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ABSTRACT Automotive embedded systems comprise several domains, such as in software, electrical,
electronics, and control. When designing and testing functions at the top level, one generally ignores the
uncertainties arising from the electrical and electronic effects, which could lead to an irregular behavior
and deteriorate their performance even using the appropriate methodology for designing the embedded
control systems. Then, the studies and comparison on the effect of uncertainty in the automotive domain are
important to improve the overall performance of those control systems. Here, we explored the uncertainty
in control systems using the Monte Carlo (MC) and unscented transform (UT) methods. These methods
have been applied to a mobile seat platform (MSP) and a light emitting diode (LED) used for lighting of
heavy-duty vehicles. The UT for embedded control systems has shown better performance when compared
to the Monte Carlo method, in order to reduce the number of required variables and computational
resources in the simulation of failures and test-case generation. Finally, this investigation brings another
application for the UT, in order to exemplify its applicability and advantages when compared with the other
methods.

INDEX TERMS Automotive, unscented transform, Monte Carlo and embedded system.

I. INTRODUCTION
The statistical distribution with a small data sample could
still provide an accurate description of a random variable
if managed with the proper methodology. The Unscented
Transform, developed a few years ago, is a method that allows
obtaining the statistics of a random variable that undergoes a
nonlinear transformation [1]. The method is essentially based
on the principle that it is considerably more viable to approx-
imate a Gaussian distribution than to get a proper approxi-
mation for an arbitrary nonlinear function or transformation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora M. Onat.

The UT has been used to develop a generalized Kalman
Filter, labeled as Unscented Kalman Filter, which provides
better performance, when compared to the traditional Kalman
Filter, in nonlinear filters or control applications [1]. Here,
the UT has been applied in automotive embedded control
systems, particularly in the cases of controlling a DCmotor in
a mobile seat platform and to a lighting system of heavy-duty
vehicles.

Every control system has intrinsic hardware parameters
and it is often hard to consider a proper margin for variation
that combines their statistical distributions. As an important
part of the quality of a project and, consequently, of the prod-
uct, the research for tools and simulation methods that lead
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to failure forecast is justified and still motivates researchers
towards more efficient uses of resources and time to mar-
ket goals.

Several investigations have explored applications using
Unscented Transforms (UT) andMonte Carlo (MC)methods.
In [12], the Kalman Filter is used to estimate the state of
energy and power capacity of ion-lithium batteries, which
lead to a 2% error estimation for the parameters. In [13],
an improvement of the Kalman Filter was performed, in order
to get higher accuracy and make implementation easier, using
the idea of avoiding approximations on Taylor Series and pre-
dicting mean and covariance up to the third order. An evalua-
tion of the Kalmar filters was performed in [14] for induction
sensorless motor drivers, and their non-linear characteristics
at low stator speed, resulting in a good performance in pre-
dicting driver states. Improvements on variations of Kalman
filters and a comparison with Monte Carlo method have been
performed in [15] and [16], respectively.

An automotive embedded system comprises several
domains from software to hardware. However, in the design
and test of the functions at top level one generally neglect
uncertainties arising from the electrical and electronic effects,
which have unpredictable behavior, and could compromise
the device performance even using the appropriate method-
ology for designing the embedded control system.

In this paper, we demonstrate the applicability of the sim-
ulation methods such as Monte Carlo (MC) and Unscented
Transform (UT) methods that allow perform analysis of
explore the uncertainties in control automotive embedded
systems for two application case studies: a Mobile Seat Plat-
form (MSP) and a Light Emitting Diode (LED) used for light-
ing systems of heavy-duty vehicles. For our studies, the UT
demonstrates better performance when compared with MC
in which the results allowed identify the following relevant
contributions:

i) Definition and comparison of Monte Carlo and
Unscented Transform methods for random samples;

ii) Application sample showing the UT effectiveness and
likely better performance than Monte Carlo, which
could be demonstrated in a real application;

iii) The application and outcome results of UT in two
case studies of automotive electrical embedded systems
with better performance, justifying its deployment.

