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ABSTRACT We propose a novel efficient online method for tracking performers on stage. Most existing
tracking methods have focused on using expensive, high-performing sensors, such as multilayer lidar
sensors or high-resolution, short-range radars. Image sensor-based methods are not appropriate for tracking
performers on stage because of challenging illumination conditions caused by lighting effects. In this paper,
we introduce a robust multi-target tracking method based on the sensor fusing of two-dimensional distance
sensors such as single-layer lidar sensors that have a relatively lower cost than the aforementioned types
of sensors. In our method, measurements from each sensor are transformed into a reference coordinate
system and objects are detected with those transformedmeasurements. Then, the object detections are used in
generating or extending the trajectories of targets by detection-to-trajectory matching. In our experiments,
we quantitatively evaluated the proposed method with a newly constructed dataset which consists of two
scenarios simulating performances on stage. We collected the scan results of two single-layer lidar sensors
and image frames captured by a camera sensor for each scenario. The experimental results show that the
proposedmethod robustly tracks performers in challenging scenarios, in which the performers move abruptly
and are densely located.

INDEX TERMS Sensor fusion, multi-target tracking, moving object detection.

I. INTRODUCTION
Estimating the locations of performers on stage is essential
for various stage effects. While some commercial systems
track performers on stage with various sensors, most existing
stage directing systems do not automatically track performers
on stage, which causes serious limitations to performance
planning. The studies that are most relevant to the track-
ing of performers on stage are multi-target tracking meth-
ods with image cameras [1], [2] and radio frequency (RF)
beacons [3]–[6].

Image camera-based multi-target tracking is a classical
problem in the computer vision area, and a number of meth-
ods have been proposed [1], [2]. Because the cost of image
sensors is more competitive than other types of sensors,
image sensor-based methods are widely adopted in many
applications, especially in the surveillance area. However,
the performance of these methods is very sensitive to

lighting conditions and the deformation of target objects.
Thus, their tracking performance degrades when light
changes abruptly or performers take various poses, which are
natural conditions of performances on stage.

RF beacon-based tracking methods [3]–[6] are more suit-
able for tracking on stage because they are not effected by
lighting conditions. However, RF systems are too sensitive
to the surrounding electromagnetic conditions, so the RF
beacon-based method has difficulty in accurately estimating
the location of the beacon. Most of them estimate the location
of a beacon held by a target with the room-level precision,
while step level precision is needed to track performers on
stage.

There is another approach to tackle multi-target tracking
that is based on a sparse three-dimensional (3D) sensor such
as a multilayer lidar sensor [7]–[12]. In this approach, objects
and background are represented by clouds of 3D points.
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The method accurately tracks targets when they are sparsely
distributed. However, when densely distributed targets
occlude each other, tracking performance cannot be guar-
anteed because of the lack of visibility of targets. Although
several existing methods adopt additional visual sensors to
improve tracking performance [13], [14], they mainly focus
on enriching the types of information, not increasing the
observability of a sensor network. Moreover, multilayer lidar
sensors are too expensive to be widely adopted in practical
applications.

In this paper, our primary goal is to develop a simple, cheap
and utilizable tracking system that is capable of tracking per-
formers who dance or move abruptly. To this end, we propose
a novel and efficient method for tracking multiple performers
on stage that resolves occlusion issues with multiple single-
layer lidar sensors, which are drastically cheaper than a single
multilayer lidar sensor. Kwak et al. [15] and Arras et al. [16]
also proposed a single-layer lidar sensor-based multi-target
tracking method. However, they do not utilize the fusing
of multiple sensors. On the contrary, we focus on fusing
the simultaneous measurements obtained from multiple sen-
sors and detect objects from the fused measurements. Then,
our method tracks performers by associating their supposed
detections from different scanning times. To our knowledge,
there is no available benchmark dataset to address the prob-
lem on the multi-target tracking with multiple single-layer
lidar sensors. Thus, we generated a new benchmark dataset
and evaluated the tracking performance of our method on the
dataset. The experiments illustrate that the proposed method
robustly tracks performers in challenging scenarios.

To summarize, the contributions of our work include the
following.
• Proposing cost-effective tracking system adopting. Our
method can be implemented for less than 3,000 USD
when the sensor network consists with two 2D lidar
sensors and one image sensor.

