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ABSTRACT Currently, there are 3.1 million American men affected by prostate cancer. Early detection
represents the only way to safe lives. To evaluate a prostate cancer, the most widespread rank is the so-called
Gleason score, based on the microscopic cancer appearance. Once assigned to the diagnosed prostate cancer
its relativeGleason score, the correct therapy to be adoptedmust be promptly defined. To support pathologists
and radiologists in timely diagnosis, in this paper we propose a method aimed to infer the Gleason score
and the prostate cancer therapy exploiting formal methods. We consider a set of radiomic features directly
obtained from magnetic resonance images. For this reason the proposed method is non invasive, since it
does not require a biopsy. We model magnetic resonance images of patients as timed automata networks and
we assign the Gleason score and the relative treatment, exploiting a set of temporal logic properties. In the
experimental analysis, the properties are verified on 36 different patients, confirming the effectiveness of the
proposed method with a sensitivity and a specificity equal to 1 for all the evaluated cases in Gleason score
inference, and a sensitivity equal to 0.94 and a specificity equal to 1 in treatment prediction.

INDEX TERMS Model checking, formal methods, prostate, cancer, timed automata.

I. INTRODUCTION
Prostate cancer is the development of cancer in the prostate,
a gland in the male reproductive system. Most prostate can-
cers are slow growing; however, some cancers grow relatively
quickly [1]. The cancer cells can spread from the prostate
to other areas of the body, particularly the bones and lymph
nodes [2]. It may initially cause no symptoms. In the later
stages, it can lead to difficulty urinating, blood in the urine
or pain in the pelvis, back, or when urinating [3]. Other late
symptoms may include feeling tired due to low levels of red
blood cells.

The American Cancer Society reports that 174,650 men
will be diagnosed with prostate cancer in 2019. Currently,
there are nearly 3.1 million American men living with
this disease, this number is roughly equal to the popula-
tion of the city of Chicago. Early inference and advances
in treatment represent the only way for saving lives.

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

Early detection of prostate cancer offers the best hope for
a long term, progression-free survival [4]. A recent research
shows that the five year survival rate for all men with prostate
cancer is nearly 100%. The relative 10 year survival rate is
98%, and 96% for 15 years [5].

Treatment for prostate cancer may involve active surveil-
lance, radiation therapy and external-beam radiation ther-
apy, proton therapy, high-intensity focused ultrasound,
cryosurgery, hormonal therapy, chemotherapy, or some com-
bination: all these treatments do not involve the surgeon.
Obviously, another kind of treatment is the surgery i.e., the
surgical removal of the prostate, the so-called prostatectomy,
that is a common treatment either for early stage prostate
cancer or for cancer that has failed to respond to radiation
therapy [6].

The Gleason grading system is used to help the prog-
nosis evaluation of men with prostate cancer using sam-
ples from a prostate biopsy. Together with other parameters,
it is incorporated into a strategy of prostate cancer stag-
ing which predicts prognosis and helps guide therapy [7].
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A Gleason score is given to prostate cancer based upon its
microscopic appearance. Cancers exhibiting a higher Gleason
score are more aggressive and have a worse prognosis [8].

A total score is computed based on how cells look under
a microscope, with the first half of the score based on the
dominant, or most common cell morphology, and the second
half based on the non-dominant cell pattern with the highest
grade [9]. These two numbers are then combined to produce
a total score for the cancer: the grade of the cancer, i.e., 3+3,
3+4, 4+3 and 4+4, describes how much the cancer from a
biopsy looks like healthy tissue (lower score) or abnormal
tissue (higher score) [10].

In recent years radiomics is emerging as a field of medical
study focused on the extraction of a large amount of quan-
titative features from medical images [11]. These features,
called radiomic features, have the potential to uncover disease
characteristics that fail to be appreciated by the naked eye.
The hypothesis of radiomics is that the distinctive imaging
features between disease forms may be useful for predict-
ing prognosis and therapeutic response for various condi-
tions, thus providing valuable information for personalized
therapy [12]. Radiomics emerged from the medical field of
oncology and is the most advanced in applications within that
field. However, the technique can be applied to any medical
study where a disease or a condition can be tomographically
imaged [13].

In this paper we define the representation of magnetic res-
onances in terms of timed automata networks and, using the
model checking technique and the radiomic features, we infer
the prostate cancer Gleason score and the treatment suggested
by radiologists and pathologists.