This paper is organized as follows: Section II outlines the
main characteristics of Monte Carlo and Unscented Trans-
form methods. Section III presents the application sample of
UT, such that it could be deployed in the automotive domain.
Section IV shows the application of UT in case studies
of automotive systems and its better performance, showing
its computational feasibility with fewer computer resources
and providing outcomes in less time. Finally, Section V
discusses the validity and reliability of this methodology
applied to those systems being extendible to other embed-
ded systems, in order to be incorporated in a development
workflow.

II. BACKGROUND OF MONTE CARLO METHO AND
UNCERTAINTY TRANSFORM TO NUMERICAL ANALYSIS
In statistics field, a random sample comprises a subset of
samples chosen from a large dataset, in which each sample
is chosen randomly and entirely by chance. Each individual
has the same probability of being chosen at any stage during
the sampling process, and each subset of k samples has the
same probability of being chosen for the sample like any other
subset of k samples. Therefore, this procedure and technique
is well known as a simple random sampling and should not
be confused with systematic random sampling.

MC is a well-known method for numeric random analysis
that uses repeated random samplings to obtain numerical
results for optimization problems, and is often used when
analytical solutions are too difficult or impossible.

UT is another method for numeric random analysis. It is a
mathematical function used to estimate the result of applying
a given nonlinear transformation to a probability distribution
that is characterized only in terms of a finite set of statistics.
UT is well-known for its use in Unscented Kalman Filter,
which uses nonlinear projections of mean and covariance
estimates to handle nonlinear systems.

Next, we present the mathematical models of MC and UT.

A. THE MONTE CARLO METHOD
MC can be used to characterize the uncertainty in physical
models [2] by sampling a large set of random numbers xi from
a known distribution p(x), and using them as input parame-
ters of the modeled physical system. Once the calculation is
completed, the output response statistics can be computed.

This method allows the estimation of all the main statistical
characteristics of the output. This is executed by calculating
the effect of the system mapping f (x) on a set of random
variables xi. The resulting set of random outputs yi = f (xi)
are samples of the actual output distribution. This technique
is suitable for multiple random variables with multiple prob-
ability distributions [2].

The sample mean (m̄f ) and variance (s2f ) of yi are
defined as:

m̄f =
1
N

N∑
i=1

yi

s2f =
1

N − 1

N∑
i=1

(yi − m̄f )2 (1)

They are the unbiased estimates of the real mean mf and
variance σ 2

f values. As the number of samples increases, the
sample mean and variance values converge to the respective
real ones. Eq. (1) is also applicable to problems with multiple
random variables.

For the determination of the distribution of a continu-
ous random variable, we can define the probability density
function (PDF). Then, PDF refers the density of probability
rather than the probability mass. Therefore, the concept is
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similar to the mass density in physics and its unit is repre-
sented by the probability per unit length. To obtain a better
perception of PDF, consider a continuous variable such X
and define the function fX (x) as follows such as fX (x) =
lim1→0+

P(x<X≤x+1)
1

.
The estimate of the probability density function is obtained

with the histogram of the calculated results. The larger the
number of samples, the closer the histogram approximates the
actual output probability density function.

Given the probability distribution of each variable, it is
possible to perform, based on the equations, the generation of
random values within the desired range. Each parameter can
have a variation determined by a distribution, and its values
can be randomly generated, and inserted into the mathemati-
cal modeling of the system. The effectiveness of the method
depends on a precise equation or modeling (encompassing
all the parameters) and on the correct survey of the statistical
variation allowed for each parameter [10].

The P parameter has a value within a given range of
distribution is the basis of the MC analytical method given in
Eq. (2), where F(x) is the distribution function. When there
are several variables to be counted in the model, a numerical
method is the most appropriate for probability estimation.

P =
∫ σ2

σ1
F(x)dx (2)

The mathematical model or equation of the system will
have a unique output, depending on each randomized value
for its parameters. Therefore, the basic principle is to calcu-
late the output variable of themodel with a large data set, each
with its parameters randomly varied [10].