• Proposing the tracking system that is also scalable.
When the number of 2D lidar sensors at different
view points, our system has more chance to accurately
and robustly track targets. Therefore, the scalability is
essential. The computational complexity of the system
increases with the number of 2D lidar sensors, thus we
can easily increase the number of the sensors with the
moderate computational load.

• Constructing a new dataset with multiple 2D lidar sen-
sors and image sensors for the performance evaluation
of multi-modal tracking algorithms.

II. RELATED WORKS
In this paper, we propose an efficient and robust multi-
target tracking framework. Multi-target tracking is a classical
problem which has been studied since the radar sensor was
invented. In this field, methods have been studied which
estimate the trajectories of targets with measurements from
consecutive scans of a sensor. The most primitive way
of dealing with multi-target tracking is to apply recursive

Bayesian filters such as the Kalman filter [19] to each
of targets independently. There are three major issues of
multi-target tracking, which have to be resolved for robust
tracking: missing measurements, false alarms, and measure-
ment ambiguity. A missing measurement is the absence of
a measurement from a target due to sensing error or an
occlusion. A false alarm is a measurement obtained from
somewhere nothing or a non-target object exists. While miss-
ing measurements and false alarms can be resolved easily
with consecutive measurements, a measurement ambiguity is
much harder to resolve. This is an ambiguity of the ownership
of measurements between more than two targets located
close to each other. When the targets are located too close,
causing occlusion between targets or electrical interfere in
obtaining measurements, measurements from each target are
merged into one measurement or the measurements of some
targets are missed. This degrades the tracking performance
of a recursive Bayesian filter, especially when more than two
targets have overlapping candidate measurements, because of
the uncertainty of their estimations.

To resolve this issue, a joint probabilistic data association
filter (JPDAF) [20] and the multiple hypothesis tracking
(MHT) framework [21] have been proposed. Both of them
track each target with a recursive Bayesian filter such as a
Kalman filter [19], but differ in the method of solving the
measurement ambiguity. When a recursive Bayesian filter is
updated in JPDAF, the probabilities of each measurement
about each of the measurement is obtained from each target
are calculated by considering the estimated result and the
uncertainty of the filter. Then, the current state of the filter
is updated with considering the probabilities of all nearby
measurements. Therefore, not only one filter uses multiple
measurements for its update but also one measurement can be
used to update several filters. JPDAF is mathematically con-
crete and it can mitigate the merging of trajectories compared
to the method in which each filter picks up the measurement
independently. However, when targets are closely located
for a long period, JPDAF also cannot avoid the merging of
trajectories.

To prevent the issue of merging of trajectories and recover
from the measurement ambiguity, MHT keeps all possible
measurement-to-target associations and select the most prob-
able associations when the ambiguity is resolved. Because
MHT holds its decision before the ambiguity is resolved,
MHT is a kind of deferred method. This approach is called
the multiple hypothesis tracking framework because each of
propagations of measurement to target associations is called
a hypothesis. MHT has the advantage of robust tracking per-
formance compared to other methods even when the target is
densely distributed. However, since the number of hypotheses
increases exponentially during the measurement ambiguity,
it is intractable to find the exact solution due to the extreme
computational load.

There are more recent multi-target tracking algo-
rithms based on finite set statistics (FISST) such as the
probability hypothesis density (PHD) filter [22], [23],
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its extensions [24], [25], andmulti-Bernoulli (MB) filter [26].
The methods calculate an approximation of the probability
density function about a joint distribution of the unordered
target states [18]. These works carefully modeled the motion
of targets which successfully capture the dynamics of tar-
gets with a single, high-resolution sensor. However, those
complicated models are inappropriate for the tracking with
a low-resolution sensor network. There are many methods
have proposed to track targets with a low-resolution sensor
network [27]–[33], but they suffered from scalability issue.
To this end, the acoustic sensor-based method [18] which
redundantly formulated data association uncertainty and used
augmented target states including binary target indicators for
statistical independence. Because of the statistical indepen-
dence, the method drastically reduced the complexity of the
tracking model with multiple sensors. Nevertheless, most of
those recent tracking algorithms have focused on tracking
targets having relatively smooth movements compare to the
movements of performers on stage.