Below we itemize the novelties of the proposed method:
• we model a magnetic resonance image as a timed
automata network from a set of radiomic features. At the
best of authors knowledge this is the first work from this
point of view, for this reason this represents the main
contribution of the paper;

• we propose a set of properties, one for each Gleason
score and another one to infer the treatment type. The
properties are expressed in temporal logic to better char-
acterize the evolution of the features over the time.

Moreover, we itemize the additional contributions of the
paper:
• we consider a set of non invasive radiomic features
to characterize Gleason score and treatment: in fact,
the value related to the feature is obtained directly from
magnetic resonance images and not from tissue. For this
reason the biopsy is not necessary to predict the Gleason
score and the treatment;

• a real-world experimental analysis is performed to eval-
uate the effectiveness of the proposed method. We con-
sider a freely available data-set for research purpose to
easily allow the experiment replication;

• we use model checking technique on timed automata,
a technique considered to exhaustively and automati-
cally checking if a model meets a given specification.

A preliminary attempt of using model checking has
been proposed by the authors in [14], where a different
modelisation of magnetic resonance images is defined
with respect to this work. As shown by the experi-
mental results, the method we are proposing in this
paper obtains a sensitivity equal to 1 in inferring all the
Gleason scores, while the one proposed in [14] reaches
a lower sensitivity. Thus, differently from [14], with our
novel real-time automata based method we reach a high
reliability, which is really important in contexts like the
medical one, where a misleading prediction can lead to
incorrect diagnoses.

The paper proceeds as follows: Section II describes the
proposed method to infer prostate Gleason score and treat-
ment, in Section III an experiment with real-world patients
is performed to demonstrate the effectiveness of the pro-
posed method, Section IV proposes an overview related
to the current state-of-the-art in prostate cancer inference
and, finally, in Section V conclusion and future works area
drawn.

II. THE METHOD
We propose a method based on Timed Automata [15] that
are well-known formalisms to model and to verify complex
system and has not been explored in the clinical context.
We presume the reader to be familiar with Timed Automata.
For further details, we suggest [16]. The goal is two-fold:
the first is the inference of the Gleason score, the second
one is the surgery treatment prediction directly from MRIs
considering the same radiomic feature set.

We firstly describe the considered radiomic feature set,
while subsequently we present the formal model and its ver-
ification through the properties generated with the assistance
of domain experts, i.e., the radiologists.

A. THE RADIOMIC FEATURE SET
Radiomic features have the potential to uncover disease char-
acteristics that fail to be appreciated by the naked eye. The
idea behind radiomics is that the distinctive imaging features
between disease formsmay be useful for predicting prognosis
and therapeutic response for various conditions, thus provid-
ing valuable information for personalised therapy.

We investigate the effectiveness in prostate cancer Gleason
Score and treatment prediction of 71 radiomic feature belong-
ing to following five categories:
• First Order: this category is related to the voxel intensi-
ties distributionwithin the ROI i.e., the region of interest,
in this study related to the areas in the MRI interested
by the cancer. We consider 1 feature belonging to this
category;

• Shape: this feature category includes descriptors of the
three-dimensional size and shape of the ROI. These
features are independent from the gray level intensity
distribution in the ROI and are therefore only calculated
on the non-derived image and mask.We consider 14 fea-
tures belonging to this category;
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FIGURE 1. Formal model generation.

• Gray Level Co-occurrence Matrix (GLCM): these fea-
tures consider the spatial relationship of pixels is the
gray-level co-occurrence matrix i.e., the gray-level spa-
tial dependence matrix. The GLCM functions character-
ize the texture of an image by computing how often pairs
of pixel with specific values and in a specified spatial
relationship occur in an image and then extracting sta-
tistical measures from this matrix. 24 different features
are belonging to this category;

• Gray Level Run LengthMatrix (GLRLM): the grey-level
run length matrix gives the size of homogeneous runs for
each grey level. It quantifies gray level runs, which are
defined as the length in number of pixels, of consecutive
pixels that have the same gray level value. We consider
16 features belonging to this category;

• Gray Level Size Zone Matrix (GLSZM): the features
related to this category quantify gray level zones in an
image. A gray level zone is defined as the number of
connected voxels that share the same gray level inten-
sity. A voxel is considered connected if the distance
is 1 according to the infinity norm. From this category,
16 different features are considered.

The full set of 71 radiomic features considered is shown
in Table 5 in Appendix.