B. THE UNSCENTED TRANSFORM METHOD
UT refers to a mathematical function that allows estimating
the result through the application of a given nonlinear trans-
formation to a probability distribution in terms of a finite set
of statistics. It has been developed by Julier and Uhlman [1],
with many successful applications [3]–[9].

UT can be described mathematically as a discrete distribu-
tion with probabilities pm (weights) and selected points um
(sigma points) that could represent a continuous one p(u),
where u is a continuous distribution. Therefore, the moments
of the discrete ummustmatch themoments of the distribution:

E
{
uk
}
=

∫
ukp (u) du =

∑
ukmpm (3)

In general, it is not possible to match all the moments
of u. For instance, if one chooses 3 sigma points, there
will be 6 equations and, therefore, 6 moments. Naturally,
the values of pm and um are directly associated with a con-
tinuous distribution p(u) or actually to the moments of this
distribution.

The choice of matching the moments is crucial for the
accuracy of the UT. The expected value of a random variable

u submitted to the mapping f (u) is:

E {f (u)} =
∫
f (u) p (u) du (4)

If the function f (x) can be represented by its Taylor
expansion, then a truncated polynomial representation can be
written by:

f (x) = a0 + a1x + a2x2 + · · · + anxn =
n∑

k=0

akxk (5)

Since this polynomial has an order n, the expected value
of the mapping Eq. (4), with a continuous probability density
function p(û), is:

E {f (u)} =
∫ n∑

k=0

akukp (u) du

=

n∑
k=0

ak

∫
ukp (u) du

=

n∑
k=0

akE
{
uk
}

(6)

However, with the Unscented Transform, the distribution
is discrete, and the expected value is:

E {f (u)} =
∑

pmf (um) =
n∑

k=0

ak
∑

ukmpm (7)

where pm are the weights (probabilities) of the discrete dis-
tribution, um are the sigma points (discrete points of the
distribution). Equation (7) is exact if the number of sigma
points is at least n/2 on (5). The same idea may be applied to
calculate the variance (n sigma points are needed) and other
higher moments (more than n sigma points are needed) of
the output result. If (5) is only an approximation of the real
f (x), then (7) is only an approximation of the real expected
value.

As the number of sigma points grows, the discrete distribu-
tion tends to a continuous one, although it may not be exactly
equal. The same also happens for the output distribution.

C. USING THE UNSCENTED TRANSFORM
IN PROBABILITY PROBLEMS
The UT uses the same mathematical formulation as discrete
distributions. Therefore, the expected value and variance of a
random variable û subjected to a mapping f(û) is given by:

E {f (u)} = F̄ =
∑

pmf (um)

E
{(
f (u)− F̄

)2}
=

∑
pm
(
f (um)− F̄

)2 (8)

If there are more random variables, one can represent a
joint distribution by combining all discrete distributions if
all of them are uncorrelated. The points of the resulting
distribution are the combinations of all the sigma points of
each distribution, and the probabilities are the product of
the probability of the corresponding sigma points, as shown
in Fig. 1.
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FIGURE 1. Using the UT to represent the sum of two uncorrelated random variables. The joint probability distribution
is used to calculate the Probability Density Function (PDF) of the sum of variables (which is the mapping).

If the random variables are correlated, the usual proce-
dure is to use uncorrelated distributions and then obtain new
correlated sigma points using the covariance matrix square
root between the variables. The procedure is a simple matrix
multiplication, in which the inputs are the uncorrelated sigma
points.