Tracking pedestrians with visual sensors is more similar to
our tracking environment than the tracking with radar sensors
as in the traditional tracking literature. Recently, a number of
multi-target tracking methods in computer vision literature
have been studied because of a drop in the price of image
sensors, the rapid performance increment of hardware and
wide distribution of devices with an image sensor, such as cell
phones. As aforementioned, a measurement from an image
sensor has amuch larger data dimension than one from a radar
sensor, and it is more difficult to identify a target object in
an image than in radar measurements. Thus, the conventional
JPDAF ofMHT cannot be directly applied to the visual track-
ing problem. Recently, a rapid increase in the performance of
algorithms that detect objects in images [34]–[36] has made it
easier to obtain trackingmeasurements from images. This has
led to the proposal ofmethods that applyMHT to visual track-
ing problems [37], which has achieved good performances

on benchmark dataset. However, their performance depends
heavily on the accuracy of object detection, and in the case
of tracking on stage, object detection with an image sensor is
degraded because of lighting issues such as low exposure and
abrupt illumination changes. Moreover, single image sensor-
based tracking methods suffer from target occlusions, which
frequently occur on stage. Nowadays, there are many visual
tracking algorithms that use multiple cameras [2], [38] to
overcome occlusion or missing (and also false alarm) issues,
but they still cannot resolve the lighting issue.

Since a new type of sensor has become popular due to
the development of sensing devices, there have been many
attempts to overcome the limitations of a particular type
of the sensor by fusing various types of sensors such as
lidar sensors and image sensors [13]–[17], [39]. However,
the sensors mainly used in these studies are very expensive
equipment, such as multilayer lidar, or are difficult to use
in a small indoor environment, such as radar. In order to
overcome these limitations, methods using RF beacons have
been proposed [4]–[6]. However, in the case of RF beacon,
it is difficult to accurately predict the position of beacons
when electromagnetic noise interferes with the RF signals
received. Nevertheless, it is very complicated to compensate
for the strength of the signal from a transmitter according
to its battery condition and other electromagnetic conditions
even if the triangulation method is used. Furthermore, this
kind of RF-based method suffers from occlusion when the
installed locations of sensors are not high enough and the
performers are densely located.

In Table 1, we summarize related works utilizing various
types of sensors. The meaning of each column is as fol-
lowings. The ‘multi-domain’ column indicates whether the
method uses sensors in a different domain. The ‘multi-sensor’
column indicates whether the method utilizes multiple sen-
sors sharing a common field of view but having different view
points. The other columns show which type of sensor is used

TABLE 1. Summary of related works.
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in the method. We also give the number of sensors which are
used in the method in the parenthesis. A greater than equal
mark means that the method utilizes sensors more than a
written number. When the exact number is not verified by
the literature, we wrote a question mark instead of a number.
A number N indicates the number of targets.

In this paper, we propose a method that uses a single-
layer or two-dimensional (2D) lidar sensor, which is inex-
pensive and can be operated in a small space. To increase
the observability of our sensor framework, we adopted an
additional 2D lidar sensor that has a common field of view
with the original sensor. Although a 2D lidar sensor produces
measurements that resemble those of radar sensor, tracking
performers on stage with a 2D lidar sensor is a significantly
different problem from tracking airplanes or ships with a
radar sensor because of the different characteristics of the
measurements from targets. In the case of the radar tracking
problem, measurements from a target seem to a single lump
when targets are separated, which is clear to detect each
target. However, in the case of lidar tracking on stage, even
a single performer can be observed with several point clouds
depending on his or her actions. Therefore, applying classical
tracking methods based on a radar sensor such as JPDAF and
MHT to our problem is not trivial.

III. PROBLEM STATEMENT
In this paper, our goal is to track moving objects on a planar
surface with multiple two-dimensional (2D) distance sensors
such as 360-degree laser range scanning sensors called lidar,
in an online manner. Let us assume that there is a reference
2D coordinate system W defined on a planar surface that
is shared between all sensors. We call this reference 2D
coordinate system the world coordinate system. Let’s define
an arbitrary point measurement by zi = (xi, yi, si, ti) where
(xi, yi) ∈ W are the 2D coordinates or the measurement in
the world coordinate system and si ∈ [1,Ns], ti ∈ [1,T ]
are an index of a sensor and a time stamp of obtaining the
measurement, respectively. Here, Ns is the total number of
sensors and T is the current time stamp. Let Zt be a set of all
point measurements that are obtained at time T regardless of
which sensor they are acquired from:

Zt = {zi|∀i s.t. ti = t}. (1)