The proposed method, shown in Figures 1 and 4, consists
of two phases: the Formal Model Generation (Figure 1) and
the Formal Model Verification (Figure 4).

B. FORMAL MODEL GENERATION
In this section we depict the proposed timed automata based
method for Gleason score and treatment detection. A timed
automaton is a classical finite automaton which can manip-
ulate clocks, evolving continuously and synchronously with
the absolute time. Each transition of such an automaton is
labelled by a guard, or constraint over clock values, which
indicates when the transition can be fired, and a set of clocks
to be reset when the transition is fired. Each location is con-
strained by an invariant, which restricts the possible values
of the clocks for being in the state, which can then enforce a
transition to be taken. For lack of space we have omitted the
complete background on Timed Automata. For further details
the reader can refer to [17].

The Formal Model Generation phase takes as input the
set of slices belonging to the MRI related to prostate with
their related Medical Report. From each slice, the numeric
radiomic features are gathered (i.e., Continuous Radiomic
Features step). The next step is the Discretised Radiomic
Features, aimed to discretize each radiomic features. The
radiomic continuous values are divided into three intervals,
i.e., we map the numeric feature values into one of the fol-
lowing classes: up, basal, and low. A plethora of methods
are investigated with the aim to discretize continuous values,
in the current work we consider the one discussed by authors
in [18]. In a nutshell Dougherty and colleagues [18] pro-
posed to split the features in three intervals: low, basal and
up, by considering the equal-width partitioning dividing the
values of a given attribute into three equal-size intervals. The
width of these intervals is calculated by exploiting the follow-
ing formula: W = (Max −Min)/3, where Max and Min are
respectively the maximum and the minimum values obtained
by the feature. The equal-width partitioning has been applied
to all the considered features. From the discretized features
a Timed Automata Network is obtained. We propose a model
parameterized with the full set of radiomic features, where
each automaton of the network is related to one feature.
Table 1 shows a fragment of discretized features.

TABLE 1. Example of feature fragmentation with three intervals
i.e., u = up, b = basal and l = low.

The first column (i.e., Slice) indicates the slice number.
We recall that each MRI belonging to a patient is composed
of a set of slices. The slice number 1 is scanned before the
slice 2 and so on. In order to extract meaningful information
from the cancer evolution, we consider slices scanned as
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FIGURE 2. The F1 automaton.

FIGURE 3. The F2 automaton.

temporal series. The columns F1 and F2 indicate, respec-
tively, the two features considered in this example.

Each patient has several slices, the intervals u = up,
b = basal, l = low are for this reason related to the variations
that may occur between slices belonging to the same patient.

In the first line (i.e., Slice 1) of feature fragmentation
depicted in Table 1, we observe that F1 exhibits a low value
and F2 an up one.

With regard to the second slice, belonging to the same
patient, we observe that F1 exhibits a basal value, F2 a basal
one and so on.

From the discretised radiomic features the timed automata
network is built: in Figures 2 and 3 are, respectively, shown
the automata for the F1 and F2 features obtained from the
discretization process in Table 1. More precisely, for each
feature a timed automata is built.

In each automaton, the count of up, basal and low values is
locally stored. In details, considering two features, x ∈ {1, 2},
the variables related to the Fx automaton are marked with a
subscript x. For instance, in the F1 automaton we consider as
variables: u1 for the up value, b1 for the basal value and l1 for
the low one.

The channel, i.e., a in Figures 2 and 3, allowing syn-
chronisation between automata, is not stored locally. In fact,
it must guarantee the continuous and progressive automata
advancement. One sender automaton, i.e., a! in Figure 2, can
synchronise with an arbitrary number of receivers automaton,

i.e., a? in Figure 3. In practice, considering that each line of
the discretized features in Table 1 corresponds to the value
of the features in the same time interval, the synchronization
allows to switch between a time interval to the next, obliging
the automata to go ahead with the next transition and to
update the values of the features with the values related to
the next time interval. This mechanism avoids inconsistencies
between the values of the features and the time intervals.
Also the clock, i.e., c in Figures 2 and 3, is not stored
locally. In fact, to proceed jointly, the several automata must
necessarily update their local variables at each clock cycle.

Furthermore, for each loopwe note the presence of a guard,
to ensure the exit from the loop. Moreover, the two automata
are synchronized by using the a channel.