Considering two uncorrelated random variables and amap-
ping f(x,y), the expected value and co-variance described in
Eq. (8) becomes:

E {f (u, v)} = F̄ =
∑
m

∑
n

pmpnf (um, vn)

E
{(
f (u, v)− F̄

)2}
=

∑
m

∑
n

pmpn
(
f (um, vn)− F̄

)2 (9)

The same procedure may be used to calculate the correla-
tion between input and output variables. This is particularly
useful, since it is a technique to investigate the relative impor-
tance and effect of input variables in the expected result. The
correlation between the input and output variables is:

ρfu =
E
{[
f (u, v)− F̄

]
[u− E {u}]

}
E
{
[u− E {u}]2

}
E
{
[v− E {v}]2

}
ρfv =

E
{[
f (u, v)− F̄

]
[v− E {v}]

}
E
{
[u− E {u}]2

}
E
{
[v− E {v}]2

} (10)

III. SAMPLE APPLICATION OF UT
Given the input distribution p(u), the sigma points pm and
weights um can be calculated with (3). As an application,

TABLE 1. Normalized weights pm and sigma points um for uniform or
gaussian distributions with different number of sigma points.

we have examined the set of sigma points for the uniform and
normal distributions subjected to different nonlinear map-
pings. The output result is compared to the exact expected
value and variance of the mapping.

Table 1 shows the Sigma points and weights for the uni-
form and Gaussian (zero mean and unitary variance) distri-
butions. These are normalized Sigma points, which means
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TABLE 2. Analytical and UT outcomes for the mapping
f (x) = 2− 3x + 4x2 with different numbers of sigma points.

TABLE 3. Analytical and results for the mapping f (x) = 3 cos x
2 , with

different number of sigma points.

that they should be denormalized to be applied in regular
problems, which is performed by multiplying the Sigma
points by the standard deviation of the denormalized distri-
bution and adding the result to the distribution mean.

As an example, consider a random variable x with mean
E (x) = 4.0 and standard deviation σ = 2.0. The new
sigma points are calculated using 4.0 + 2.0 um. Using the
new sigma points and weights in Table 1, which were applied
to two different mappings f (x). The first is a simple poly-
nomial f (x) = 2 − 3x + 4x2, and the second the function
f (x) = 3 cos x2 . Table 2 shows very accurate results for
the polynomial mapping. This is a direct consequence of
Eq. (8), which states that such mappings will be as exact
as the number of Sigma points represent the order of the
resulting polynomial. This also explains why the variance for
the two sigma-point schemes is inexact since the variance is
given by E

{
f 2 (x)

}
− E {f (x)}2. The resulting fourth-order

mapping polynomial is not adequately represented by the
two sigma-point scheme. However, the three- and four-point
schemes support polynomials of much higher order.

Table 3 shows the UT behavior if the mapping is nonpoly-
nomial. As the number of Sigma points increases, the poly-
nomial natural of UT provides a better representation of the
actual mapping. However, the table also shows that conver-
gence also depends on the PDF.

IV. CASE STUDY
We present two application studies on the effect of uncer-
tainty in the automotive domain, comparing MC and
UT, including the Mobile Seat Platform (MSP), and the
Light Emitting Diode (LED) used for lighting systems of
heavy-duty vehicles.

FIGURE 2. DC-Motor electromechanical system.

A. MOBILE SEAT PLATFORM
A MSP automation facility project has been developed to
improve accessibility to people with disabilities in public
transportation vehicles [10]. The MSP comprises a reversible
DC motor, controlled by a simple switch manual device,
which controls the platform motion where the seat is fixed.
A more detailed analysis of the load behavior requires the
electromechanical circuit of the DC-Motor. This may be per-
formed analytically, based on the representation of Fig. 3.

The load torqueML value was obtained by measuring with
a standard load of 75 kg, added to the weight of the platform
(50 kg) and the seat (25 kg). Applying circuit theory, to the
model of Fig. 2, results in two coupled differential equations,
respectively one for the electrical subsystem, and the other
for the mechanical subsystem:

L
di (t)
dt
+ Ri (t)+ Ug (ω (t)) = U (t)

J
dω (t)
dt
+ Krω (t)−M (i (t)) = −ML (11)

where the constants are defined in Table 4.

TABLE 4. Electrical motor parameters.