Then, our goal is to estimate the trajectories of K targets
T = {Tk |k = 1, . . . ,K } that are moving on the planar surface
with measurements from the targets up to the current scan
Z1:T = ∪

T
t=1Zt . Here, the trajectory of the kth target Tk is

defined by the sequence of estimated locations in W as

Tk = (x
τ sk
k , x

τ sk+1
k , · · · , x

τ ek
k ), (2)

where τ sk and τ
e
k are the time stamps of starting and ending of

observation of the kth target, respectively.
Ideally, the measurements contain exact locations of

targets. However, there are many types of noise prevent sen-
sors from producing accurate measurements. To handle these

noisy measurements with an algorithm as simple as possible,
we adopt assumptions on the characteristics of targets and
sensors as follows:
• A target moves smoothly during one scan of a sensor;
• Since the maximum size of a target is fixed, it can be
determined whether a cluster of measurements contains
measurements from a single target or multiple targets;

• There is no persistent false alarm or missing that last
more than seconds;

• A target could not be tracked if it jumps higher or crawls
lower than the scanning range of sensors; and

• A target that is fully occluded more than a predefined
time interval will be lost in our tracking system.

In the following sections, we describe the overall frame-
work of the proposed method and details on each step of the
method. We also show the experimental results of a quantita-
tive evaluation of the method.

IV. SYSTEM OVERVIEW
In this section, we briefly introduce the overall scheme of our
method. Fig. 1 is a block diagram of the overall scheme of
the proposed method and Fig. 2 shows an example of the
output of each step. Our tracking algorithm uses multiple

FIGURE 1. Overview of our tracking method with two lidar sensors and a
camera. Each white block indicates one step of the proposed method.
Each arrow and its label represent data flow. D on the feedback loop
indicates a delaying function applied to the tracking results.

FIGURE 2. Example of each step’s result (from a rotation scenario in the
result section). (a) Merged measurements in the 2D world coordinate
system. Measurements from the same sensor are shown in the same
color. (b) Objects detected by clustering and detection. (c) The final
locations are obtained by temporal association and reconstruction.
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2D distance sensors as its input source. Preprocessing is
applied to raw measurements from sensors to handle miss-
ing measurements or outliers in the raw measurements. See
Section V for more details. After preprocessing, the coor-
dinates of sensors that are in the coordinate system of each
sensor are transformed into the reference coordinate system,
which we call the 2D world coordinate system, which is
shared among sensors by a sensor calibration procedure. We
describe sensor calibration and sensor fusion in Section VI
in detail. To recognize and detect moving objects, we cluster
the resulting measurement set of the sensor fusion at time t ,
Zt = {zi|ti = t}, and apply an object detection algorithm as
described in Section VII. The detected objects are matched
with tracking results until the previous scan by a bi-partite
matching algorithm.We call this procedure temporal associa-
tion. For temporal association, we propose a novel similarity
between previous trajectories and the current measurement
clusters. For more details about the similarity and temporal
association, see Section VIII. After temporal association,
the current location of each target is estimated by a recon-
struction procedure. In the reconstruction, we estimate the
locations of a target when measurements are missed by linear
interpolation. Then, we apply a smoothing algorithm to refine
the trajectory from noisy measurements. See Section IX for
more details about the reconstruction step. As a result of the
reconstruction step, the current tracking results, which is the
trajectory of each target up to the current scan, are returned
as the output of the method and kept and delivered to the
temporal association module for matching in the next scan.

V. PREPROCESSING
There are many issues that make a 2D distance sensor fail
to obtain a measurement from a target, such as being out of
range, diffuse reflection, and device error. Every 2D distance
sensor has a valid sensing range, which is the maximum
distance ensures that the sensor can measure. When an object
is located out of the valid range of a sensor, measurements
cannot be obtained from the object because a return signal
cannot reach the sensor within the sensing time. Diffuse
reflection due to the rugged surface of a target also causes
measurements to bemissed because the strength of the return-
ing signal is not enough to activate a sensor receiver. When a
measurement is missed due to being out of range, it also gives
us information that there is no object within the valid range
from the sensor. Thus, it is not an actual missing measure-
ment. In contrast, other types of missing measurements are
just errors that give the wrong information and showwhat has
to be resolved. Therefore, in this paper, we call the absence of
a measurement a missing measurement, except that is caused
by being out of range.