C. FORMAL MODEL VERIFICATION
Once generated the timed automata network and the proper-
ties, the Formal Model Verification (Figure 4) phase consists
of checking if the properties are verified on the patient timed
automata network built in the Formal Model Generation
phase.

The Formal Model Verification receives as inputs the timed
automata network related to one patient and a set of tempo-
ral logic properties. Specifically, five properties (Properties
in Figure 4) are proposed: the first one, ϕ, to infer the 3+3
Gleason score, the second one, χ , to infer the 3+4 Gleason
score, the third one,ψ , to identify the 4+3Gleason score and
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FIGURE 4. Formal model verification.

the ξ one related to the 4+4Gleason score detection. The last
properties, ζ , is aimed to predict the Surgery treatment.
Then, the five properties are checked against the patient

timed automata network we obtained from the radiomic
feature set (Formal Verification Environment in Figure 4)
using UPPAAL, a widespread formal verification environ-
ment providing several techniques for specifying and ver-
ifying finite-state concurrent systems. When the UPPAAL
formal verification environment outputs true, the proposed
method labels the formal model as belonging to the Gleason
score specified by the analysed property: 3+3 if the evaluated
property is ϕ, 3+4 if the evaluated property is χ , 4+3 if
the evaluated property is ψ or 4+4 if the evaluated prop-
erty is ξ and to the Surgery treatment with the ζ property.
Otherwise, the formal verification environment outputs false,
meaning that the proposed method returns that the model
under analysis is not belonging to the Gleason score or the
surgery treatment stage described in the analysed temporal
logic property. When the model checker returns false, there
is the possibility to generate the counterexample, which is
one of the most interesting advantage of the model checking,
as compared to other well-known techniques for software ver-
ification. Counterexamples explain why a desired temporal
logic property fails to hold. This can be of interest for the
specialist to better understand the reason of the failure. The
counterexamples show, in the formal model, the exact point
in which the characteristics of the cancerous area are not
present.

III. THE EXPERIMENT
In this section we describe the real-world data-set used to
evaluate the proposed method, the logic temporal properties
to infer the different Gleason scores and the treatment and,
finally, the experiment we performed to demonstrate the
effectiveness of the proposed formal timed automata based
approach.

A. THE DATA-SET
We consider a real-world data-set belonging to the Cancer
Imaging Archive,1 a large archive of tumour medical images
available for research purpose. In details, we evaluate the
proposed method using a public data-set freely available for
research purpose available.2

The data-set is composed by Prostate cancer T2-weighted
coronal MRIs acquired using a 1.5 T Philips Achieva by
combined surface and endorectal coil, including dynamic
contrast-enhanced images obtained prior to, during and
after I.V. administration of 0.1 mmol/kg body weight of
Gadolinium-DTPA (pentetic acid). We considered coronal
MRIs because they represent the most widespread type of
image resonance always available [19], [20] in medical
reports. We consider 1.5T MRI considering that across the
United States and most of the world, 1.5T short-bore MRI
remains the standard technology for MRI scanners,3 this
represents the most widespread technology to obtain medical
images. [21].

Furthermore, the data-set contains the segmentation
i.e., the ROI, pathology biopsy and excised gland tissue
reports. Furthermore, it contains for each patient the report
biopsy, the prostate specimen, the MRI report and the sug-
gested treatment: these information are available at the fol-
lowing url: http://tiny.cc/zwladz. We consider a freely avail-
able data-set for research purpose to easily allow the experi-
ment replication.

A total of 824 slices belonging to 36 patients are anal-
ysed. In particular, 8 patients were marked by pathologists
as affected by a 3+3 Gleason prostate cancer, 12 patients
were marked by pathologists as affected by a 3+4 Gleason

1https://wiki.cancerimagingarchive.net/
2https://wiki.cancerimagingarchive.net/displayPublic/PROSTATE-

DIAGNOSIS
3https://info.atlantisworldwide.com/blog/3t-mri-vs-1.5t-mri
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TABLE 2. Timed temporal logic formula for 3+3, 3+4, 4+3, 4+4 Gleason score and surgery detection.

prostate cancer, 8 were marked by pathologists as affected by
a 4+3 Gleason prostate cancer, while the remaining 8 were
marked by pathologists with a Gleason Score prostate cancer
equal to 4+4. Indeed, 19 patients were recommended for
surgery, while the remaining 17 were not recommended for
surgery. The radiologists have only marked the ROI in the
MRI slices.