Utilizing the linear approximation, back electromagnetic
force equals to velocity constant versus rotational velocity of
the armature (Ug (ω (t)) = kv.ω). On the mechanical side,
M (i) is the mechanical torque, which can be written as torque
constant versus armature current (M (i) = kt.i). The velocity
and toque constant is related to the same parameters (flux
density of magnets, reluctance of iron core and number of
windings), which take place in the analogy used on elec-
tromechanical transformation of energy (mechanical velocity
to electrical current), and so the same constant is represented

VOLUME 8, 2020 222045
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FIGURE 3. Permanent current probability density function estimate: (a) Monte Carlo histogram and (b) Unscented Transform probability density
function.

as ‘k’. Consequently, the DC-Motor electromechanical sys-
tem has the dynamics representation described by Eq. (11),
which could be updated by the following Eq. (12) with the
constant k on the left side of both differential equations.

L
di (t)
dt
+ Ri (t)+ kω (t) = U

J
dω (t)
dt
+ Krω (t)− ki (t) = −ML (12)

The differential equations described in Eq. 12, are on time
domain and are hard to solve analytically. Therefore, we can
use the Laplace Transform method that allows takes a func-
tion of a real variable t (often time) to a function of a complex
variable s (complex frequency). That allows solving linear
differential equation with given initial conditions. The steps
to apply are: given a differential equation, we have to apply
Laplace Transform (L) to transform in the frequency domain
in order to perform operations and isolate the variable (s),
in which we need to find out the dynamic response. Finally,
we apply the inverse Laplace Transform (L−1) to transform
from the frequency domain to the time domain achieving the
solving of the differential equation in the time domain.

LsI (s)+ RI (s)+ k�(s) = U

Js�(s)+ Kr�(s)− kI (s) = −ML (13)

Hence,

I (s) =

Us + kML

J
1(

s+
kr
J

)
s

 (kR+ sJ )

LJs2 + s (RJ + Lkr)+ k2
(14)

The time-domain current I (t) is obtained after inverse
Laplace transform, shown in Eq. (14). The permanent cur-
rent is determined by ML/k ratio, given that the exponential
components tend to zero as time runs.

I (t) =
ML + kr

k
+

1

4kr2k2ω0

((
2k2

L
−
kr2

J
−
Rkr
L

)
U

+

(
R
L
−
k2r
J

)
ML

)
e−αt sinh (ω0t)

−

(
U
kr
k2
+ k

ML
k

)
cosh (ω0t) e−αt (15)

where:

ω0 =

√
α2 −

k2

LJ
and α =

R
2L
+
kr
2J

Usually, there are statistical variations on the parameters of
the model. This allowed to define the percentage variation of
each parameter that is expected (based on the production his-
tory), although it was not possible to determine the statistical
function that controls each parameter:
• R: variability is± 7% due to construction, and+ 19.5%
due to temperature (increase up to 50K). Therefore,
the change from −7% to + 19.5% is considered;

• Magnetic properties (L and J ): 8% (due to manufactur-
ing);

• Torque constant (k): −5% (increase of 50K in tempera-
ture);

• Constant slip: + 5% for given speed with free rotor (no
load).

• As the MSP never operates without load (there is always
the weight of the platform and the armchair), it will not
be considered a variable parameter;

• The typical supply voltage range is [18V, 32V], but since
the engine does not operate below 21 V, we assume the
range of [18V, 32V] instead;

• The weight varies between empty (75 kg) and a maxi-
mum weight of 200 kg (design limit). There is a direct
relationship between weight and effort made be elec-
tric motor given in Newton Meter (Nm) and measured
through the current. The variation goes from 9 to 24 Nm.

Given the variable ranges, the next step is to define a
function to generate random values for each variable within
its range. We assume the uniform distribution for each
parameter, in the absence of any other knowledge from the
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TABLE 5. Comparison of permanent current.

manufacturer. Table 4 presents the relevant average motor
parameters for the circuit model of Fig. 3.

We bothMC andUT to calculate the uncertainty of the total
model. Table 5 shows the mean and standard deviation of the
permanent current are presented in.