To handle measurements that are missed, we apply a classi-
fication and refinement procedure to the rawmeasurements in
the preprocessing step. In this step, we classify measurements
into reliable measurements and error measurements. Then,
we estimate the missing measurement by linear interpola-
tion of its neighboring measurements that are not missed.

We depict an input and an output of the preprocessing step
as an example in Fig. 3. In the following, we describe our
preprocessing step in more detail.

FIGURE 3. Example of preprocessing of lidar measurement. (a) Raw
measurements. (b) Results of preprocessing of (a).

A 2D distance sensor such as a single-layer lidar sensor
produces its rawmeasurements with distance values per every
unit angle for 360 degrees. Let z(k)j = (dj, θj, tj) be an arbitrary
distance measurement obtained by sensor k at time tj where
dj and θj are a distance value and an angle between the
reference direction of the sensor and the direction where
the measurement came from, respectively. We will discuss
the relation between z(k) a sensor level measurement and a
measurement in 2D world coordinates in Section VI.

A. MEASUREMENT CLASSIFICATION
As aforementioned, each measurement is either a reliable
measurement or an error measurement. in the case of an
absence of measurement, we have to determine whether it is
a missing measurement or the result of being out of range.
In the former case, we regard the measurement as an error
measurement and in the latter case, we regard it as a reliable
measurement. Let Zts be the set of all measurements that are
obtained by sensor s at time t , i.e.

Zts = {zi|si = s, ti = t} (3)

Then, we assume that an arbitrary measurement z(k)j ∈ Zts
which has no distance value is an error measurement when
the following conditions are satisfied:

1) ∃zi s.t. di 6= 0, θi − θj ≤ ωθ ;
2) ∃zk s.t. dk 6= 0, θk − θi ≤ ωθ ; and
3) ‖di − dk‖ ≤ εd ;

where ωθ and εd are design parameters, which are threshold
values of the range of neighbors and maximum allowable
measurement error in distance, respectively.When dj is deter-
mined to be an error measurement, the estimated distance d̂j
is calculated as described in the following section.

B. REFINEMENT
When dj is determined to be a missing measurement, di is
estimated with the nearby measurements zj and zk as in the
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following equation:

d̂j =

(
θk − θj

)
× dj +

(
θj − θi

)
× dk

θk − θj
. (4)

Here, zi and zk are the closest measurements that are not
missed on the right-side and left-side of zj, respectively.

Let Z be an ordered list of measurements obtained by
sensor s′ at time t ′ according to their angles. We omit a super-
script and sub-script representing a sensor index and a time
stamp, for convenience. Next, we describe our preprocessing
step in Algorithm 1 in detail. In Algorithm 1 we omit steps
for boundary conditions because of the simplification of the
algorithm description. Formore concrete implementation, see
Section X to access our source code.

Algorithm 1 Preprocessing for Lidar Sensor Measurement
Require: Ordered list of concurrent measurements from the

same sensor Z, the number of measurements nZ , search
window size ωθ , maximum measurement error in dis-
tance εd , maximum range of a sensor dmax

Ensure: list of refined measurements L̂
1: Z′← (z1, z2, · · · , znZ , z(nz+1), · · · , z(nz+ωθ /2))
2: Ẑ← Z′

3: while Ẑ is updated do
4: for zi in Z′1:nz do
5: if di = 0 then
6: p ← index of nearest preceding non-zero

measurement
7: if i− p > 0.5× ωθ then
8: continue
9: end if
10: f ← index of nearest following non-zero

measurement
11: if f − i > 0.5× ωθ then
12: continue
13: end if
14: if |dp − df | ≤ εd then
15: d̂i← estimated value by eq. 4
16: end if
17: end if
18: end for
19: end while
20: return Z′1:nz

VI. SENSOR FUSION
We perform sensor fusion, which transforms the measure-
ments taken from multiple multi-domain sensors into a com-
mon coordinate system, and then develop the subsequent
steps. In this section, we describe how to transform mea-
surements from multiple lidar sensors and image sensors
into a 2D world coordinate system W, a common absolute
coordinate system shared between all sensors.

A. LIDAR SCAN TO WORLD COORDINATE SYSTEM
In order to fuse the information from multiple lidar sen-
sors and image sensors, a calibration process for identify-
ing corresponding locations in coordinate systems of each
sensors is required. Each lidar sensor has 2D polar coor-
dinates as its own coordinate system for representing mea-
surements. In the sensor fusion step, we transform the polar
coordinates of a measurement into Euclidean coordinates.
Then, the Euclidean coordinates of the measurement are
transformed into 2D world coordinates by multiplying the
homographymatrixHsi which can be found by the coordinate
calibration as the way described in the following paragraphs.