Figure 5 shows five different slices belonging to the evalu-
ated data-set for four patients. In details, we show the slices
number 0, 5, 10, 15 and 20 for patients exhibiting the 3+3,
3+4, 4+3 and 4+4 Gleason score prostate cancer.

The radiomic features are obtained using a Python script
developed by authors invoking pyradiomics,4 a library for
radiomic features computing from medical imaging.

B. THE LOGIC PROPERTIES
The Gleason score characteristics are encoded in properties
expressed in a temporal: the Timed Computational Temporal
Logic (TCTL) [22]. The properties aimed to make explicit the
intrinsic knowledge provided by radiologists and allow to pre-
dict in which cancer stage the patient is. This is obtained using
the UPPAAL formal verification tool and the formal model,
previously introduced. The properties are not derived from
the formal models, but are formulated by the domain experts.
The formal model is created and then verified against the
logic properties related to 3+3, 3+4, 4+3 and 4+4 Gleason
scores and surgery treatment inference. For lack of space,
for more details on the temporal logic the reader can refer
to [23]. Below we present the timed temporal logic properties
aimed to make explicit the intrinsic knowledge provided by
radiologists.

Table 2 shows the properties. The ϕ property is aimed to
identify the 3+3Gleason score: this disease is present if there
is a transition in the timed automata network with most of

4https://pyradiomics.readthedocs.io

the variables with a low value for interval of time ≥ 2. This
property highlights that the cancer area is present but it is not
extended,

The χ property is related to the 3+4 Gleason score: in
this case the property is satisfied when the timed automata
network reaches a transition where contextually there are
a series of variables with basal value for intervals of
time ≥ 1 and the u8 is equal to 1. Differently, from the
previous formula for the 3+3 Gleason score inference, this
one is aimed to verify if a medium extended cancer area is
present. As suggested by domain expert, the F8 feature would
exhibit an up value.

The ψ property checks if a 4+3 Gleason score prostate
cancer is present. As highlighted from literature [24]–[26],
this Gleason score is the more difficult to recognize because
is usually misclassified with the 3+4 or the 4+4 one. For
this reason, machine learning based solution usually fails to
classify it in the right belonging class. In this case the cancer
area is extended, as expressed by the logical formula which
states that a multitude of variables exhibit a basal value, but
there are three variables exhibiting up values (F5, F6 and F11
features).

We highlight also that the up values to verify the property
must be present for at least 6 temporally consecutive slices,
symptomatic that the area of cancer is constantly expanding.

The last Gleason score property i.e., ξ , is aimed to verify if
a patient is afflicted by a 4+4 Gleason score prostate cancer.
This score is inferred if a set of radiomic feature exhibit
several consecutive up values. This is symptomatic of a really
extended area where all the radiomic features are describing
a rapidly increasing cancerous area.

The ϕ, χ , ψ and ξ Gleason scores properties are satisfied
when in the formal model there exists the pattern described
by the formulae. Differently, the property for the treatment
detection, i.e., ζ , is in the following form: each time the b11
variable shows a value equal to 4, the u6 one must exhibit
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FIGURE 5. An example of MRI slices belonging to the analysed data-set.

a value equal to 3. ζ aims to verify if a prostate cancer is
a plausible candidate for the Surgery. In Table 2 we used
the UPPAAL syntax, the  is replaced with the ‘‘imply’’
operator.

C. EXPERIMENTAL RESULTS AND DISCUSSION
In this section we present the result we obtained from the
evaluation of the proposed method. Table 3 shows the results
for the formulae verification.

In Table 3 is depicted the3 symbol if the evaluated formula
is satisfied, otherwise the 7 symbol is added in correspon-
dence of the model of the patient under analysis, stating that
the model checker has marked the model as false.
Table 3 shows the model checker output for the models

belonging to the 36 patients. From each patient MRI scan
one timed automata network based model is obtained. The
ϕ property, related to 3+3 Gleason score, rightly labelled
all the 8 patient models affected by 3+3 Gleason prostate
cancer, the χ property, related to 3+4 Gleason score, rightly
labelled all the 12 patient models affected by 3+4 Gleason
prostate cancer, theψ property, related to 4+3Gleason score,
rightly labelled 8 patient models affected by 4+3 Gleason
prostate cancer, while the ξ property, related to 4+4 Gleason
score, rightly marked all the 8 patient models affected by 4+4
Gleason prostate cancer.