The Probability Density Function is also available from
Monte Carlo and UT. In Monte Carlo, the histogram presents
the general shape of the resulting distribution, while the UT
demands more laborious calculations of the general mapping.
The pdf is represented as a histogram with MC, while the UT
demands more laborious calculations of the general mapping.
The results are presented in Fig. 3. OKFig. 3 shows a compar-
ison betweenMC and UT applied to theMSP. UT is very effi-
cient, and only requires a fraction of the computing resources
used by MC. Table 5 shows how many tests were necessary
in the UT andMonte Carlo. The main difference is that, while
Monte Carlo used a large number of random variations of the
input parameters, the UT only needed a selected deterministic
number of them to achieve similar results (such as shown
in Table 1). The calculation of the probability density function
with the UT instead of the histogram of the Monte Carlo
analysis is another advantage of the method, assembled by
polynomial approximation of the nonlinear mapping.

After all parameters are defined with a random generation
function, the next step is to define the literal Eq. (15) in
Matlab (right side of the command lines). This equation will
return a single value of I for one single set of parameters
(ex.V = 27.6V , ML=10.5N.m, R = 0.41� etc), in function
of time (t). If we interested in knowing which one is the
highest current value, a filter to save the highest value for
each time step (n = n◦ of simulations) can be set. The
Algorithm 1 shows how to create the random generation
function.

B. IGHT EMITTING DIODE
We consider the LED in terms of the life-cycle estimation
[11]. The lighting systems of heavy-duty vehicles, such as
trucks, buses, and trains, used to be of fluorescent lamps and
inverters, which have been replaced by the LED, thanks to
its many advantages such as long lifetime, energy efficiency,
durability, no emission, operational at high temperatures,
dispersion, high frequency of switching, and low voltage.
We evaluate the mean junction temperature of a LED lighting
system,which is directly correlated to themean lifetime of the
system.

The topology of the mechanical structure of the LED is
shown in Fig. 4 [11].

Algorithm 1 Random Generation Function
Setup Parameters
1 V=unifrnd(21,32);
2 k=unifrnd(0.57,0.6);
3 L=unifrnd(9,24);
4 J=unifrnd(0.069,0.081);
5 L=unifrnd(0.00092,0.00108);
6 R=unifrnd(0.3627,0.466);
Algorithm
7 Begin
8 Imax=0;
9 for t=0.01:10
10 I = equation (6);
11 if(I>Imax)
12 Imax = I;
13 end
14 end
15 Ipeak(n)=Imax;
16 End

FIGURE 4. LED internal and external assembly topology.

FIGURE 5. DC-DC power electronic supply model with PWM controlled
switch.

The LED junction temperature is given by Tj is shown in
Eq. (16), easily found in power electronics books such as
[11]. The concept leads to the sum of all thermal resistance
of every material connection, multiplied by the total power P
conducted in the LED, to result in a temperature difference
Tj−Tpad between junction and pad. This comes from a basic
analogy of the thermal equation of heat flow (Rth = 1T

Q ,
where 1T is the temperature difference, Q is the heat flow,
and Rth is the thermal resistance given by the distance that
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FIGURE 6. MC vs. UT for Junction temperature in the LED application.

the heat flows, divided by the thermal conductivity versus
area) with the Ohm’s law (Re = 1V

I ). In this analogy, Q is
equivalent to power dissipation.

Tj = Tpad + P
(
Rjp + Rpd + Rda

)
(16)

The thermal resistances are defined such:
• Rji : between junction and interconnection layer;
• Rics : between interconnection layer and ceramic sub-
strate;

• Rcsi : between ceramic substrate and another intercon-
nect layer;

• Rip : between interconnect layer and pad;
• Rps : between pad and solder joint layer;
• Rsc : between solder joint and copper (trace);
• Rctp : between copper and thermal paste;
• Rtpd : between thermal paste and external heatsink.

where Tpad is pad temperature; Rpd is the pad and dissipation
layer resistance; Rjp is a combination of other parameters, and
should be given in the datasheet; Rda is the dissipation layer
and air resistance, calculated by (17).