The homography relation is widely used when projecting
an image onto a specific flat surface, and it can be used to
project the scanning plane of each lidar sensor onto a surface
in the 2Dworld coordinate system, such as the floor of a stage.
The final coordinates are obtained by dividing the last ele-
ment of the resulting homogeneous coordinates which adjusts
the scale of coordinates. Let an arbitrary measurement zi has
(di, θi) as its coordinates in the sensor space, and the 2Dworld
coordinates of zi, li, can be driven byXY

w

 = Hsi ×

di sin θidi cos θi
1

 H⇒ li =
[
X/w
Y/w

]
. (5)

In order to obtain a proper homography matrix, we need
more than four coordinates in the sensor coordinate system
and their corresponding coordinates in the 2D world coor-
dinate system. In the construction of our dataset for experi-
ments, we used a structure that is depicted in the right-most
figure in Fig. 4, to extract corresponding points between a
lidar sensor coordinate system and the 2D world coordinate
system. Because the size of the structure is known, we can
figure out the absolute distance between points in each sensor
coordinate system.

B. IMAGE TO WORLD COORDINATE SYSTEM
To transform the information from image coordinates to 2D
world coordinates, we modeled our camera projection with
the Tsai camera model [40]. With this model, we can get back
projection lines that describe a corresponding location in the
2D world coordinate system of each pixel. When more than
three image pixels and their corresponding 2D world coor-
dinates are given, the parameters of the Tsai camera model
can be found. As in the lidar sensor calibration, we use the
specially designed structure to obtain corresponding points
between an image and the 2D world coordinate systems.

VII. OBJECT DETECTION
In order to find which measurements are from objects of
interest, our algorithm clusters input point measurements and
classifies the resulting clusters into an object or a background.
In the clustering step, the measurement set at time t , Zt ,
is partitioned into Ct

k = {z
t
i |i ∈ Itk}, k = 1, . . . ,K t , which

satisfies the following conditions:
1) Itk is a set of indices of measurements of Ct

k ;
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FIGURE 4. Overview on calibration for coordinate transformation.

2) ∪K
t

k=1C
t
k = Zt and Ct

l ∩ C
t
m = 8 for l 6= m; and

3)
∥∥xj − xi∥∥ ≤ γc,∀i, j ∈ Itk ;

where γc is the maximum allowable distance between the
measurements in the same cluster. Then, cluster Ct

k is clas-
sified into an object or background according to the equation
defined by

f (Ct
k ) =

{
1, if

∥∥xi − c̄tk∥∥ ≤ rmax , ∀i ∈ Ik ,
0, otherwise,

(6)

c̄tk =
1
|Ck |

∑
i∈Ik

xi, (7)

where | · | is the cardinality of a set.

VIII. TEMPORAL ASSOCIATION
Our algorithm incrementally matches the measurement clus-
ters between consecutive scans to produce an instant track-
ing result. Most of the existing incremental data association
methods [20], [21] have been proposed to track rigid targets
that move smoothly through consecutive scans. Our targets,
however, are non-rigid and move abruptly, so that ordinary
linear or non-linear filters do not contribute much compared
to their computational load. Thus, we adopted the Hungarian
method [41] to find an optimal match between the previous
trajectories and the current measurement clusters with sim-
ply defined similarities between them. Let Ct1

z be the set
of measurement clusters at time t1, and let Tt2 be the set
of trajectories that have their last location at time t2. Then,
the matching similarity between ci ∈ Ct1

z and Tj ∈ Tt2 is
defined by

λij =
‖T̂ t

j − c̄i‖2

1t × vmax
=
‖T t−1

j +1t × v
t−1
j − c̄i‖2

1t × vmax
, (8)

where c̄i is the centroid of ci, vmax is the maximum distance
that performers can reach during one scanning interval,
vt−1j = T t−1

j − T t−2
j , and 1t = t1 − t2. When extracted

motion information from an image camera available,
we validate each matching between candidate trajectories
and measurement clusters. That is, if the matching between

a measurement cluster ci and a trajectory Tj contradicts the
motion information, we set λij to zero.