With regard to the ζ property, related to the surgery diag-
nosis, the model checker correctly outputs true on all the
18 patients marked by radiologists and pathologists as suit-
able candidates for the surgery, while wrongly marked the
25 patient with true. No formula has therefore led to erro-
neous results, confirming the ability of the proposed Gleason

score temporal logic properties to rightly infer the Gleason
score and the treatment.

Furthermore, four different metrics were used to evalu-
ate the performance of the proposed approach: Specificity,
Sensitivity, Positive Predictive Value and Negative Predictive
Value.

The sensitivity of a test is the proportion of people who test
positive among all those who actually have the disease and it
is defined as:

Sensitivity =
tp

tp+ fn

where tp indicates the number of true positives and fn indi-
cates the number of false negatives

The specificity of a test is the proportion of people who
test negative among all those who actually do not have that
disease and it is defined as:

Specificity =
tn

tn+ fp

where tn indicates the number of true negatives.
The Positive Predictive Value (PPV) is the probability that

following a positive test result, that individual will truly have
that specific disease. It is defined as:

PPV =
tp

tp+ fp

TheNegative PredictiveValue (NPV) is the probability that
following a negative test result, that individual will truly not
have that specific disease. It is defined as:

NPV =
tn

tn+ fn

where fn indicates the number of false negatives.
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TABLE 3. Formulae verification. For each patient we indicate the Gleason
score in the Gleason column and the treatment. S stands for surgery,
NS for no surgery in the Treatment column.

TABLE 4. Performance results.

Table 4 shows the effectiveness of the proposed method to
Gleason score inference and surgery treatment stage.

The evaluation results in Table 4 show that formal methods
are really promising in both Gleason score inference and
surgery treatment prediction.

In fact, our method obtains following performances:
• for the 3+3 Gleason score prediction a sensitivity and a
specificity equal to 1 is reached;

• for the 3+4 Gleason score prediction a sensitivity and a
specificity equal to 1 is reached;

• for the 4+3 Gleason score prediction a sensitivity and a
specificity equal to 1 is achieved;

• for the 4+4 Gleason score prediction a sensitivity and a
specificity equal to 1 is achieved;

• for the Surgery prostate cancer treatment prediction a
sensitivity equal to 0.94 and a specificity of 1 is obtained.

These results demonstrate the effectiveness of proposed
approach formal methods based to effectively assist radiolo-
gists and pathologists in prostate cancer Gleason score infer-
ence and surgery treatment prediction by exploiting radiomic
features.

Usually, machine learning solutions are more used to solve
this task, as highlighted in the Related Work Section, with
respect to formal methods since the latter require domain
experts and logical-mathematical skills to formulate the prop-
erties. Nonetheless, we obtain very good performances since
our logic temporal properties are more focused on a cer-
tain cancer than machine learning classification algorithms
adopted as a black box in this context [27].

IV. RELATED WORK
In this section we review the current state-of-the-art related
to prostate cancer detection. We compare the methods in
literature with the one we proposed in terms of performance
and proposed methodology.

Hussain and colleagues [28] propose a method to iden-
tify prostate cancer exploiting Bayesian network from MRIs
i.e., by applying well-known machine learning algorithms.
The main difference with our method is that the formal meth-
ods based approach proposed is able to discriminate between
several Gleason Scores prostate cancers. The second is related
to the detection target, authors in this work did not consider
the different prostate cancer grades, while the method we
propose is aimed to discriminate between several Gleason
Scores prostate cancers and also aimed to predict the surgery
treatment.

Chaddad and colleagues [29] consider five different fea-
tures, i.e., contrast, homogeneity, difference variance, dissim-
ilarity, and inverse difference, exploring the capacity of these
features to compare between Gleason score groups with a
p < 0.05. They demonstrate that the median of texture
features is unable to discriminate between the Gleason Score
groups. Differently from the method we propose, authors in
this paper basically show the results of a statistical analysis,
they do not propose a method to predict the Gleason score
from patient MRIs. Furthermore, authors do not provide
support to radiologists and pathologists with the treatment
prediction.

Khalvati and colleagues [30] consider radiomic texture
feature vector composed by 96 different features to detect
prostate cancer in MRI images. They obtain a precision equal
to 0.86 in binary labeling an MRI under analysis in tumor.
The first difference with our method is related to a finer grain
detection, as a matter of fact, we infer the cancer stages and
the second one is related to the surgery detection. The last
point is the precision obtained, that is equal to 1 for the pro-
posed method with a number of radiomic feature equal to 4.

