

FIGURE 15. Simulated and measured power transfer efficiency of
proposed antennas for wireless power transfer against transfer distance.

is different to that of the simulation due to material toler-
ances and fabrication errors. This extra resistance results in
additional losses. Even though the measured power transfer
efficiency is not as high as in the simulated results, the power
transfer efficiency is still high at 78.77% over a transfer dis-
tance of 25 mm and 87.9% over a transfer distance of 22 mm.
Comparisons of this design with other works are summa-
rized in TABLE 2. This proposed split-ring loop can be used
for wireless power transfer in the UHF band. Despite the
relatively large size, the split-ring loop can achieve higher
power transfer efficiency over a larger transfer distance at a
higher frequency than in other works. Additionally, the power
transfer efficiency remains at over 30% when the transfer
distance increases to 35 mm, which is also better performance
than in the other published works, especially at 433 MHz.

V. CONCLUSION

A conformal split-ring loop has been introduced and dis-
cussed in this paper. The loop has the characteristic of a
series LC resonant circuit at one of its self-resonant fre-
quencies, indicated by the imaginary part of the impedance
curve changing from capacitive to inductive with increasing
frequency. The series LC looks like a small resistance at
the resonance frequency. The loop is designed to resonate
at 433 MHz (UHF band) without the need for additional

VOLUME 8, 2020

compact and easily adaptable for use in many WPT appli-
cations where space is restricted and complexity needs to be
avoided. The performance of the WPT system, was measured,
resulting in a power transfer efficiency reaching 87.9% at
a transfer distance of 22 mm. In comparison with existing
literature, this proposed design has the advantages of easy
fabrication, smaller size, and longer transmission distances at
similar efficiencies. The measured results show good agree-
ment with the simulated results and demonstrate that the
proposed split-ring loop antenna is a good candidate for WPT
as a self-resonant structure for applications such as portable
or mobile devices with RFID functions.
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