A. MOTION PRIOR
A lidar sensor is useful to know where an obstacle exists,
but it is difficult to extract motion information about how the
obstacle moves with a lidar sensor. This is because there is
no distinguishable information for each point measurement
from lidar sensor. To solve this difficulty, we used an image
sensor to extract motion information. The extracted motion
information is used to validate the result of temporal asso-
ciation. We first find out the corresponding region to the
location of objects detected by a lidar sensor in the image
area through the coordinate transformation with calibration
information. Then, an optical flow algorithm is applied to the
region to extract inter-frame motion of the objects. Since a
lidar sensor has a planar scan area, when it is moved to the
image, it becomes a very narrow area, which is difficult to
extract the optical flow. To resolve this, we assume that each
object is at least one meter tall. However, as aforementioned,
it is difficult to extract the motion prior if the stage lighting
condition is very though. Therefore, the motion prior is used
only when the illumination condition is moderate.

IX. RECONSTRUCTION
After temporal association, we can define Ztk , the measure-
ments of the kth target at time t . We then reconstruct the
trajectory of the target by adopting the method described
in [2]. For all t that has non-empty Ztk , the estimated location
of the kth target is the centroid of Ztk :

x̂ tk =
1
|Ztk |

∑
i∈Itk

xi. (9)

If there is some t ′ ∈ [τ sk , τ
e
k ] that does not have any measure-

ments for the kth target, i.e., Ztk = 8, the estimation of the
missed location is defined by linear interpolation:

x̂ tk = x̂
tp
k +

t − tp
tf − t

(
x̂
tf
k − x̂

tp
k

)
, (10)
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where tp and tf are the preceding and following times of t
that have measurements for the kth target, respectively. The
final trajectory of the kth target is obtained by smoothing the
estimated locations as

x tk = F(T̂k , t), t = τ sk , · · · , τ
e
k , (11)

where T̂k = (x̂
τ sk
k , · · · , x̂

τ ek
k ), and F(T̂k , t) is the function

returning the smoothed location of T̂k at time t . In our experi-
ment, the Savitzky-Golay filter [42] was used as a smoothing
function.

X. EXPERIMENTAL RESULTS
The implementation of our method is available at
http://bit.ly/multi-target tracking_neohanju. We conducted
experiments to examine the robustness of the proposed algo-
rithm and the beneficial effect of using multiple sensors on
the tracking performance of our algorithm.

A. DATASET
To our knowledge, there is no available dataset for tracking
with multiple single-layer lidar sensors. Thus, we generated a
new dataset with two single-layer lidar sensors and two image
cameras. We captured the frames in a low lighting condition
because that is natural for a stage. The dataset contains two
scenarios and each scenario has synchronized frames from
scans of multiple sensors. Our dataset also provides calibra-
tion information and the ground truth locations of each target.

B. EVALUATION METRICS
To evaluate the performance of our algorithm, we adopted the
metrics used in [2] which are precision, recall,MOTA,MOTP,
ML, PT and IDS. Please refer to the original literature for the
details. For those metrics, a ground truth location is consid-
ered to be matched with the closest estimated location when
they are closer than εx , which is set to one meter in normal
cases. However, we also conducted additional experiments
by setting εx to two meters because a performer behaving
actively can be detected as points spread over two meters.

C. QUANTITATIVE RESULTS
Table 2 shows the evaluation results. We conducted multiple
experiments with different combinations of input sensors to
examine the effect of using multiple sensors. We highlight

TABLE 2. Performance evaluation result.

the best value of each metric in red. As shown in the table,
regardless of what value is used for εx , using multiple sensors
always achieved the best performance with respect to the
MOTA metric, which represents a qualitative performance
well. Using multiple sensors is also beneficial to precision
and recall values.

XI. CONCLUSION
In this paper, we propose a robust online algorithm to track
performers on stage with multiple low-cost lidar sensors.
Based on the algorithm, we built a simple, cheap and uti-
lizable tracking system that is capable of tracking perform-
ers who dance or move abruptly. The performance of the
system was evaluated with a newly generated dataset to
capture challenging scenarios. According to the result, our
tracking system showed a good quantitative performance
for those challenging scenarios, especially when the num-
ber of sensors was increased. However, out tracking model
is quite simple and it does not have any factor about the
appearance or dynamic of a target, which is conventionally
considered in traditional tracking systems. Therefore, there
is room to improve the model of a target’s occupancy with its
shape and we will consider this issue for our future work.
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