Authors in [31] achieve an accuracy equal to 0.85 in
prostate cancer inference considering machine learning tech-
niques. The proposed formal methods based methodology
achieves a sensitivity and a specificity equal to 1 in Gleason
score detection while with regard to surgery treatment
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TABLE 5. Features involved in the study.

detection the sensitivity is equal to 0.94 and the specificity
equal to 1.

A system to assist pathologists to detect using machine
learning techniques prostate cancer from MRIs of prostate
histological specimens is proposed in [32]. Authors con-
sider texture features to build Bayesian classifiers, obtain-
ing an accuracy of 88%. Authors consider supervised
machine learning classifiers, i.e., the Bayesian ones, while
the proposed method obtains a specificity and a sensitiv-
ity equal to 1 overcoming the performances of well-known
machine learning techniques. Furthermore, the contribu-
tion in [32] does not consider the surgery treatment
prediction.

Zhang and colleagues [33] evaluate a decision tree algo-
rithm to identify subjects with prostate cancer. They consider
prostate volume, age and prostate-specific indicators as fea-
tures, reaching an accuracy equal to 86.6%. Authors do not
consider the different prostate cancer Gleason score where
the proposed method obtained better performances, and the
treatment prediction.

Huang and colleagues [34] consider a deep learning net-
work to discriminate between low tumors and high-grade
localized cases. They obtain an accuracy equal to 70%.
They discriminate from low-grade and high-grade localized
tumors. Differently, the method we propose is able to detect
cancers between the low and the high-grade, namely the ones
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labelled with the 3+4 and the 4+3 Gleason scores, obtaining
better performances.

Chaddad et alius [29] consider a set of radiomic feature
derived from the joint intensity matrix and the grey level
co-occurrence matrix to identify the different stages of the
prostate cancer. From the results point of view, using the
Random Forest machine learning classification algorithm,
they obtain accuracy values equal to 78.40% for Gleason
score ≤ 3+3, 82.35% for Gleason score = 3 + 4, and
64.76% for Gleason score > 4 + 3. They group Gleason
score MRI in three groups: the first one with the MRIs
labeled with 3+3 Gleason score, the second one with the
3+4Gleason Score, while the last group contains the 4+3 and
the 4+4 Gleason score i.e., the Gleason score> 4+ 3 group:
this is symptomatic that when their method marks an MRI
under analysis belonging to the third group the radiologist
have to analyse it in order to understand if the MRI is
related to the 4+3 or to the 4+4 Gleason score. Differently,
we demonstrated that the proposed method is able to dis-
criminate between the 3+3, 3+4, 4+3 and 4+4 Gleason
scores, overcoming their performances in the detection of the
different Gleason score, providing in addition the treatment
prediction property.

Researchers in [35] investigate the possibility to identify
prostate cancer exploiting the support vector machine learn-
ing algorithm. They extract a set of features from nuclei in
order to build their model, obtaining an accuracy equal to
83%. Differently, the proposed method obtains a sensitivity
and a specificity equal to 1 in prostate cancer stage detection.
Authors in [35] do not consider the treatment prediction.

As emerged from the state-of-the-art analysis, the adoption
of supervised machine learning techniques is widespread in
prostate cancer detection. This confirms the novelties of our
formal method based approach. The obtained results over-
come the performances reached by the research methods
currently proposed in literature. Moreover, the current state-
of-the-art generally do not consider the different Gleason
scores and the surgery treatment prediction.

V. CONCLUSION AND FUTURE WORK
Considering the significant mortality rate by prostate can-
cer affected patients, in this paper we propose a real-time
automata approach to infer the cancer grade in terms of
Gleason score and the suggested treatment to support pathol-
ogists and radiologists in early diagnosis. Differently from
the researches of the state-of-the-art, which are based on the
adoption of well-known machine learning techniques, our
method exploits formal methods, by modeling the patient
slices through a timed automata network and evaluating the
obtained models through a formal verification environment.
A set of properties, related to each Gleason score and the
surgery treatment, is defined by the authors. The related
work analysis suggests that the proposed method gains good
results in the detection rate. As future work, we plan to
model patients affected by other kind of cancers. Further-
more, we will investigate if the automatic property extraction

can help us to make explicit more knowledge to achieve
better results in Gleason score and prostate cancer treatment
identification.

APPENDIX
In Table 5 there are listed the radiomic features considered in
the following study.
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