Rda =
3.3 ∗ Cf

4 ∗ w ∗
√
λ
+

650 ∗ Cf
A

(17)

• Cf : Correction coefficient regarding to the type of mate-
rial (dark or brilliant) and the position at the board (ver-
tical or horizontal). For a brilliant material on horizontal
direction, this coefficient is 1;

• λ: Copper thermal expansion coefficient, 3.85W/◦

C.cm;
• w: copper thickness. Designed to be 1mm, with manu-
facturer tolerance of ±0.05mm;

• A: copper area, designed as 26 × 99mm2, 0.2mm2 tol-
erance.

The power parameter P is obtained by (18) and (19), as
shown at the bottom of this page.

Fig. 5 shows the switched mode step down Buck converter
used as the LED power supply. Vin is the battery supply avail-
able from the vehicle; S is a PWM (Pulse Width Modulation)
controlled switch; D and L are respectively a diode (on when
the switch is off) and an inductor (charging when the switch
is on); the output capacitance filter is represented by C and
its series resistance Rc. The load is the LED, modeled as a
constant power supply and a resistance Vfd . The converter
works as follows: when the switch is closed, the battery Vin
charges the inductor, capacitance and feeds the load. When
the switch is off, the inductor and capacitor keep the load
current, which discharges gradually through the diode. (The
PWMcircuit for the switch is omitted in the figure.) Themain
objective of the converter is to keep the load current constant
by changing the PWM duty cycle, which is increased if Vin is
decreased, and decreased Vin is increased. The transference
function is shown in (18), and the LED power is shown
in (19) [11].

We assume uniform distribution unless otherwise noted:

• C : Buck Converter Output Capacitance, variability is ±
10%;

• L: Buck Converter Inductance, variability is ± 5%;
• RC : Capacitor series resistance, variability between
3.58 and 7.56 m�;

• Tpad : PAD temperature, variability between 62.11 and
66.11 ◦C;

ILED =

VinD
(
1+ s

(
L + CRdRc

Rd

)
+ s2LC

(
1+

Rc
Rd

))
Rd (1+ sCRc)

−
Vfd
Rd

 (18)

P = Vfd ILED + Rd I2LED (19)
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TABLE 6. Comparison of junction temperature outcomes for monte carlo
and unscented transform.

TABLE 7. Parameter effect in power dissipation.

• Rtpd : Mean thermal pad resistance, variability between
0.13 and 0.15 ◦C/W;

• Wt: Strip width, variability between 0.095 and 1.05 mm;
• A: Strip area, variability between 2573.96 and
2574.04 mm2;

• Vfd : Direct diode voltage, variability between 2.5 and
3.99 V;

• Rjp: Thermal junction-PAD resistance, normal distri-
butions with mean 10.3 and 0.9 standard deviation
(◦C/W ).

We used MC and UT to calculate the uncertainty of the
junction temperature. The mean and a standard deviation of
the junction temperature is presented in Table 6.

The results are presented in Fig. 6 and show respectively
the distribution of the number of simulations performed and
the probability distribution function.

The UT also allows an estimation of the influence of each
input variable in the final result. This is a covariance analysis.
A careful analysis could determine which variables are most
relevant to the mathematical model. Table 7 shows that the
increase of the filter capacitance leads to a decrease in the
junction temperature.

The UT probability distribution function compares very
well with the Monte Carlo histogram. Additionally, the cor-
relation between input and the junction temperature indi-
cates that the Buck Converter Capacitance is the leading
factor in the junction temperature, followed by the mean
direct voltage, the thermal junction-PAD resistance, and
the PAD temperature. The UT analysis indicates that
these are the main variables needed to model appropriately
the variability in the diode example.

V. CONCLUSION
In this paper, we compare MC and UT as statistical tools
to improve simulation performance in automotive embed-

ded control systems. We have used those methods in two
examples that show the flexibility and scope of the approach:
a mobile seat platform and a LED-based lighting system.
In both cases, the UT used only a small amount of the
resources needed for the Monte Carlo analysis. This a nat-
ural feature of the UT. In the LED case, the UT was used
to estimate the probability density function (similar to the
Monte Carlo histogram), as well as a correlation analysis.
The UT provided information that could potentially allow the
reduction of the model needed for statistical characterization.
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